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Abstract

Multivariate data is common in a wide range of settings. As data structures be-

come increasingly complex, additional statistical tools are required to perform

proper analyses. In this dissertation we develop and evaluate methods for the

analysis of multivariate data generated from cancer trials. In the first chapter we

consider the analysis of clustered survival data that can arise from multicenter clin-

ical trials. In particular, we review and compare marginal and conditional models

numerically through simulations and discuss model selection techniques. A mul-

ticenter clinical trial of children with acute lymphoblastic leukemia is used to illus-

trate the findings. The second and third chapters both address the setting where

multiple outcomes are collected when the outcome of interest cannot be measured

directly. A head and neck cancer trial in which multiple outcomes were collected

to measure dysphagia was the particular motivation for this part of the disserta-

tion. Specifically, in the second chapter we propose a semiparametric latent vari-

able transformation model that incorporates measurable outcomes of mixed types,

including censored outcomes. This method extends traditional approaches by al-

lowing the relationship between the measurable outcomes and latent variable to

be unspecified, rendering more robust inference. Using this approach we can di-

rectly estimate the treatment (or other covariate) effect on the unobserved latent

variable, enhancing interpretation. In the third chapter, the basic model from the

second chapter is maintained, but additional parametric assumptions are made.

This model still has the advantages of allowing for censored measurable outcomes
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and being able to estimate a treatment effect on the latent variable, but has the

added advantage of good performance in a small data set. Together the methods

proposed in the second and third chapters provide a comprehensive approach for

the analysis of complex multiple outcomes data.
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A Comparison of Methods for Analyzing Clustered
Survival Data in Multicenter Clinical Trials

Anna C. Snavely and Yi Li



1.1 Abstract

Clustered survival data often arise from large randomized clinical trials conducted

in multiple centers. There are two major classes of models for addressing clus-

tering in this setting: marginal (population-averaged) models and conditional

(center-specific) models. This paper reviews and compares marginal and condi-

tional models (frailty models in particular) numerically through simulations that

consider the impact of model misspecification on point estimates for both true

marginal models and true frailty models. We show that large differences can exist

between marginal and conditional coefficients, particularly when the within clus-

ter dependence is strong. We also demonstrate that AIC/BIC cannot be used for

model selection.

1.2 Introduction

Many large randomized clinical trials are carried out at multiple medical centers

in order to facilitate the recruitment of a sufficient number of patients. Multicenter

designs also allow for greater generalizability of results. However, additional com-

plications arise with multicenter designs. Different medical centers tend to have

different patient populations, different doctors, and different standard practices.

Because of these center differences, it is likely that patients within the same center

are more similar to each other than to patients in a different center even though

trial-specific protocols are followed. This can lead to dependence, or clustering,

of outcomes from the same center. See, for example, Anello et al. (2005), Fleiss

(1986), Gray (1994), and Senn (1998). Therefore, when doing an analysis of such a

trial, it is important to take this clustering into account. When the effect of cluster-

ing is strong, not accounting for the dependence can lead to misleading inference

(Glidden & Vittinghoff, 2004).
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A common outcome in multicenter clinical trials is survival or some other

failure time. This makes exploring methods for accounting for clustering in time-

to-event data important. This paper reviews some of the available methods for

analyzing such clustered time-to-event data and presents simulation results com-

paring the various methods. In particular, the interest of many randomized tri-

als is assessing a potential treatment effect. However, this treatment effect can

have either a population-averaged interpretation or a conditional interpretation

depending on which method of analysis is used. Therefore, this paper seeks not

only to compare the different methods, but also to explore relationships between

population-averaged and conditional effects and to consider how to choose be-

tween the various models. Simulations investigate varying levels of censoring and

correlation within center, and varying number of clusters. The methods are also

compared using data from a Children’s Oncology Group multicenter trial for acute

lymphoblastic leukemia.

1.3 Methods For Analyzing Clustered Failure Time
Data

Suppose censored failure time data is obtained from a multicenter clinical trial

with J clusters (centers) and with n
j

subjects in cluster j (j = 1, . . . , J). The total

sample size is then N =

P
j

n
j

. Let T
ij

and C
ij

be the failure time and censoring

time for subject i in cluster j. We then observe X
ij

= min(T
ij

, C
ij

), the follow-up

time, and �
ij

= I(T
ij

< C
ij

), the failure indicator. Z
ij

is a vector of covariates for

subject i in cluster j. Let T
j

be the vector of failure times for cluster j, C
j

be the

vector of censoring times for cluster j and Z
j

be the covariate matrix for cluster

j. Then, we assume that T
j

, C
j

, and Z
j

are independent across centers and that

(T
j

,C
j

) are conditionally independent given Z
j

.

When dealing with clustered time-to-event data, there are two major classes
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of models: marginal (or population-averaged) models (Wei et al., 1989; Lin, 1994;

Prentice & Cai, 1992; Cai & Prentice, 1995) and conditional (center-specific) models

(Murphy, 1994, 1995; Parner, 1998; Vaupel et al., 1979). If we consider a Cox model

with covariate vector Z
ij

, the marginal hazard for subject i in center j is:

�
ij

(t|Z
ij

) = �0(t)exp(�TZ
ij

). (1.1)

In this model, the baseline hazard, �0(t), is not specific to a particular center. If

we consider the interpretation of the coefficient (�
T

) for a treatment covariate in

this setting (1 indicating treatment and 0 indicating placebo), e�T is the marginal

hazard ratio that compares the risk of failure for an individual who receives treat-

ment and an individual who receives placebo who are randomly selected from the

population. This means that marginal models give a population-averaged inter-

pretation for the regression parameters. Both the naive (traditional) Cox model

and the marginal Cox model (takes into account clustering) produce coefficients

with population-averaged interpretations.

On the other hand, if the center is explicitly taken into account when mod-

eling the hazard, we get a conditional model of the form:

�
ij

(t|Z
ij

) = �0j(t)exp(�TZ
ij

). (1.2)

Center is included in this model through a center-specific baseline hazard, �0j(t).

In this case, e�T is the hazard ratio that compares the risk of failure for an individ-

ual who receives treatment and an individual who receives placebo who are from

the same center. In other words, regression parameters in conditional models must

be interpreted as conditional on the center (Glidden & Vittinghoff, 2004). The fixed

effects Cox model, which is fit by including dummy variables for each center in

the traditional Cox model (Glidden & Vittinghoff, 2004), the stratified Cox model

(Holt & Prentice, 1974), and the frailty model are all examples of conditional mod-

els. Frailty models are particularly useful and will be the only class of conditional

models considered further in this paper.
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Since the �s in model (1.1) and model (1.2) have different interpretations,

in general it is not expected that the values for the two coefficients would be the

same. In fact, the only time we would expect the coefficients to be the same in the

marginal and conditional models is when there is no correlation within the center

(Therneau & Grambsch, 2000).

1.3.1 The Naive Cox Model (A Population-Averaged Model)

The Cox proportional hazards model (Cox, 1972, 1975) is the most popular method

for analyzing failure time data. Model (1.1) represents the form of the Cox model,

where �0(t) is an unspecified non-negative function. Estimation of � is based on

the partial likelihood:

L(�) =

JY

j=1

njY

i=1

"
exp(�TZ

ij

)

P
J

k=1

P
nk
l=1 I(X

kl

� X
ij

)exp(�TZ
kl

)

#�ij

. (1.3)

The partial likelihood is not a full likelihood, but can be treated as such for the

purpose of inference. This means the estimate of � can be found by solving the

score equation and the inverse information can be used to estimate the variance.

The Cox model assumes that the observations are independent. However, this

assumption does not hold in the case of clustered failure time data. Therefore, if

the naive Cox model is used for clustered time-to-event data, variance estimates

are likely to be too small (Lorino et al., 2004). As such, when your data are truly

clustered the naive Cox model should not be used for analysis.

1.3.2 The Marginal Cox Model (A Population-Averaged Model)

The estimates for the regression parameters in the naive Cox model are fine when

we have clustered failure time data. This means that parameter estimates can still

be obtained using the partial likelihood. However, the variance term needs to be
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corrected in an analogous manner as is done in the generalized estimating equation

approach of Liang et al. (1992).

One approach to getting a robust variance estimator is by using the grouped

jackknife. This means that the model is fit leaving out one cluster at a time, giving

us jackknife influence values: ˆ�(j) � ˆ�. These jackknife influence values can then

be used to estimate the variance (Therneau & Grambsch, 2000).

Another approach is to use an approximation to the jackknife in the form

of a sandwich estimator: ABA. In this estimator, A is the usual variance estimate

and B is a correction term. In our setting the sandwich estimator can be written as

V = I�1
(UTU)I�1, where I is the observed information matrix and U is the matrix

of score residuals (Therneau & Grambsch, 2000). Lin & Wei (1989) developed an

appropriate sandwich estimator for the Cox model which is algebraically equiva-

lent to V. They showed this estimate is consistent and robust to several forms of

misspecification.

A final approach is to use a modified sandwich estimator (Therneau &

Grambsch, 2000; Lee et al., 1992). This estimator can be written as V ⇤
=

I�1
(

˜UT

˜U)I�1, where ˜U is the collapsed score matrix obtained by replacing each

cluster of rows in U by the sum of those rows. This is the approach that R and

S-Plus use to get a robust variance estimator (Lorino et al., 2004).

1.3.3 The Frailty Model (A Conditional Model)

The frailty (or random effects) model assumes that center has a proportional effect

on the baseline hazard function, that the center effects come from some probability

distribution and that there is a constant treatment effect across centers. The ran-

dom center effects are continuous variables that describe the excess risk (frailty) for

each center. The frailties account for center heterogeneity caused by unmeasured

6



variables (Aalen, 1988). In this formulation we assume that subjects in the same

center have the same excess risk. Therefore, this formulation of a random effects

survival model is often called a shared frailty model. The form of such a frailty

model is:

�
ij

(t) = �0(t)wj

exp(�TZ
ij

) = �0(t)exp(�TZ
ij

+ �
j

). (1.4)

From this formulation we see that model (1.4) is just a special case of model (1.2)

where the frailties (w
j

) are assumed to act multiplicatively on a common baseline

hazard, �0(t) (Therneau & Grambsch, 2000). Two of the most common distribu-

tions for the w
j

s are gamma and log normal. The positive stable distribution is

also sometimes used because of nice theoretical properties. An advantage of the

frailty model is that the frailties (center effects) can be estimated. This is useful if

differences between centers are of particular interest.

In the gamma frailty model (Murphy, 1994, 1995; Parner, 1998; Klein, 1992;

Nielsen et al., 1992), w
j

follows a Gamma(1/✓, 1/✓) distribution. In the log nor-

mal frailty model (McGilchrist & Aisbett, 1991; McGilchrist, 1993) the �
j

s follow

a normal distribution with mean 0 and variance ✓. Since the �
j

s follow a normal

distribution, the frailties (w
j

) follow a log normal distribution. For both models,

a larger ✓ means the frailties are more dispersed and there is a larger dependence

within centers. Therefore, a larger ✓ leads to greater heterogeneity in the center-

specific baseline hazards. If ✓ is 0, then the frailties are equal to 1, and failures are

independent both within and across centers.

The penalized Cox model is an efficient approach of estimation for the

gamma and log normal frailty models. This method of estimation proceeds by

maximizing the penalized partial log-likelihood:

PPL = l(�, �) � g(�; ✓). (1.5)

The first piece of (1.5) is the usual Cox partial likelihood and the second piece is a

constraint function that penalizes less desirable values of w. The penalty function

7



for the gamma frailty model is (1/✓)
P

[�
j

� exp(�
j

)] and the penalty function for

the log normal frailty model is (1/2✓)
P

�2
j

.

For both the log normal and gamma frailty models we could consider av-

eraging over the frailty distribution in order to see the effect of covariates on the

marginal hazard. When this is done, it can be seen that both the gamma and the log

normal models lead to non-proportional marginal hazards (Glidden & Vittinghoff,

2004; Lorino et al., 2004). On the other hand, when averaging over the frailty dis-

tribution in the positive stable frailty model (Hougaard, 1986; Fine et al., 2003), the

proportionality of the marginal hazard is maintained. Because the proportionality

is maintained, there is a direct relationship between the conditional and marginal

coefficients. Let � be the coefficient in the positive stable frailty model and let � be

the coefficient in the marginal model. In this case the following relationship holds,

where 0  ↵  1:

� = ↵�. (1.6)

We can see from (1.6) that the conditional parameter from the frailty model is larger

in magnitude than the marginal coefficient. Unlike the gamma and log normal

frailty models, the positive stable frailty model cannot be fit using the penalized

Cox model approach. The positive stable model can be fit using the EM algorithm,

but this algorithm is quite slow and proper variance estimates require further com-

putation (Therneau & Grambsch, 2000). A SAS macro by J. P. Klein implements the

EM algorithm for the positive stable model, but no such software is available in S-

Plus/R. Hougaard (2000) also has developed software for fitting the positive stable

model, but it has not been made available to the public. While the positive stable

model has nice theoretical properties, the lack of efficient publicly available soft-

ware makes it less attractive. As such, the positive stable frailty model will not be

considered in the simulation study.
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1.4 Simulation Study

A simulation study was carried out with the aim of comparing and choosing be-

tween the naive Cox model, the marginal Cox model, the gamma frailty model and

the log normal frailty model. The four models were compared both using data sim-

ulated to follow a proportional hazards model with a known marginal treatment

effect and data simulated to follow a proportional hazards model with a known

conditional treatment effect.

1.4.1 True Model: Marginal Model

In multicenter clinical trials, it is often the case that we are interested in the

population-averaged interpretation of covariates (treatment in particular). This

would suggest the use of the marginal Cox model. In order to evaluate and com-

pare the performance of the naive Cox model and the marginal Cox model, data

were generated to marginally follow a proportional hazards model with a known

treatment effect. Under this simulation setting we consider estimates for the treat-

ment effect (�), the model-based standard error, the empirical standard error, the

bias, the mean squared error, the empirical coverage of 95 percent confidence in-

tervals, AIC and BIC. We can fit the frailty models to the data as well and calculate

the same quantities. However, because the marginal and conditional treatment

effects are not expected to be the same, the bias (and by extension the MSE) repre-

sents the difference from the true marginal effect, not the difference from the true

conditional effect. These simulations, therefore, do not let us see how well models

estimate the true conditional effect. However, the study is useful to consider rela-

tionships between marginal and conditional coefficients across different settings,

as well as to consider how the conditional coefficients compare to each other across

different settings.

9



Method of Simulation

The clustered failure time data with a known marginal treatment effect were simu-

lated using a normal transformation model approach (Othus, 2009; Li & Lin, 2006).

If we assume a Cox proportional hazards model (1.1), then the survival function

can be written as:

S(t) = exp(�e�
T
Zij
⇤0(t)). (1.7)

⇤0(t) in (1.7) is the cumulative hazard function. For simplicity we can take �0(t) =

1 and have only a single treatment (Bernoulli) covariate. A transformation and the

probability integral transform can then be used to get T ⇤
ij

random variables that

follow a standard normal distribution:

T ⇤
ij

= �

�1
(S(T

ij

)) = �

�1
(exp(�e�

T
ZijT

ij

)) =

p
�b

i

+ ✏
ij

(1.8)

Therefore, in order to generate clustered survival times (T
ij

), we can generate T ⇤
ij

by generating b
i

from a N(0,1) distribution and ✏
ij

from a N(0,1 � �) distribution

and then transforming back.

Twenty-four different simulation settings were considered: 2 levels of cen-

soring (30%, 60%), 4 levels of correlation (�= 0, 0.25, 0.5, 0.75), and 3 levels of

cluster number (30, 60, 90). For each setting, 500 simulations were carried out.

The single treatment covariate was generated from a Bernoulli(0.5) distribution

for each setting to give approximately equal numbers in the treatment and placebo

groups, which mimics many clinical trials. The marginal treatment effect (�) was

set to log(0.5) = -0.693 for each setting as well. Since we are primarily interested in

the multicenter clinical trial setting, cluster size was randomly generated to allow

clusters of varying size. Cluster size was constrained to be between 10 and 50 with

a mean cluster size of 30, again to mimic the clinical trial setting.

10



Results

Table 1.1 presents simulation results for the models with 30% censoring where the

true model is the marginal model and Table 1.2 presents similar results for models

with 60% censoring. We will first focus on the two models with marginal interpre-

tations. The first thing to note is that the estimates for � are the same under both

the naive Cox model and the marginal Cox model, which implies the bias is also

the same for both models. The fact that the estimates are the same is expected be-

cause the parameters in both cases are estimated using the partial likelihood (1.3).

Because the same partial likelihood is used for both models, the AIC and BIC are

also identical for the two models. The difference in the models, therefore, is in

the standard errors. This difference in standard errors becomes greater as the cor-

relation increases since the standard errors under the marginal model increase as

the correlation increases. The naive model performs fairly well when the corre-

lation is small (� = 0.25). However, it is clear that the naive model has standard

errors that are too small when the correlation within center becomes stronger. This

can be seen by the somewhat poor empirical coverage of 95% confidence intervals

for the higher levels of �. For larger correlations, it also appears that while the

marginal model performs much better than the naive model, the marginal model

still tends to somewhat underestimate the standard errors as evidenced by the em-

pirical standard errors being larger than the model-based standard errors.

In all the settings the marginal Cox model performs well. This can be seen

by the small biases and the empirical coverage of the confidence intervals being

close to 95% in all cases. However, the bias does tend to increase as the correla-

tion increases. This pattern is more pronounced when the number of clusters is

smaller. Also, when there is more correlation, the bias is smaller when there are

more clusters. When the censoring is higher, the standard errors for both the naive

Cox model and the marginal model are inflated compared to the corresponding

11
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models with lower censoring. This inflation is not as pronounced when the num-

ber of clusters is higher.

When there is no dependence within center (� = 0), the conditional co-

efficient and the marginal coefficient should be the same. Under this constraint,

the frailty models perform well (small bias) and have similar performance to the

marginal model. When the correlation within center increases, the estimate of the

treatment effect becomes larger in magnitude (becomes more negative). This leads

to a larger difference between the conditional and marginal coefficients. This result

is expected theoretically (Henderson & Oman, 1999) and can be seen from the re-

lationship between the conditional and marginal parameters in the positive stable

model (1.6). For the frailty models, the empirical coverage of the 95% confidence

intervals tends to decrease with increasing correlation. This may be a consequence

of the standard errors being estimated under the assumption that ✓ is a fixed, rather

than estimated, quantity (Therneau & Grambsch, 2000). It also appears that the

model-based standard errors tend to be too small for larger correlations as seen by

the larger empirical standard errors.

The gamma and log normal frailty models give very similar results for the

estimates of both the treatment effect and the standard errors. This leads to bias

and MSE estimates that are very close. The AIC and BIC are also quite similar

between the two frailty models and are always higher for the population-averaged

models than for the frailty models. As was the case for the population-averaged

models, standard errors are inflated for the settings with higher censoring. The

coefficients also tend to be larger (closer to 0) under the higher censoring settings.

The relationship between the marginal and conditional coefficients can be

seen visually by looking at Figure 1.1, which is representative of the different sim-

ulation settings. When there is no dependence within center, the marginal and

conditional coefficients are quite close. However, as the amount of dependence

14
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Figure 1.1: Plots of absolute relative bias versus � for 60 clusters and 30% censoring where
the true model is the marginal model.

increases, the difference between the conditional and true marginal coefficients in-

creases. In fact, for large amounts of dependence within center, we see that the

difference between the two types of estimates is quite drastic. From the picture, it

is also clear that the gamma and log normal frailty models perform very similarly.

1.4.2 True Model: Conditional Model

In multicenter clinical trials we may also be interested in center effects or a center-

by-treatment interaction. In this case, the use of a frailty model would be rea-

sonable. In order to evaluate and compare the performance of the gamma frailty

model and the log normal frailty model, data were generated to follow a pro-

15



portional hazards model with a known conditional treatment effect. As in the

marginal setting, we consider estimates for the treatment effect (�), the model-

based standard error, the empirical standard error, the bias, the mean squared er-

ror, the empirical coverage of 95 percent confidence intervals, AIC and BIC. We

can fit the population-averaged models to the data as well but the bias (and by

extension the MSE) represents the difference from the true conditional effect, not

the difference from the true marginal effect. These simulations, therefore, do not

let us see how well models estimate the true marginal effect. The simulations do,

however, allow us to consider relationships between marginal and conditional co-

efficients across different settings.

Method of Simulation

The clustered failure time data with a known conditional treatment effect were

simulated using the approach of Bender et al. (2005), with the addition of a frailty

term. Exponential clustered survival times (T
ij

) can be simulated using the follow-

ing equation:

T
ij

= � log(U
ij

)

�exp(�TZ
ij

+ �
j

)

(1.9)

where U
ij

is generated from a Uniform(0,1) distribution and � is the scale parame-

ter for the exponential distribution (chosen to be 2 for our simulations). �
j

in (1.9)

is the frailty term (shared by all patients in the same center) that controls the de-

pendence within each cluster. For our simulations, the �
j

s were generated either

from the log of a Gamma (1/✓, 1/✓) distribution (true model: gamma frailty model)

or from a Normal(0, ✓) distribution (true model: log normal frailty model).

As in the marginal setting, twenty-four different simulation settings were

considered for both the gamma frailty and log normal frailty settings: 2 levels of

censoring (30%, 60%), 4 levels of dependence within center (✓= 0, 0.67, 2, 6), and 3

levels of cluster number (30, 60, 90). The values of ✓ (variance of the frailty term)

16



were chosen to correspond to Kendall’s ⌧ values of 0, 0.25, 0.5, and 0.75 under the

gamma frailty model. For each setting, 500 simulations were carried out and a

single treatment covariate was generated from a Bernoulli(0.5) distribution. The

conditional treatment effect (�) was set to log(0.5) = -0.693 for each setting and

cluster size was randomly generated to allow clusters of varying sizes between 10

and 50 with a mean cluster size of 30.

Results

Table 1.3 presents simulation results for the models with 30% censoring where the

true model is the gamma frailty model and Table 1.4 presents similar results for

models with 60% censoring. We will first focus on the performance of the two

frailty models. There are small biases and the empirical coverage of the confidence

intervals are close to 95% in all cases, suggesting that the gamma frailty model

performs well in all the settings. This is to be expected since the true frailty is from

a gamma distribution. However, the log normal frailty model also performs very

well and even outperforms the gamma frailty model in some cases (smaller bias).

For both models, when the number of clusters is smaller, there is some tendency

for the frailty model to underestimate the standard errors, particularly with higher

correlation within center. Higher censoring has the effect of increasing the stan-

dard errors. When there is dependence within center (✓ > 0), the AIC and BIC do

tend to be lower for the gamma frailty model as compared to the log normal frailty

model. This difference is most apparent for the higher correlations. When there is

no dependence within center (✓ = 0), the AIC and BIC are lower for the log normal

frailty model than the gamma frailty model.

When there is no dependence within center (✓ = 0), the conditional coef-

ficient and the marginal coefficient should be the same. In this setting, both the

naive Cox model and the marginal Cox model perform similarly to the frailty

17
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model. However, when the correlation within center increases, the estimate of

the treatment effect for the population-averaged models becomes smaller in mag-

nitude (becomes less negative). This leads to a larger difference between the con-

ditional and marginal coefficients. As expected, the bias is the same for the naive

Cox model and the marginal Cox model. Interestingly, however, the standard er-

ror estimates are similar for the two models as well. This suggests that when the

true model is a gamma frailty model, performance does not differ much between

the naive Cox and marginal Cox models even though dependence within center is

present. AIC and BIC are always higher for the population-averaged models than

for the frailty models.

Table 1.5 presents simulation results for the models with 30% censoring

where the true model is the log normal frailty model and Table 1.6 presents similar

results for models with 60% censoring. When the true model is the log normal

frailty model, the log normal frailty model performs well in all settings as seen by

small biases and empirical coverage of confidence intervals that are close to 95%.

The gamma frailty model also performs very well and again even outperforms

the log normal frailty model in some cases (smaller bias). As in the gamma case,

when the number of clusters is smaller, there is some tendency for the frailty model

to underestimate the standard errors, particularly with higher correlation within

center and higher censoring has the effect of increasing the standard errors. When

there is dependence within center (✓ > 0), the AIC and BIC tend to be very similar

for the two frailty models. Even though the true model is the log normal frailty

model, in many of the settings, the AIC and BIC are lower for the gamma frailty

model.

When there is no dependence within center (✓ = 0), the naive Cox model

and the marginal Cox model again perform similarly to the frailty models. When

the correlation within center increases, results are similar as in the gamma case.

The estimate of the treatment effect for the population-averaged models becomes

20
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Figure 1.2: Plots of absolute relative bias versus ✓ for 60 clusters and 30% censoring where
the true model is a conditional model.

smaller in magnitude (becomes less negative). Results suggest that when the true

model is a log normal frailty model, performance does not differ much between

the naive Cox and marginal Cox models even though dependence within center is

present.

The relationship between the marginal and conditional coefficients can be

seen visually by looking at Figure 1.2. When there is no dependence within center,

the marginal and conditional coefficients are quite close. However, as the amount

of dependence increases, the difference between the marginal and true conditional

coefficient increases. The pattern of the absolute relative bias is similar for both the

true gamma model and the true log normal model. However, the bias is somewhat

smaller in the case of the log normal frailty model. From the picture, it is also clear

that the gamma and log normal frailty models perform very similarly.
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1.5 Data Example

The Children’s Oncology Group (COG) study 1961 was used to study postinduc-

tion intensification (PII) in children and adolescents with“higher risk” acute lym-

phoblastic leukemia (ALL) (Seibel et al., 2008). The goal of the study was to see

if longer duration PII and increased strength PII would improve the survival for

children with“higher risk” ALL and a rapid marrow response to induction ther-

apy. In order to ascertain the relative benefit or harm of each variation of PII, a 2X2

factorial design was used. For the purpose of this analysis two patient populations

were studied: the full sample of 1299 patients, and a subset of 460 patients with

enlarged livers, which represents a subgroup of sicker patients. The endpoint of

interest in this case is overall survival.

The four methods focused on in the paper were applied to both the full

dataset and the enlarged liver subset. There was no evidence of a duration by

strength interaction in either case. Therefore, the various models include the

two treatment variables, increased strength and duration, and three other base-

line characteristics: gender, age, and platelet count at diagnosis. Using the full

dataset, very little clustering is seen as evidenced by the Kendall’s ⌧ estimate from

the gamma frailty model of < 0.001 (95% CI: (-0.015, 0.015)). On the other hand,

there is a suggestion of a clustering effect for the enlarged liver subset as seen by

the Kendall’s ⌧ estimate of 0.192 for the gamma frailty model. However, the 95%

confidence interval of (-0.110, 0.494) suggests this effect might not be significant.

95% confidence intervals for Kendall’s ⌧ were calculated using the jackknife leav-

ing out one cluster at a time. Table 1.7 presents data analysis results for the full

dataset and Table 1.8 presents results for the enlarged liver subset.

In the full dataset, we can see that there is a significant effect of increased

strength, but a quite insignificant effect of increased duration. Results in this case

suggest that increased strength is associated with improved survival for the overall
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Table 1.7: COG data analysis results - full dataset
Parameter Estimate SE p-value

Naive Cox
Increased Strength -0.436 0.150 0.004

Increased Duration -0.108 0.147 0.460

AIC = 2594.4; BIC = 2630.6

Marginal Cox
Increased Strength -0.436 0.141 0.002

Increased Duration -0.108 0.145 0.456

AIC = 2594.4; BIC = 2630.6

Gamma Frailty
Increased Strength -0.436 0.150 0.004

Increased Duration -0.108 0.147 0.460

AIC = 2596.4; BIC = 2637.7

Log Normal Frailty
Increased Strength -0.438 0.150 0.003

Increased Duration -0.107 0.147 0.470

AIC = 2592.7.4; BIC = 2634.0

*Models also include gender, age, and platelet count at diagnosis
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Table 1.8: COG data analysis results - enlarged liver subset
Parameter Estimate SE p-value

Naive Cox
Increased Strength -0.429 0.247 0.082

Increased Duration 0.409 0.250 0.102

AIC = 809.7; BIC = 838.6

Marginal Cox
Increased Strength -0.429 0.229 0.061

Increased Duration 0.409 0.242 0.091

AIC = 809.7; BIC = 838.6

Gamma Frailty
Increased Strength -0.466 0.253 0.065

Increased Duration 0.476 0.257 0.064

AIC = 764.5; BIC = 797.5

Log Normal Frailty
Increased Strength -0.462 0.253 0.067

Increased Duration 0.488 0.257 0.057

AIC = 763.6; BIC = 796.7

*Models also include gender, age, and platelet count at diagnosis
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study population. Also of particular interest in this case is the similarity between

the coefficient estimates for all of the models. Even though some of the parameters

have conditional interpretations and others have marginal interpretations, in this

case there is very little difference between them. This is to be expected, however,

since the amount of dependence is so small. We also note that the gamma and

log normal frailty models give almost identical results, suggesting that the choice

of frailty is not crucial. In this setting we would recommend using the traditional

Cox model for analysis since clustering within center is not an issue.

In the enlarged liver subset, we see that there is a marginally significant ef-

fect of both increased strength and increased duration for most of the models. Re-

sults suggest that increased strength is associated with improved survival and that

increased duration is associated with worse survival. Unlike the full dataset, in

this subset, there are differences between the marginal and conditional coefficient

estimates. We can see that the marginal estimates are closer to 0 than the condi-

tional estimates. This illustrates that even with a minimal amount of dependence

in the dataset, the differences between marginal and conditional coefficients are

apparent. In this subset, we would recommend using the marginal Cox model for

analysis since there is some evidence of clustering within center and since the aim

of the trial is to determine the effectiveness of treatment at the population level.

1.6 Discussion

This paper has reviewed current methods for dealing with clustered failure time

data that may arise from multicenter clinical trials. The simulation study has

shown that when your data are clustered and marginally follow a proportional

hazards model, the marginal Cox model is readily able to estimate a population-

averaged treatment effect in a variety of settings. The naive Cox model does a rea-

sonable job when the within cluster dependence is small, but should not be used
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when the clustering effect is more significant. When your data are clustered and

follow a proportional hazards model with a frailty term, both the gamma frailty

model and the log normal frailty model do a good job of estimating the condi-

tional treatment effect in a variety of settings. Both models perform well whether

the true frailty is gamma or log normal.

The population-averaged models perform well when the true model is a

marginal model and the frailty models perform well when the true model is a

conditional model. However, when a marginal model is fit to a true conditional

model or a frailty model is fit to a true marginal model, large differences in the

coefficients can exist. When the correlation within center is small, there is not a

big difference between the marginal and conditional coefficients. A large amount

of dependence within center, however, means a large difference between the two

types of coefficients. This implies that a correct interpretation of the chosen model

is crucial.

Because the interpretation does differ between the frailty models and the

naive Cox and marginal Cox models, it would be ideal if there was some way of

using the data to perform model selection. Choosing the model with the lowest

AIC or BIC would be a logical choice for doing this model selection. However,

it turns out that this is not a good approach. The AIC and BIC are identical for

the naive Cox and marginal Cox models because they are both based on the same

partial likelihood. This means that AIC or BIC cannot be used to choose between

these two models. The marginal model takes clustering into account in calculating

the standard error. However, the marginal model does not adjust the likelihood in

any way, so the AIC/BIC for the marginal Cox model does not account for clus-

tering. On the other hand, the likelihoods for the frailty models do account for

clustering. Therefore, as the simulations show, the AIC/BIC for the frailty models

is smaller than the AIC/BIC for the marginal Cox model even when the true model

is a marginal model and the frailty model leads to biased estimates. This means
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that using AIC or BIC is not a reliable way to choose between a frailty model and

the marginal Cox model when dependence exists within center. It may be possible

to use AIC or BIC to choose between frailty models. However, even this seems

somewhat unreliable since in some simulation settings the AIC/BIC was smaller

for the gamma model than the log normal model even when the true model was

the log normal frailty model.

A possible alternative for model selection would be the use of some testing

procedures. For example, a rejection of the proportional hazards assumption could

be seen as evidence in favor of most frailty models (except for the positive stable

frailty model). However, tests for proportional hazards often have limited power

(Lin & Wei, 1991; Grambsch & Therneau, 1994), especially when the sample size for

a study is moderate. In addition, non-proportionality could be due to an incorrect

functional form of a covariate or missing covariates (Therneau & Grambsch, 2000).

Score tests such as the ones proposed by Gray (1995) and Commenges & Andersen

(1995) could also be an option, but it is unclear that these tests would help with

choosing between the marginal Cox model and a frailty model when clustering

truly exists. Due to the uncertainty of what conclusions can be reliably drawn

from such tests, we opt not to consider testing here for model selection.

Since AIC and BIC are not useful for model selection and testing proce-

dures may not be reliable, there need to be some guidelines about how to choose

between the models. We recommend choosing between marginal and conditional

models based on the scientific question of interest. A marginal model should be

used when the investigator wants to interpret coefficients at the population level

and a conditional model should be used when the center is of greater interest. If a

population-averaged interpretation is of interest and there is clustering within cen-

ter, the marginal Cox model should be used. In practice, if correlation within center

is even suspected, the marginal Cox model is the best choice. If there is not clus-

tering within center, the traditional Cox model is appropriate. If a center-specific
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interpretation is of interest, either the gamma or log normal frailty models can be

used. The simulation study results suggest that the gamma and log normal frailty

models give very similar results in a variety of settings. The gamma frailty model

may be preferred in practice since there is a straight-forward relationship between

✓ and Kendall’s ⌧ . Being able to calculate Kendall’s ⌧ easily is useful because it is

a statistic that is familiar to a wide range of researchers. However, if these models

are going to be used in practice, it would be useful to have some form of model di-

agnostic to assess the form of the frailty distribution. Some work has been done in

this area for parametric models and bivariate models (Shih & Louis, 1995; Oakes,

1989; Duchateau & Janssen, 2008). However, more work needs to be done in this

area for semiparametric and multivariate models.

This paper has highlighted the fact that there are different interpretations

for marginal and conditional coefficients and that large differences can exist be-

tween these two types of coefficients when within center dependence is strong.

There is not a good way to perform model selection in this setting as AIC and BIC

are not useful, so we offer guidelines that can be used in practice.
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2.1 Abstract

Multiple outcomes are often collected in applications where the quantity of interest

cannot be measured directly, or is difficult or expensive to measure. Latent vari-

able models are commonly adopted in this setting. These models stipulate that

the multiple outcomes are conditionally independent measures of the latent factor,

possibly capturing various aspects of it. Mixed types of outcomes (e.g. continu-

ous vs discrete) and censored outcomes present statistical challenges, however, as

a natural multivariate distribution of mixed data does not exist. In this paper we

propose a new class of semiparametric latent variable models that allows for the

estimation of the latent factor in the presence of measurable outcomes of mixed

types, including censored outcomes. Compared to the existing methods, our pro-

posed model provides the following advantages. First, the model allows the rela-

tionship between the measurable outcomes and latent variable to be unspecified,

rendering more robust inference. Second, the proposed model can directly esti-

mate the treatment (or other covariate) effect on the unobserved latent variable,

greatly enhancing the interpretability of the model. Extensive simulations verify

the utility of the methods. We also apply the method to a clinical trial conducted

by Dana-Farber Cancer Institute, where the focus was to study the effect of treat-

ment on unobservable dysphagia through collected multiple outcomes, which are

of mixed types and one of which is subject to censoring.

2.2 Introduction

Multiple outcomes are often collected in applications where the quantity of inter-

est cannot be measured directly, or is difficult or expensive to measure (Dunson,

2006). Latent variable models are commonly adopted in this setting. These mod-

els stipulate that the multiple outcomes are conditionally independent measures
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of the latent factor, possibly capturing various aspects of it. Mixed types of out-

comes (e.g. continuous vs discrete) are common (Pocock et al., 1987) as are cen-

sored outcomes. These varying outcome types present statistical challenges as a

natural multivariate distribution of mixed data does not exist. For example, in a

head and neck cancer (HNC) trial conducted at Dana-Farber Cancer Institute, the

investigators wanted to determine the effect of clinical and treatment factors on

dysphagia (or difficulty in swallowing) (Chapuy et al., 2011). However, dysphagia

was not directly measurable. Instead, three surrogate outcome measures: dura-

tion of feeding tube usage, weight loss after treatment, and diet (liquid, soft, etc)

were collected. Among them, the first outcome was subject to censoring, while the

other two outcomes are of mixed types; weight loss was measured on a continuous

scale, while the diet was measured on an ordinal scale. Limited statistical tools for

accommodating such complicated data have greatly hampered proper analyses.

When the measurable outcomes are all continuous, the methods are rela-

tively well developed within the latent variable paradigm (Sammel & Ryan, 1996;

Roy & Lin, 2000). Some methods also exist in the context of latent variable model-

ing when the outcomes are of mixed types. For example, Catalano & Ryan (1992),

Fitzmaurice & Laird (1995), Sammel et al. (1997), Regan & Catalano (1999), Mous-

taki & Knott (2000), and Huber et al. (2004) all consider this setting. However,

a limitation of these latent variable models for mixed outcomes is that the rela-

tionship between the measurable outcomes and the Gaussian latent variable must

be known a priori. Since the latent variable is not observed, there is little guid-

ance for the appropriate relationship. If the relationship is misspecified, using the

common likelihood approaches leads to biased estimates for the parameters. Also,

these methods do not allow for survival or event time outcomes where censoring

is present.

In view of all these limitations, we propose a new class of semiparametric

latent variable models that allows for the estimation of the latent factor in the pres-
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ence of mixed outcomes as well as censored outcomes. Compared to the existing

methods, our proposed model provides the following advantages. First, the model

allows the relationship between the measurable outcomes and latent variable to be

unspecified, rendering more robust inference. Second, the proposed model can di-

rectly estimate the treatment (or other covariate) effect on the unobserved latent

variable, greatly enhancing the interpretability of the model.

The remainder of the article is organized as follows. Section 2.3 describes

the model and Section 2.4 discusses the estimation and inference procedures. Sec-

tion 2.5 presents simulation results and applies the methodology to analyze the

aforementioned HNC data. We conclude with a discussion in Section 2.6.

2.3 Semiparametric Latent Variable Transformation
Models

Suppose there are n subjects, each with p distinct measurable outcomes. For sim-

plicity, we will focus on the setting where there is a single outcome that is subject

to censoring, though the extension to accommodate multiple censored outcomes

is rather straightforward. Without loss of generality we assume that the first mea-

surable outcome is a continuous event time, denoted by T , which can be censored

by a competing censoring variable, denoted by C. We further assume that T and C

are independent and that C is independent of the covariates. Let Y
i1 = min(T

i

, C
i

)

and �
i

= I(Y
i1 = T

i

), where I(·) is the indicator function. Then, for each indi-

vidual i, we observe vectors of covariates X
i1, · · · , X

ip

(e.g. age and gender) and

Z
i

(e.g. treatment), a failure indicator �
i

, and a vector of measurable outcomes

Y
i

= (Y
i1, · · · , Y

ip

)

T . The elements of Y
i

are ordered such that the first p1 elements

are continuous (with the first element being the event time), and the remaining

p2 = p � p1 elements are discrete (including, for example, binary, ordinal, or count

outcomes).
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In order to facilitate joint modeling, the discrete measurable outcomes are

linked to underlying continuous variables as in Muthén (1984) and Dunson (2006).

Specifically, let Y u

ij

be a continuous variable underlying Y
ij

. Then, for the discrete

outcomes, for Y
ij

2 {1, · · · , d
j

}, we have Y
ij

=

P
dj

l=1 lI(c
j

(l�1) < Y u

ij

 c
j

(l)) where

d
j

is the number of categories for the jth outcome and c
j

= (c
j

(0), · · · , c
j

(d
j

))

T

are unknown thresholds satisfying �1 = c
j

(0) < · · · < c
j

(d
j

) = 1. For the

measurable outcomes that are already continuous, Y
ij

= Y u

ij

.

Given the above notation, we can now relate the continuous or underly-

ing continuous outcomes to the latent variable (e
i

) of primary interest through a

semiparametric linear transformation model:

H1(Ti

) = XT

i1�1 + ↵1ei + "
i1,

H2(Y
u

i2) = XT

i2�2 + ↵2ei + "
i2, (2.1)

...

H
p

(Y u

ip

) = XT

ip

�
p

+ ↵
p

e
i

+ "
ip

.

H1 is an unknown non-decreasing transformation function such that H(0) = �1
and H2, · · · , H

p

are unknown non-decreasing transformation functions that satisfy

H
j

(�1) = �1 and H
j

(1) = 1 for j = 2, · · · , p. � = (�T

1 , · · · , �T

p

)

T is a vector of

regression coefficients, ↵ = (↵1, · · · , ↵
p

)

T are factor loadings, e
i

is a latent variable

for subject i, and "
i

= ("
i1, · · · , "

ip

)

T is a vector of independent errors distributed

as N(0, diag(�2
1, · · · , �2

p

)).

Furthermore, additional structure for the latent variable is assumed:

e
i

= ZT

i

� + ✏
i

, (2.2)

where Z
i

records treatment or other covariates, � is a vector of unknown regression

coefficients, and ✏
i

is the random error distributed as N(0, �2
e

). In most instances, �

is the primary parameter for inference since it relates covariates of interest, such as

treatment, to the latent variable (outcome of interest). We assume that Z
i

and ✏
i

are
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independent and that for identifiability, Z
i

and X
ij

do not contain constant terms,

�2
e

= 1, and �2
j

= 1 for j = 1, · · · , p. One of the factor loadings is also constrained

to be positive (Dunson, 2003). Though related, our model is different from the

ordinary random effect models. Random effects are mainly introduced to describe

the unobserved heterogeneity and are usually covariate-independent, whereas the

latent variable, e
i

, represents specific traits measured by covariates and hence are

covariate-dependent.

2.4 Estimation and Inference Procedures

2.4.1 Likelihood and Estimating Equations

For each given y
j

2 {1, · · · , d
j

} for j = p1 + 1, · · · , p (the discrete measurable

outcomes), let ˜H
j

(y
j

) = H
j

(c
j

(y
j

)), where c
j

is the unknown upper limit of Y u

ij

when Y
ij

= y
j

. Because both H
j

and Y u

ij

are unknown, they cannot be identified

separately. However, H
j

(c
j

(1)), · · · , H
j

(c
j

(d
j

� 1)) provide the distribution of the

observed outcome Y
ij

and can be estimated. In other words, for the discrete mea-

surable outcomes, estimation of the transformation means estimation of the un-

known transformed thresholds. Also, let ˜H
j

= H
j

for the continuous measurable

outcomes (for ease of notation), ⇥ = (�, ↵, �), and H̃ = (

˜H1, · · · , ˜H
p

).

Since the error terms in models (2.1) and (2.2) are assumed to be normally

distributed, the vector of transformed continuous outcomes follows a multivariate

normal distribution. The likelihood is not simply a multivariate normal density,

however, because not all of the outcomes are completely observed. More specifi-
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cally, the likelihood can be expressed as:

L(⇥; H̃) / |⌃22|n/2
nY

i=1

Z

x

[2]2H[2]
i

exp

2

4�1

2

  
H̃

[1]
i

x[2]

!
� X

i

� � ↵�TZ
i

!
T

⌃

�1
22

  
H̃

[1]
i

x[2]

!
� X

i

� � ↵�TZ
i

!3

5 dx[2], (2.3)

where X
i

= diag(XT

i1, · · · , XT

ip

), H̃
[1]
i

= (

˜H1(Y
u

i1), · · · , ˜H
p1(Y

u

ip1
))

T , H̃
[2]
i

=

(

˜H
p1+1(Y

u

i,p1+1), · · · , ˜H
p

(Y u

ip

))

T , and H[2]
i

=

Q
p

j=p1+1[
˜H
j

(Y
ij

), ˜H
j

(Y
ij

+ 1)]. This

likelihood arises from the fact that based on models (2.1) and (2.2), H̃
i

⌘
(H̃

[1]T

i

, H̃
[2]T

i

)

T ⇠ N(X
i

� + ↵�TZ
i

,⌃22), where ⌃22 = ↵↵T

+ I
pxp

. Here H̃
[1]
i

is com-

pletely observed (as long as the event time is not censored), whereas H̃
[2]
i

is only

known to fall in H[2]
i

. In the case of a censored event time, the event time can be

incorporated in H̃
[2]
i

. The bounds of integration for the event time ( [

˜H1(Yi1),1])

can be included in H[2]
i

(since now the time is not completely observed).

The likelihood (specifically the conditional likelihood on H̃) in equation

(2.3) involves the unknown transformation functions, so we need a way to esti-

mate these transformations. Following the usual counting process notation, let

Y
i

(t) = I(Y
i1 � t) and N

i

(t) = �

i

I(Y
i1  t). Then ˜H1 for the event time outcome

can be estimated using the following equation (Chen et al., 2002):

nX

i=1

h
dN

i

(t) � Y
i

(t)d⇤{ ˜H1(t) � XT

i1�1 � ↵1Z
T

i

�}
i

= 0 (t � 0), (2.4)

where ⇤ is the cumulative hazard function for the transformed event time (i.e. the

cumulative hazard for N(0, ↵2
1 + 1)). For computational purposes, the following

simpler (but asymptotically equivalent) estimating equations can be used:
0

BBBBB@

1 �Pn

i=1 Y
i

(t1)⇤{ ˜H1(t1) � X
i

� � ↵�TZ
i

}
1 �Pn

i=1 Y
i

(t2)�{ ˜H1(t2�) � X
i

� � ↵�TZ
i

}� ˜H1(t2)
...

1 �Pn

i=1 Y
i

(t
K

)�{ ˜H1(tK�) � X
i

� � ↵�TZ
i

}� ˜H1(tK)

1

CCCCCA
=

0

BBBBB@

0

0

...
0

1

CCCCCA
(2.5)
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where � ˜H1(t) =

˜H1(t) � ˜H1(t�) and K is the number of observed events. The

resulting estimate of ˜H1(·) will be a non-decreasing step function that jumps only

at the K observed event times.

˜H
j

(y
j

) for j = 2, · · · , p can be estimated using the following equations:

nX

i=1

2

4I(Y
ij

 y
j

) � �
0

@
˜H
j

(y
j

) � (XT

ij

�
j

+ ↵
j

ZT

i

�)

q
↵2
j

+ 1

1

A

3

5
= 0 (2.6)

where � is the standard normal cumulative distribution function.

The estimator ˆ

˜H
j

(·) of ˜H
j

(·) is a non-decreasing step function with jumps

only at the observed Y
ij

for the continuous measurable outcomes. For the discrete

measurable outcomes, the transformed thresholds are estimated through (2.6).

Thus, we have effectively reduced the problem of solving the infinite dimensional

system of equations defined by (2.5) and (2.6) to that of solving a finite system of

equations.

2.4.2 Estimation Algorithm

We propose a procedure that is similar to a profile likelihood to draw inference.

Specifically, given ⇥, the finite dimensional parameters, we use (2.5) and (2.6) to

estimate ˜H
j

(·) for j = 1, · · · , p denoted by ˜H(⇥). We then proceed to estimate ⇥

by maximizing a pseudo-likelihood which is the likelihood function L(⇥, H̃(⇥)).

For implementation, we propose the following iterative steps:

Step 1: Choose initial values for �, ↵, and �. Denote these estimates by ˆ�(0), ↵̂(0),

and �̂(0). Using an initial estimate of 1 for each of the parameters works well

in practice. Picking initial values of 0 for all of the parameters does not work

well.

Step 2: Use the estimating equations (2.5) and (2.6) with �, ↵, and � set equal to
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ˆ�(0), ↵̂(0), and �̂(0) to obtain initial estimates of the transformation functions,
ˆ

˜H
(0)
j

(·).

Suppose that we have estimates of �, ↵, �, and ˜H
j

(·) from the (m � 1)th

iteration; denote these estimates by ˆ�(m�1), ↵̂(m�1), �̂(m�1), and ˆ

˜H
(m�1)
j

(·).

Step 3: Maximize the likelihood (2.3) with respect to �, ↵, and �, replacing ˜H
j

(·)
with ˆ

˜H
(m�1)
j

(·), to obtain new estimates: ˆ�(m), ↵̂(m), and �̂(m). We used the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for maximization in this

setting. This is a quasi-Newton method that often performs well for opti-

mization problems (Press et al., 1992).

Step 4: Use the estimating equations (2.5) and (2.6) with �, ↵, and � set equal to
ˆ�(m), ↵̂(m), and �̂(m) to obtain new estimates of the transformation functions,
ˆ

˜H
(m)
j

(·).

Step 5: Repeat Steps 3 and 4 until predetermined convergence criteria are met.

2.4.3 Bootstrap

To conduct inference on the parameters, standard error estimates are needed. We

cannot, however, use the standard error estimates that arise from the likelihood

(2.3) as valid estimators of the standard errors for the �, ↵, and � parameters. The

likelihood estimates do not account for the additional variability that comes from

estimating the transformation functions. Instead, we must rely on a resampling

procedure to estimate standard errors for the parameters. In the simulations and

data analysis we have relied on the traditional nonparametric bootstrap where

sampling is done with replacement (Efron & Tibshirani, 1993).
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2.5 Numerical Studies

2.5.1 Simulations

We evaluated the performance of the proposed method through simulations. In

order to mimic the motivating HNC data, we incorporated three measurable out-

comes: an event time outcome, a continuous outcome, and an ordinal outcome

with 5 categories. The following model was assumed for the simulations with

H1 = log and H2 = H3 = Identity:

H1(Ti

) = X
i

�1 + ↵1ei + "
i1,

H2(Yi2) = X
i

�2 + ↵2ei + "
i2, (2.7)

H3(Y
u

i3) = X
i

�3 + ↵3ei + "
i3,

and

e
i

= Z
i

� + ✏
i

. (2.8)

Specifically, the underlying continuous variables were generated from the multi-

variate normal distribution, N(X
i

� +↵�Z
i

,⌃22), where ⌃22 = ↵↵T

+I3⇥3. This way

the measurable outcomes are correlated, and this correlation is determined by the

↵ parameters. The event time outcome was then created through an anti-log trans-

formation. Censoring was introduced through an exponential random variable,

with the parameter for the exponential distribution chosen to given a particular

percentage of censoring. The continuous variable did not require further transfor-

mation and the ordinal outcome was obtained by using the underlying continuous

variable arising from the multivariate normal model and then applying the follow-

ing thresholds: (-1, -1, 0, 1, 2, 1). We assumed that there was a single continuous

X covariate common to all three measurable outcomes and a single binary Z covari-

ate to represent treatment or some other binary covariate of interest. Specifically,

X
i

⇠ N(0, 1) and Z
i

⇠ Bernoulli(0.50). True parameter values were selected to be

�1 = 0.5, �2 = 0.9, �3 = 0.75, ↵1 = 0.5, ↵2 = 0.9, ↵3 = 0.75, � = 1.
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Six different simulation settings were considered. For each setting, 250 sim-

ulations were carried out. Two different sample sizes were explored: n = 100 and n

= 200, and three different censoring levels were considered: 0%, 7%, and 17%. The

7% was chosen to mimic the HNC data. Results for n = 100 can be found in Table

2.1 and results for n = 200 are presented in Table 2.2. We discovered through these

simulations that there is some numerical instability in the estimation procedure.

Convergence of the algorithm is sensitive to the particular data set that you are an-

alyzing. Non-convergence is a definite problem for smaller sample sizes and also

for larger amounts of censoring. The percentage of simulations that did not con-

verge for each simulation setting is presented in Table 2.3. The results presented in

Table 2.1 and 2.2 and Figure 2.1 and 2.2 are, therefore, conditional on convergence.

Sample size is an important factor in the performance of the proposed

method. Figure 2.1 visually compares simulation results for n = 100 and n = 200,

both with 7% censoring (since this is the most relevant case for the HNC data).

From this figure we can see that the point estimates are not right at the truth for all

of the parameters. For example, there does appear to be some underestimation for

the parameters associated with the continuous outcome (↵2 and �2). Despite this

fact, none of the parameters are significantly biased since the empirical confidence

intervals do not exclude the truth. Also, point estimation can be improved by in-

creasing the sample size. For both sample sizes included in the simulations, the

point estimate for the � parameter is well estimated. This is important because this

is the primary parameter for inference since it relates the Z covariate to the latent

variable. Inference, however, may be somewhat unreliable for a sample as small

as 100. For example, numerical instability of the estimation procedure is more of a

problem with a small sample size (21.7% of simulations failed to converge) and the

95% coverage probabilities based on the bootstrap standard errors tend to deviate

somewhat from the nominal level. In particular, even though the point estimate

for � seems reasonable for n = 100, the bootstrap standard error is somewhat over-
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Table 2.1: Simulation results for n = 100
�1 �2 �3 ↵1 ↵2 ↵3 �

0% Censoring
Mean 0.476 0.713 0.752 0.450 0.576 0.746 1.134

Bias -0.024 -0.187 0.002 -0.050 -0.324 -0.004 0.134

Empirical SE 0.128 0.117 0.156 0.220 0.183 0.234 0.349

Bootstrap SE 0.125 0.139 0.162 0.200 0.203 0.203 0.363

95% CI Coverage 0.935 0.970 0.959 0.858 0.935 0.911 0.976

7% Censoring
Mean 0.519 0.666 0.682 0.622 0.525 0.574 0.979

Bias 0.019 -0.234 -0.068 0.122 -0.375 -0.176 -0.021

Empirical SE 0.187 0.150 0.162 0.381 0.234 0.256 0.316

Bootstrap SE 0.152 0.151 0.164 0.289 0.210 0.226 0.411

95% CI Coverage 0.938 0.928 0.959 0.851 0.877 0.892 0.995

17% Censoring
Mean 0.845 0.570 0.603 1.889 0.504 0.332 0.522

Bias 0.345 -0.330 -0.147 1.389 -0.396 -0.418 -0.478

Empirical SE 0.529 0.179 0.137 1.502 0.174 0.148 0.428

Bootstrap SE 0.274 0.173 0.146 0.712 0.178 0.173 0.446

95% CI Coverage 0.810 0.946 0.958 0.744 0.958 0.976 0.952
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Table 2.2: Simulation results for n = 200
�1 �2 �3 ↵1 ↵2 ↵3 �

0% Censoring
Mean 0.492 0.770 0.773 0.492 0.683 0.759 1.083

Bias -0.008 -0.130 0.023 -0.008 -0.217 0.009 0.083

Empirical SE 0.090 0.092 0.128 0.140 0.116 0.171 0.238

Bootstrap SE 0.088 0.107 0.123 0.152 0.151 0.164 0.250

95% CI Coverage 0.942 0.971 0.947 0.938 0.988 0.951 0.959

7% Censoring
Mean 0.524 0.730 0.694 0.650 0.609 0.595 1.007

Bias 0.024 -0.170 -0.056 0.150 -0.291 -0.155 0.007

Empirical SE 0.120 0.112 0.111 0.324 0.181 0.187 0.294

Bootstrap SE 0.106 0.119 0.118 0.231 0.171 0.176 0.276

95% CI Coverage 0.915 0.969 0.964 0.906 0.924 0.942 0.920

17% Censoring
Mean 0.987 0.599 0.599 2.180 0.534 0.350 0.478

Bias 0.487 -0.301 -0.151 1.680 -0.366 -0.400 -0.522

Empirical SE 0.536 0.143 0.092 1.499 0.167 0.140 0.301

Bootstrap SE 0.260 0.139 0.100 0.708 0.156 0.139 0.323

95% CI Coverage 0.947 0.965 0.941 0.971 0.935 0.900 0.953

Table 2.3: Percentage of simulations that failed to converge

0% Censoring 7% Censoring 17% Censoring
n = 100 32.4 21.7 31.7
n = 200 2.8 10.4 31.7
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Figure 2.1: Plots of means and empirical 95% confidence intervals from simulations with
n = 100 and n = 200 with 7% censoring.
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Figure 2.2: Plots of means and empirical 95% confidence intervals from simulations with
n = 200 and 0%, 7%, and 17% censoring.
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estimated, leading to a coverage probability that is too large. On the other hand,

inference for n = 200 with 7% censoring appears to be reliable as demonstrated by

95% coverage probabilities that are close to the nominal level. The larger sample

size of 200 also has the added advantage of better numerical stability, with only

10.4% of simulations failing to converge.

Censoring has a strong impact of the performance of the proposed method-

ology. Figure 2.2 considers simulation results for 0%, 7%, and 17% censoring for

the larger sample size of 200. The larger sample size was chosen due to the better

numerical stability. It is clear from the figure that when the censoring reaches the

moderate level of 17%, performance of the proposed method suffers. The stan-

dard errors of the parameters associated with the event time (↵1 and �1) are huge

and there are parameters that are significantly biased based on the empirical con-

fidence intervals. Even the � parameter is not well estimated with a larger amount

of censoring. But, when there is no censoring, the performance of the proposed

method is good. Only 2.8% of the simulations did not converge and the coverage

probabilities are close to the nominal level.

Simulation results, therefore, suggest that the proposed methodology can

be quite useful when there is a larger sample size with a small amount of censoring.

However, care should be taken when the percentage of censoring is high or when

the sample size is small.

2.5.2 DFCI Head and Neck Data

We applied the proposed method to a study of head and neck cancer (HNC) pa-

tients carried out at Dana-Farber Cancer Institute (Chapuy et al., 2011). Patients

were identified for the study through a retrospective chart review and were eligible

if they were diagnosed between 1998 and 2008 with an advanced-stage squamous

cell carcinoma of the oropharynx, hypopharynx, larynx, or unknown primary and
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were treated with chemoradiotherapy (chemoRT) and neck dissection. Twenty-

four months of follow-up after chemoRT without recurrence was also required for

inclusion. The goal of the study is to determine clinical and treatment factors as-

sociated with dysphagia in this group of HNC patients. Dysphagia, or difficulty

swallowing, is a major concern for HNC patients after treatment because it can

have a negative impact on a patient’s quality of life. However, there is not one

definitive way to measure or define the condition objectively and physicians of-

ten do not want to define the condition subjectively based on patients’ perceptions

of swallowing. Caudell et al. (2009) recognized the usefulness of utilizing mul-

tiple objective measures to describe dysphagia. They created a single composite

endpoint using several objective measures they felt would capture all patients suf-

fering from dysphagia (they believed some patients might be missed using only

a single outcome measure). Chapuy et al. (2011) also used multiple outcomes to

create a score used in the analysis. While the idea of using multiple measurable

outcomes in this way may be an improvement over using a single outcome, it is

not ideal because the composite endpoint or score is defined somewhat arbitrarily.

The investigators at Dana-Farber collected information on several mea-

surable outcomes that are often used to describe dysphagia: time from end of

chemoRT to removal of the gastrostomy tube, weight loss after chemoRT, and diet

(liquid, soft, etc). Using this information they want to identify factors associated

with dysphagia, not factors associated with a single outcome related to dysphagia.

The analysis of this data set is challenging because the outcome of interest, dys-

phagia, is not observable and we have multiple measurable outcomes of mixed

types available that are all attempting to measure dysphagia that we would like to

combine in a meaningful way to evaluate treatment and other factors. Using the

proposed methodology for the analysis will allow us to combine the multiple mea-

surable outcomes through the latent variable structure and then determine factors

associated with the latent variable (dysphagia) as desired by the investigators.
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Eighty-eight patients were eligible for the study. Two patients were ex-

cluded from the analysis because they never had a gastrostomy tube and thus rep-

resent a different patient population. Sixty-six patients were then available with

complete outcome information. We were able to impute weight information using

a later weight measurement (measurement taken at some point after our baseline

of 1 month post chemoRT) for 9 patients, giving us 75 patients available for analy-

sis. For each patient i, let Y
i1 be the observed time from end of chemoRT to removal

of the gastrostomy tube in days (note this outcome is potentially censored), Y
i2 be

weight loss after chemoRT in kg, and Y
i3 be diet (regular, soft, pureed, liquid, no

food; ordinal 1-5). ↵3 will be constrained to be greater than 0 for identifiability. Us-

ing the proposed methodology, e
i

characterizes the level of dysphagia for patient i

with a larger e
i

indicating worse dysphagia and Z
i

is treatment or some other clin-

ical factor potentially associated with dysphagia. In this way, � is the parameter of

primary interest for inference.

When analyzing the HNC data set, we are hindered by the small sample size

(n = 75). We are unable to fit complex models with many covariates, so instead

we will focus on two models that are small, but clinically interesting. Model 1 will

include T-stage (ordinal) as the Z covariate and sex as the X covariate and Model

2 will include treatment (induction vs. concurrent chemoRT) as the Z covariate

and sex as the X covariate. T-stage is clinically relevant because T-stage has been

shown to be associated with adverse swallowing outcomes previously (Machtay

et al., 2008; Nguyen et al., 2009; Chapuy et al., 2011). Treatment is of interest to

determine if patients treated with induction chemotherapy followed by chemoRT

have worse dysphagia as compared to patients treated with primary concurrent

chemoRT. Sex is included as the X covariate in both models because it is not a

variable of primary interest, but we might want to control for it in the analysis.

Results for Model 1 and Model 2 can be found in Table 2.4. For both models,

none of the � parameters are significant as evidenced by 95% confidence intervals

48



Table 2.4: Head and neck data analysis results

Estimate SE 95% CI
Model 1 (T-stage)
�1 0.154 0.413 (-0.655, 0.964)
�2 -0.582 0.301 (-1.171, 0.008)
�3 -0.220 0.466 (-1.135, 0.694)
↵1 0.577 0.288 (0.012, 1.141)
↵2 0.017 0.127 (-0.233, 0.266)
↵3 1.518 0.614 (0.315, 2.721)
� -0.027 0.356 (-0.724, 0.670)

Model 2 (Treatment)
�1 0.167 0.423 (-0.663, 0.997)
�2 -0.581 0.367 (-1.301, 0.138)
�3 -0.156 0.670 (-1.469, 1.158)
↵1 0.528 0.146 (0.242, 0.815)
↵2 0.019 0.094 (-0.166, 0.204)
↵3 1.341 0.304 (0.746, 1.936)
� 0.231 0.401 (-0.554, 1.016)

*For both models sex is the X covariate
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that cover 0. This suggests that sex is not associated with any of the transformed

outcomes included in the model. Also, for both models ↵1 and ↵3 are significant,

but ↵2 is not. The ↵ parameters are factor loadings, so these findings indicate

that time on the gastrostomy tube and diet are significantly associated with the

latent variable (dysphagia). In fact, worse dysphagia is associated with a longer

time on the feeding tube and a more modified diet. Weight loss after chemoRT,

however, does not appear to be significantly related to dysphagia. This is not a

surprising result as clinically we know that weight loss may not be a great measure

of dysphagia. On the one hand, it makes sense that if a patient is having difficulty

swallowing, then that patient is likely to eat less and lose more weight. However,

when the feeding tube is being used, adequate nutrition can be obtained through

the tube without the need to swallow. This would suggest that even if swallowing

is difficult for a patient, this may not be seen through measuring the weight of that

patient. Both Model 1 and Model 2 indicate that weight loss may not be a useful

measure to capture dysphagia.

In Model 1, T-stage is included as the Z covariate. The � parameter asso-

ciated with T-stage in this model is not significant. This suggests that a higher T-

stage (increased size of the primary tumor) is not associated with worse dysphagia.

Similarly, from Model 2, there is no evidence of an association between treatment

and dysphagia, meaning that there is not evidence that induction chemotherapy

is associated with worse dysphagia. While neither of the Z covariates considered

were found to be significant, it is important to keep in mind the limitations of the

proposed methodology when interpreting these results. The sample size for the

HNC data is 75 and there is 6.7% censoring. From the simulation results, we know

that inference may not be totally reliable in this setting. In particular, the standard

error estimate for the � parameter may be too large. Therefore, in a larger data set,

we might find an association between one or both of the Z covariates and dyspha-

gia. In this way, a larger sample size would be useful in order to be more certain
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about results obtained using the proposed methodology.

2.6 Discussion

The proposed methodology has a lot of appeal because it uses a semiparametric

approach that does not require pre-specifying a link between the measurable out-

comes and the latent variable of interest. The methodology also has the advantage

of allowing for multiple outcomes of mixed types, including censored outcomes, to

be incorporated into the latent variable framework and being able to estimate the

treatment (or other covariate) effect on the unobserved latent variable. Simulations

suggest that the proposed method has a lot of utility when the sample size is large

and the censoring proportion is small. More specifically, the method performs

well for a sample size of 200 with 7% censoring or less. However, there are some

limitations to this approach that must be acknowledged. In particular, when the

censoring percentage reaches 17%, simulations indicate inference may not reliable.

Also, sample size is a concern. Specifically, a sample size of 100 may be too small to

completely trust inference made using the proposed method. As noted previously,

there is evidence of some numerical instability in the estimation algorithm when

the sample size is small. A larger sample size is likely required because of the large

number of parameters that must be estimated, either in the transformation func-

tions or through the likelihood. In the end, a small sample likely does not contain

enough information to reliably estimate all of the pieces. Despite these limitations,

a sample size of 200 or more is not unreasonable in many potential applications.

Another potential limitation of the proposed method is the use of a thresh-

old model for discrete measurable outcomes. The threshold model is practical

because then we have all continuous outcomes that can be jointly modeled using

the multivariate normal. However, this means that nominal measurable outcomes

cannot be meaningfully incorporated in this approach. Also, in order to use the
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threshold approach, it must be plausible that there is some underlying continuous

quantity that gives rise to the ordinal categories that are observed. In the HNC

case, the ordinal outcome is diet and it is plausible that there is some underly-

ing biological quantity that determines the change from one food type to another.

However, it is possible the threshold approach would not make sense in a different

application. Choosing which covariates should be X covariates and which should

be Z covariates is also an issue. In general, if you want to be able to look at the

association between a covariate and the latent variable, then that covariate should

be included in Z. However, there is not a good statistical approach to make this

decision.

This methodology was motivated by the question of what treatment and

clinical factors are associated with dysphagia in HNC patients. We are limited in

our ability to address this clinical question, however, by having only 75 patients

available for analysis. We were able to fit two simple models to the HNC data,

but it is not clear how meaningful these results would be in the clinical literature.

Despite the limitations of the proposed method in small samples, the semipara-

metric approach could have great utility in informing a parametric model of the

same form as models (2.1) and (2.2), but with the link functions pre-specified. In

particular, we can use the estimated transformations that arise out of the proposed

methodology to decide on appropriate link functions for a parametric model. Fig-

ure 2.3 presents the estimated transformations obtained from Model 1. Based on

this plot, it would seem reasonable to use either a log or square root transforma-

tion for the time on the gastrostomy tube. Using the identity link (i.e. assuming

normality) for weight loss also seems appropriate. As discussed previously, the

semiparametric method proposed in this paper is a useful approach for analysis

when the sample size is large. In addition, we suggest that the proposed method

has a very practical use, even in a smaller sample, in informing a parametric ver-

sion of the method.
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Exploring Dysphagia in Head and Neck Cancer
Patients: A Latent Variable Transformation Model

Approach

Anna C. Snavely, David Harrington, and Yi Li



3.1 Abstract

Dysphagia, or difficulty swallowing, is a common issue for head and neck cancer

patients post treatment. Quality of life is negatively impacted by swallowing dif-

ficulty, so it is important to understand clinical and treatment factors that might

be related to the condition. The challenge here is that dysphagia, our outcome

of interest, cannot be measured directly. Instead, there are multiple measurable

outcomes of mixed types available that are all attempting to capture some aspect

of dysphagia. In this paper we propose a latent variable normal transformation

model where the measurable outcomes are assumed to be governed by an unob-

served (latent) variable, which in turn may depend on covariates such as treat-

ment. This approach has the advantage of incorporating measurable outcomes

that are both discrete and continuous. In particular, the proposed method extends

traditional methods by including measurable outcomes that are subject to censor-

ing. Through the structure of the model we are able to study the effect of covariates

on the latent variable, which in our case represents dysphagia, greatly enhancing

the interpretability of the model. The methodology is applied to a study of head

and neck cancer patients from Dana-Farber Cancer Institute.

3.2 Introduction

Squamous cell carcinoma of the head and neck represents about 5% of newly di-

agnosed cancers in adults in the United States. These patients tend to present with

locally advanced disease and are treated aggressively with some combination of

surgery, chemotherapy, and radiotherapy (Posner et al., 2007). Intensive chemora-

diation (chemoRT) regimens have been found to be effective in the management

of head and neck cancer (HNC) in terms of improving both progression free and

overall survival (Pignon et al., 2000). With aggressive chemoRT treatment, how-
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ever, comes side effects such as dysphagia, or difficulty swallowing, that have a

negative impact on a patient’s quality of life (Goguen et al., 2006; Nguyen et al.,

2009). Having a neck dissection (surgical procedure to remove lymph nodes in

the neck) following chemoRT may have an additional impact on swallowing func-

tion as seen in Machtay et al. (2008) and Lango et al. (2010). With more patients

surviving after aggressive treatment, understanding what factors may be related

to dysphagia becomes important as quality of life becomes a critical consideration

for both patients and physicians.

Investigators at Dana-Farber Cancer Institute (DFCI) carried out a study

with the goal of exploring treatment and clinical factors that may be associated

with dysphagia (Chapuy et al., 2011). This goal is challenging, however, because

there is not one definitive way to measure or define dysphagia objectively. Physi-

cians often do not want to define the condition subjectively based on patients’ per-

ceptions of swallowing because patient reported outcomes have not been found

to be well correlated with more objective measures such as videofluoroscopy find-

ings (Caudell et al., 2009). In order to best capture dysphagia, the use of multiple

objective measures has been suggested (Caudell et al., 2009; Chapuy et al., 2011).

This has resulted in analysis based on a single composite endpoint or score based

on objective measures. This approach may be an improvement over using a sin-

gle outcome, but it is not ideal because the composite endpoint or score is defined

somewhat arbitrarily. Instead, we propose a latent variable normal transformation

model to handle this analysis. In the proposed model, measurable outcomes of

mixed types (including event times) are assumed to be governed by an unobserved

(latent) variable, which in turn may depend on covariates such as treatment. This

approach has the advantage of incorporating measurable outcomes that are both

discrete and continuous. In particular, the proposed method extends traditional

methods by including measurable outcomes that are subject to censoring. Also,

through the structure of the model we are able to study the effect of covariates on
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the latent variable, greatly enhancing the interpretability of the model. In the HNC

setting, the measurable outcomes are the objective measures available for captur-

ing dysphagia and the latent variable represents dysphagia itself, our outcome of

interest. This approach, therefore, will allow us to combine the multiple measur-

able outcomes in a meaningful way through the latent variable structure and then

determine factors associated with the latent variable (dysphagia) as desired by the

investigators.

The particulars of the DFCI study will be described in Section 3.3 and the

model will be specified and discussed in Section 3.4. Simulation results will be

presented in Section 3.5, followed by data analysis results in Section 3.6. We will

wrap-up with a discussion in Section 3.7.

3.3 DFCI Head and Neck Study

Investigators at Dana-Farber conducted a retrospective study to learn about dys-

phagia in HNC patients treated with chemoRT and neck dissection (Chapuy et al.,

2011). Both electronic and paper medical records were reviewed to identify eli-

gible patients. Patients were included in the study if they were diagnosed with

an advanced-stage squamous cell carcinoma of the oropharynx, hypopharynx, lar-

ynx, or unknown primary and were treated at DFCI between January 1998 and

June 2008 with chemoRT and neck dissection. All patients had at least twenty-

four months of follow-up after chemoRT without recurrence and had a primary

site complete response to chemoRT at the time of neck dissection. The 88 patients

found to be eligible for the study, therefore, represent a group of patients who had

advanced disease and responded well to aggressive treatment (no recurrence for

at least two years). Quality of life is an important consideration for this subset of

patients, so learning more about dysphagia in this group is particularly relevant.
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Since there is no direct objective measure for dysphagia, the DFCI inves-

tigators collected information on several measurable outcomes that can be used

as surrogate measures for dysphagia: time from end of chemoRT to removal of

the gastrostomy tube, weight loss after chemoRT, and diet (regular, soft, pureed,

liquid, no food). Time from end of chemoRT to gastrostomy tube (feeding tube

directly into the stomach) removal is an event time subject to censoring. The cen-

soring in this case is administrative (i.e. feeding tube still in place at the end of

follow-up). We would expect a longer time on the feeding tube to be indicative

of worse dysphagia. Weight loss after chemoRT is continuous. We might expect

that a greater weight loss would be associated with worse dysphagia. However,

this may not be true if the patient is getting adequate nutrition through the feeding

tube. In this way, it is not clear that weight loss is a great surrogate measure for

dysphagia. Diet is an ordinal variable that characterizes how modified a patient’s

diet is, with a more modified diet expected to be related to worse dysphagia. Both

weight loss and diet are measured at baseline, which is 1 month after the end of

chemoRT. As an important note, because the feeding tube is a gastrostomy tube, it

is possible for a patient to still have a feeding tube in place and be able to eat food

by mouth. In other words, having a feeding tube in place does not automatically

restrict a patient to the “no food” diet category.

Of the 88 patients that were eligible for the study, 75 will be used for the

analysis. Two patients were excluded because they never had a gastrostomy tube

placed and thus represent a different patient population. After the 2 exclusions,

there were 66 patients with complete outcome information. In order to increase

the sample size and make use of as much data as possible, we imputed weight

information using a later weight measurement (measurement taken at some point

after our baseline of 1 month post chemoRT) for 9 patients. This gives us 75 pa-

tients available for analysis. This is the same set of patients that is analyzed in

Chapter 2.
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3.4 Latent Variable Transformation Model

3.4.1 Background and Model Specification

Latent variable models were introduced in the field of psychology with the first

methods being attributed to Spearman (1904). Spearman’s methodology lead to

the development of factor analysis and other latent variable approaches that have

been used extensively in both psychology and education. Use of latent variable

methods in the biomedical setting has increased over time, particularly as latent

variable methodology has been further developed (see, for example, Sammel &

Ryan (1996); Roy & Lin (2000); Sammel et al. (1997); Moustaki & Knott (2000); Dun-

son (2006)).

For the analysis of the DFCI head and neck data, we propose a latent vari-

able model that builds on the basic structure of Sammel & Ryan (1996). The model

suggested by Sammel & Ryan (1996) only allows for continuous measurable out-

comes, however, so we extend their approach by including discrete outcomes by

linking the discrete outcomes to underlying continuous outcomes as originally

considered in Muthén (1984). The underlying continuous variables can then be

incorporated in the multivariate normal structure. We also add additional flexibil-

ity by considering transformed outcomes and allowing for censored measurable

outcomes. These extensions will allow us to incorporate events times, continuous

outcomes, and ordinal outcomes as measurable outcomes in the latent variable

framework as required by the HNC data. Figure 3.1 presents a diagram of the ba-

sic model structure. In short, measurable outcomes of mixed types are assumed

to be governed by a latent variable (e), which in turn may depend on covariates

(Z) such as treatment. Additional covariates, X , may also be related to the mea-

surable outcomes. The actual modeling is done on all continuous variables and

transformations, H , are allowed. The transformation functions, however, must be
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Figure 3.1: Diagram of basic model structure for the latent variable transformation ap-
proach.

pre-specified.

Specifically, suppose there are n subjects with p distinct measurable out-

comes. For simplicity, we will consider the setting where there is a single measur-

able outcome that is subject to censoring. The extension to accommodate multiple

censored outcomes, however, is rather straightforward. Without loss of generality

we will assume that the event time, T , is the first measurable outcome. C is then the

corresponding censoring variable. We assume that T and C are independent and

also that C is independent of the covariates. For individual i, let Y
i1 = min(T

i

, C
i

)

and �
i

= I(Y
i1 = T

i

), where I(·) is the indicator function. Then, for each indi-

vidual, we observe vectors of covariates X
i1, · · · , X

ip

(e.g. age and gender) and

Z
i

(e.g. treatment), a failure indicator �
i

, and a vector of measurable outcomes

Y
i

= (Y
i1, · · · , Y

ip

)

T . The elements of Y
i

are ordered such that the first p1 elements

are continuous (with the first element being the event time), and the remaining
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p2 = p � p1 elements are discrete (binary, ordinal, or count outcomes are possible).

In order to facilitate joint modeling, the discrete measurable outcomes are

linked to underlying continuous variables as in Muthén (1984) and Dunson (2006).

Let Y u

ij

be a continuous variable underlying Y
ij

. Then, for the discrete outcomes,

for Y
ij

2 {1, · · · , d
j

}, we have Y
ij

=

P
dj

l=1 lI(c
j

(l � 1) < Y u

ij

 c
j

(l)) where d
j

is

the number of categories for the jth outcome and c
j

= (c
j

(0), · · · , c
j

(d
j

))

T are un-

known thresholds satisfying �1 = c
j

(0) < · · · < c
j

(d
j

) = 1. For the measurable

outcomes that are already continuous, Y
ij

is simply equal to Y u

ij

.

The continuous or underlying continuous outcomes can now be related to

the latent variable (e
i

) of primary interest through the following model:

H1(Ti

) = XT

i1�1 + ↵1ei + "
i1,

H2(Y
u

i2) = XT

i2�2 + ↵2ei + "
i2, (3.1)

...

H
p

(Y u

ip

) = XT

ip

�
p

+ ↵
p

e
i

+ "
ip

.

In model (3.1), � = (�T

1 , · · · , �T

p

)

T is a vector of regression coefficients,

↵ = (↵1, · · · , ↵
p

)

T are factor loadings, e
i

is a latent variable for subject

i, and "
i

= ("
i1, · · · , "

ip

)

T is a vector of independent errors distributed as

N(0, diag(�2
1, · · · , �2

p

)). The Hs are pre-specified monotone transformation func-

tions. A typical choice for the event time would a log transformation. The iden-

tity link may be an appropriate choice for many continuous measurable outcomes

(i.e. assume normality). For the discrete measurable outcomes, a transformation

does not need to be specified since we do not observe the underlying continuous

variable. Transformed thresholds (H
j

(c
j

(1)), · · · , H
j

(c
j

(d
j

� 1))) can be estimated

through the likelihood, where the assumption is that the underlying continuous

variable has been transformed to be normally distributed.
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The latent variable is assumed to have additional structure as follows:

e
i

= ZT

i

� + ✏
i

, (3.2)

where Z
i

records covariates of interest such as treatment, � is a vector of unknown

regression coefficients, and ✏
i

is the random error distributed as N(0, �2
e

). In most

instances, � is the primary parameter for inference since it relates important co-

variates to the latent variable (outcome of interest). We assume that Z
i

and ✏
i

are

independent and that for identifiability, Z
i

and X
ij

do not contain constant terms,

�2
e

= 1, and �2
j

= 1 for j = p1 +1, · · · , p (discrete measurable outcomes). One of the

factor loadings is also constrained to be positive (Dunson, 2003).

3.4.2 Likelihood Specification and Parameter Estimation

Since the error terms in models (3.1) and (3.2) are assumed to be normally dis-

tributed, the vector of transformed continuous outcomes follows a multivariate

normal distribution. The likelihood, however, is not simply a multivariate nor-

mal density because not all of the outcomes are completely observed. For each

given y
j

2 {1, · · · , d
j

} for j = p1 + 1, · · · , p (the discrete measurable outcomes),

let ˜H
j

(y
j

) = H
j

(c
j

(y
j

)), where c
j

is the unknown upper limit of Y u

ij

when Y
ij

= y
j

.

For the continuous measurable outcomes, let ˜H
j

= H
j

. Then if ⇥ = (�, ↵, �) and

H̃ = (

˜H1, · · · , ˜H
p

), the likelihood can be expressed as:

L(⇥; H̃) / |⌃22|n/2
nY

i=1

Z

x

[2]2H[2]
i

exp

2

4�1

2

  
H̃

[1]
i

x[2]

!
� X

i

� � ↵�TZ
i

!
T

⌃

�1
22
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The likelihood (3.3) arises from the fact that based on models (3.1) and

(3.2), H̃
i

⌘ (H̃
[1]T

i
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[2]T

i

)

T ⇠ N(X
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 = diag(�2
1, · · · , �2

p

)), and �2
j

= 1 for j = p1 + 1, · · · , p (discrete measurable out-

comes). The integrals in the likelihood are required because not all of the measur-

able outcomes are completely observed. In particular, H̃[1]
i

is completely observed

(as long as the event time is not censored), however H̃
[2]
i

is only known to fall in

H[2]
i

. In the case of a censored event time, the event time can also be incorporated in

H̃
[2]
i

and the bounds of integration for the event time ( [

˜H1(Yi1),1]) can be included

in H[2]
i

(since now the time is not completely observed).

The model parameters most relevant for inference are �, ↵, and �. However,

the transformed thresholds associated with the discrete measurable outcomes and

the variance parameters associated with the continuous measurable outcomes also

need to be estimated. All of these parameters can be estimated through maximiz-

ing the likelihood (3.3).

Many different maximization routines could be considered, but we have

opted to use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. BFGS is a

quasi-Newton method that often performs well for complex optimization prob-

lems (Press et al., 1992). Whatever method is used, however, must support a con-

strained maximization. For each discrete measurable outcome, the transformed

thresholds must be constrained to be ordered, and one of the factor loadings (i.e.

one of the ↵ parameters) must be constrained to be positive. Because this is a con-

strained optimization problem, inference based on likelihood theory could be in-

correct. However, simulation results suggest that the model based standard errors

arising from the likelihood are reliable and, therefore, inference based on these

standard errors is reasonable. In other words, the constraints do not appear to

cause boundary issues in this setting and traditional likelihood theory can be used

for inference.
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3.4.3 Model Checking

The transformation functions, H , must be pre-specified in order to use this para-

metric latent variable transformation model. Choosing an appropriate transfor-

mation can be a challenge, however, so it would be useful to have guidance in

selecting a transformation and a means of diagnosing a misspecified transforma-

tion.

Chapter 2 presented a semiparametric latent variable transformation

model. In this approach, the transformations are estimated using the data instead

of being pre-specified. Estimated transformations (in the form of step functions)

can be obtained through the estimation procedure. These step functions can then

be used to inform a parametric model. For example, the shape of an estimated

transformation from the semiparametric approach might suggest using a log link

in a parametric model.

After a parametric model has been fit, residuals can be used to consider

model fit. Residuals can be obtained separately for each of the measurable

outcomes. In the continuous case the residuals will be: H
j

(y
ij

) � XT

ij

ˆ�
j

+ ↵̂
j

ZT

i

�̂.

In other words, the residuals are simply the observed transformed outcome

minus the predicted transformed outcome from the model. Similar to the linear

regression setting, these residuals should be normally distributed and have mean

0. Also, we would not expect to see a pattern in the residuals in a plot of the

residuals vs. the fitted values if the model fits well. A misspecified transformation

should be noticeable in the residual plots. Figures 3.2 and 3.3 show residual plots

for a correctly specified model. Both the density and Q-Q plots suggest that there

are no major departures from normality and the Residuals vs. Fitted plot shows

no recognizable pattern.

64



0.5 1.0 1.5 2.0 2.5 3.0 3.5

-2
-1

0
1

2

Residuals vs. Fitted

Fitted Values

R
e
s
id
u
a
ls

-1 0 1 2 3

-2
-1

0
1

2

Residuals vs. Observed

Observed Values

R
e
s
id
u
a
ls

-4 -3 -2 -1 0 1 2 3

0
.0
0

0
.1
0

0
.2
0

0
.3
0

Density of Residuals

N = 75   Bandwidth = 0.3981

D
e
n
s
it
y

-2 -1 0 1 2

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

R
e
s
id
u
a
ls

Figure 3.2: Plot looking at the normality of the residuals for the event time for the correct
model (log link).
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Figure 3.3: Plot of residuals vs. fitted values for the event time for the correct model (log
link).
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Figure 3.4: Plot looking at the normality of the residuals for the event time when the trans-
formation is misspecified (square root instead of log link).

Figures 3.4 and 3.5 show residual plots for a model where the event time

transformation is misspecified. The true transformation is a square root, but the

model assumes a log link. Clear departures from normality are seen by the long

left tail in the density plot and the curved shape of the residuals in the Q-Q plot.

The Residuals vs. Fitted plot shows a few residuals that are very small. These

residual plots can be very useful is diagnosing an incorrect transformation and in

general, such plots are useful in assessing model fit.

For the discrete measurable outcomes, the underlying continuous variable

can be predicted from the model by XT

ij

ˆ�
j

+ ↵̂
j

ZT

i

�̂. The estimated transformed

thresholds can then be applied to the underlying continuous variables to get a

predicted category for each individual, i. Model fit could then be assessed by

seeing how well the predicted categories and observed categories match up in a

cross-classified table. Association could be assessed using a Fisher’s Exact test, but

there is limited power for this kind of test, particularly in a small sample.
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Figure 3.5: Plot of residuals vs. fitted values for the event time when the transformation is
misspecified (square root instead of log link).

3.5 Simulation Studies

We used simulations to evaluate the performance of the latent variable transforma-

tion model. Since this methodology was proposed to analyze the DFCI head and

neck data, the simulations were designed to mimic the HNC data structure. Three

measurable outcomes were, therefore, considered in the simulations: an event time

outcome, a continuous outcome, and an ordinal outcome with 5 categories. The

following model was fit to the simulated data:

log(T
i

) = X
i

�1 + ↵1ei + "
i1,

Y
i2 = X

i

�2 + ↵2ei + "
i2, (3.4)

Y u

i3 = X
i

�3 + ↵3ei + "
i3,

and

e
i

= Z
i

� + ✏
i

. (3.5)

In the simulations considered we assumed that there was a single continu-

ous X covariate common to all three measurable outcomes and a single binary Z
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covariate to represent treatment or some other binary covariate of interest. Specif-

ically, X
i

⇠ N(0, 1), Z
i

⇠ Bernoulli(0.50), and the true parameter values were se-

lected to be �1 = 0.5, �2 = 0.9, �3 = 0.75, ↵1 = 0.5, ↵2 = 0.9, ↵3 = 0.75, � = 1.

The underlying continuous variables were then generated from the multivariate

normal, N(X
i

� + ↵�Z
i

,⌃22), where ⌃22 = ↵↵T

+  .  = diag(�2
1, �

2
2, 1) and we

assume that �1 = 1 and �2 = 1, or in other words, ⌃22 = ↵↵T

+I3⇥3. Generating the

data in this way ensures that the measurable outcomes are correlated through the

↵ parameters. For the correctly specified model, the event time outcome was then

created through an anti-log transformation with censoring introduced through an

exponential random variable. The parameter for the exponential distribution was

chosen to give a particular percentage of censoring. The continuous outcome did

not require further transformation for the correctly specified model. Finally, the or-

dinal outcome was obtained by using the underlying continuous variable arising

from the multivariate normal model and then applying the following thresholds:

(-1, -1, 0, 1, 2, 1).

3.5.1 Correctly Specified Model Results

Eight simulation settings were considered to explore performance of the latent

variable transformation approach. For each setting, 250 simulations were carried

out. Two different sample sizes were explored: n = 100 and n = 200, and four dif-

ferent censoring levels were considered: 0%, 7%, 17%, and 50%. The 7% censoring

was chosen to match the HNC data and the 50% censoring was chosen to illustrate

a higher censoring setting. Primary parameter results (�, ↵, and �) for n = 100 can

be found in Table 3.1. Corresponding results for n = 200 are presented in Table

3.2. Secondary parameter results (transformed thresholds and standard deviation

parameters) for both sample sizes are included in Table 3.3.

Overall, simulation results suggest that the performance of the latent vari-
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Table 3.1: Simulation results for n = 100 (primary parameters)
�1 �2 �3 ↵1 ↵2 ↵3 �

0% Censoring
Mean 0.504 0.900 0.825 0.497 0.902 0.852 1.042

Bias 0.004 <0.001 0.075 -0.003 0.002 0.102 0.042

Empirical SE 0.121 0.132 0.522 0.110 0.161 0.897 0.251

Model SE 0.112 0.135 0.198 0.109 0.158 0.254 0.246

95% CI Coverage 0.952 0.944 0.964 0.956 0.960 0.968 0.952

7% Censoring
Mean 0.497 0.912 0.795 0.480 0.876 0.788 1.065

Bias -0.003 0.012 0.045 -0.020 -0.024 0.038 0.065

Empirical SE 0.114 0.137 0.173 0.107 0.169 0.223 0.275

Model SE 0.113 0.133 0.183 0.110 0.157 0.240 0.249

95% CI Coverage 0.952 0.956 0.972 0.968 0.940 0.968 0.920

17% Censoring
Mean 0.493 0.880 0.786 0.494 0.882 0.826 1.030

Bias -0.007 -0.020 0.036 -0.006 -0.018 0.076 0.030

Empirical SE 0.118 0.147 0.198 0.121 0.141 0.269 0.240

Model SE 0.116 0.134 0.203 0.116 0.159 0.283 0.244

95% CI Coverage 0.948 0.932 0.952 0.936 0.976 0.956 0.940

50% Censoring
Mean 0.493 0.881 0.779 0.497 0.885 0.811 1.028

Bias -0.007 -0.019 0.029 -0.003 -0.015 0.061 0.028

Empirical SE 0.138 0.148 0.178 0.147 0.148 0.239 0.239

Model SE 0.131 0.134 0.202 0.136 0.168 0.285 0.250

95% CI Coverage 0.951 0.930 0.963 0.942 0.971 0.988 0.963

69



Table 3.2: Simulation results for n = 200 (primary parameters)
�1 �2 �3 ↵1 ↵2 ↵3 �

0% Censoring
Mean 0.496 0.906 0.787 0.494 0.888 0.774 1.030

Bias -0.004 0.006 0.037 -0.006 -0.012 0.024 0.030

Empirical SE 0.074 0.098 0.125 0.078 0.110 0.173 0.180

Model SE 0.079 0.095 0.123 0.077 0.111 0.160 0.169

95% CI Coverage 0.964 0.948 0.944 0.952 0.960 0.944 0.920

7% Censoring
Mean 0.506 0.903 0.781 0.500 0.900 0.780 1.020

Bias 0.006 0.003 0.031 <0.001 <0.001 0.030 0.020

Empirical SE 0.082 0.101 0.132 0.073 0.118 0.162 0.168

Model SE 0.080 0.096 0.123 0.078 0.110 0.159 0.167

95% CI Coverage 0.944 0.948 0.932 0.960 0.928 0.944 0.956

17% Censoring
Mean 0.492 0.906 0.772 0.487 0.889 0.768 1.020

Bias -0.008 0.006 0.022 -0.013 -0.011 0.018 0.020

Empirical SE 0.084 0.099 0.117 0.078 0.105 0.164 0.172

Model SE 0.082 0.095 0.121 0.081 0.113 0.159 0.170

95% CI Coverage 0.940 0.936 0.968 0.956 0.964 0.936 0.940

50% Censoring
Mean 0.489 0.906 0.770 0.486 0.894 0.764 1.017

Bias -0.011 0.006 0.020 -0.014 -0.006 0.014 0.017

Empirical SE 0.100 0.099 0.117 0.093 0.112 0.167 0.183

Model SE 0.093 0.095 0.122 0.095 0.118 0.163 0.174

95% CI Coverage 0.928 0.936 0.968 0.948 0.964 0.952 0.928
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Table 3.3: Simulation results - estimates of secondary parameters
H3(c3(1)) H3(c3(2)) H3(c3(3)) H3(c3(4)) �1 �2

n=100
0% Censoring -1.064 0.035 1.125 2.234 0.886 0.926

7% Censoring -1.029 0.028 1.075 2.132 0.905 0.910

17% Censoring -1.061 0.014 1.079 2.151 0.926 0.855

50% Censoring -1.061 0.007 1.064 2.127 0.965 0.919

n=200
0% Censoring -1.031 0.009 1.038 2.063 0.989 0.995

7% Censoring -1.013 0.011 1.036 2.082 0.992 0.978

17% Censoring -1.029 -0.002 1.033 2.053 0.992 0.982

50% Censoring -1.029 -0.005 1.028 2.048 0.983 0.976

*True thresholds are: -1, 0, 1, 2. True standard deviations are 1.

able transformation model is quite good in a variety of settings. In particular, the

bias for the �, ↵, and � parameters is consistently small and the coverage prob-

abilities all tend to be close to the nominal level. A higher censoring percentage

does not create estimation difficulties, but rather simply increases standard errors

a bit. The model based standard errors tend to be quite close to the empirical stan-

dard errors, suggesting that inference based on these model based standard errors

should be reliable. The noticeable exception to this is for the �3 and ↵3 parameters

for n = 100. In this case, the model based standard errors are small relative to the

empirical standard errors. The large empirical standard errors are driven by 2 sim-

ulations with extreme values. When the sample size is smaller, there are occasional

situations (⇠1%) when the maximum likelihood estimation fails (seen by standard

error estimates that are listed as NA) or where results are not reliable (seen by ex-

ceptionally large parameter estimates). These situations, however, should be easily

recognizable by an analyst and should be treated as a model that cannot be reliably

fit.
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Table 3.4: Simulation results for n = 75 with 7% censoring to mimic HNC data
�1 �2 �3 ↵1 ↵2 ↵3 �

Mean 0.512 0.913 0.836 0.503 0.879 0.834 1.050
Bias 0.012 0.013 0.086 0.003 -0.021 0.084 0.050
Empirical SE 0.126 0.151 0.285 0.132 0.189 0.479 0.316
Model SE 0.131 0.155 0.235 0.130 0.182 0.318 0.299
95% CI Coverage 0.959 0.951 0.955 0.963 0.959 0.939 0.943

H3(c3(1)) H3(c3(2)) H3(c3(3)) H3(c3(4)) �1 �2

Mean -1.084 0.012 1.107 2.254 0.931 0.926
*True thresholds are: -1, 0, 1, 2. True standard deviations are 1.

The benefits of an increased sample size are illustrated in Table 3.3. The

transformed thresholds tend to be somewhat better estimated in a larger sample

and the standard deviation estimates are definitely improved in a larger sample.

A larger sample is, therefore, preferable. However, results in Table 3.1 suggest

that even with a smaller sample size, inference of the primary parameters is quite

reasonable.

To further evaluate performance of the method for the DFCI head and neck

data specifically, we considered a simulation with n = 75 and censoring of 7%. Re-

sults for this setting can be found in Table 3.4. Results in this case are very similar

to the setting when n = 100. The biggest change is that there are a few more simula-

tions where the maximum likelihood estimation fails, but this still only represents

a little over 2% of simulations. This occasional instability likely arises from the

fact that we are trying to estimate 13 parameters with only 75 subjects. Overall,

however, the latent variable transformation model seems like a reasonable analy-

sis approach for the HNC data as long as maximum likelihood estimation does not

fail for the particular model being fit.
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3.5.2 Misspecified Model Results

Because the transformations must be pre-specified in this approach, we may be

particularly interested in the impact on parameter estimates when the transforma-

tions are misspecified. The event time outcome usually will require some transfor-

mation. A log link would be a logical choice, but may not always be the appro-

priate link function. In Tables 3.5, 3.6, and 3.7 we present simulation results for

the setting where a log link is fit to the data, but a square root link should have

been used. In other words, the event time data were generated through a square

transformation instead of an anti-log transformation.

For the larger sample size of 200, we see that the parameters associated

with the event time (�1, ↵1, and �1) are biased. However, this is to be expected

since these parameters would now have a different interpretation. The other pa-

rameters, however, are still well estimated. In particular, � still has a fairly small

bias and good coverage probability. This would suggest that misspecifying the

event time link in this way should not have a major impact on the inference for �,

which is of primary interest for answering the clinical question. When the sample

size is decreased to 100, the estimation of �, as well as �3 and ↵3 (the parameters

associated with the ordinal measurable outcome), is not quite as good. There is

a bit larger absolute bias for these parameters than with the larger sample size,

though the coverage probabilities are still quite good. Also, the smaller sample

size with misspecification of the event time link leads to a bit more instability in

the maximum likelihood procedure. The percentage of simulations that cannot be

estimated through maximum likelihood, however, is still under 7%.

We also considered the scenario when both the event time and continuous

links were misspecified. The event time link was misspecified in the same way

as before. The continuous measurable outcome was generated using an anti-log

transformation, but the identity link was fit to the data. Results for this setting are

73



Table 3.5: Simulation results for n = 100 (primary parameters); event time link misspecified

�1 �2 �3 ↵1 ↵2 ↵3 �

0% Censoring
Mean 0.185 0.901 0.892 -0.253 0.871 0.948 1.175

Bias -0.315 0.001 0.142 -0.753 -0.029 0.198 0.175

Empirical SE 0.235 0.133 1.096 0.226 0.229 1.796 0.811

Model SE 0.231 0.135 0.219 0.217 0.205 0.324 0.348

95% CI Coverage 0.942 0.942 0.959 0.950 0.913 0.954 0.959

7% Censoring
Mean 0.170 0.907 0.939 -0.199 0.856 1.014 1.138

Bias -0.330 0.007 0.189 -0.699 -0.044 0.264 0.138

Empirical SE 0.236 0.136 1.206 0.230 0.235 1.968 0.382

Model SE 0.239 0.132 0.235 0.226 0.199 0.334 0.355

95% CI Coverage 0.962 0.954 0.950 0.941 0.908 0.941 0.941

17% Censoring
Mean 0.149 0.883 0.924 -0.181 0.859 1.047 1.101

Bias -0.351 -0.017 0.174 -0.681 -0.041 0.297 0.101

Empirical SE 0.254 0.148 1.242 0.237 0.199 2.169 0.307

Model SE 0.252 0.134 0.244 0.243 0.199 0.351 0.315

95% CI Coverage 0.944 0.927 0.962 0.953 0.940 0.970 0.944

50% Censoring
Mean 0.175 0.879 0.881 0.034 0.894 0.994 1.036

Bias -0.25 -0.021 0.131 -0.466 -0.006 0.244 0.036

Empirical SE 0.338 0.148 0.820 0.322 0.194 1.487 0.271

Model SE 0.330 0.134 0.248 0.329 0.209 0.374 0.287

95% CI Coverage 0.951 0.930 0.959 0.951 0.959 0.971 0.959
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Table 3.6: Simulation results for n = 200 (primary parameters); event time link misspecified

�1 �2 �3 ↵1 ↵2 ↵3 �

0% Censoring
Mean 0.161 0.905 0.842 -0.249 0.840 0.846 1.102

Bias -0.339 0.005 0.092 -0.749 -0.060 0.096 0.102

Empirical SE 0.153 0.098 0.734 0.158 0.187 1.028 0.299

Model SE 0.163 0.095 0.143 0.156 0.144 0.215 0.226

95% CI Coverage 0.972 0.955 0.967 0.931 0.907 0.963 0.939

7% Censoring
Mean 0.148 0.903 0.788 -0.213 0.878 0.788 1.072

Bias -0.352 0.003 0.038 -0.713 -0.022 0.038 0.072

Empirical SE 0.161 0.102 0.148 0.160 0.164 0.219 0.215

Model SE 0.172 0.096 0.140 0.164 0.145 0.207 0.208

95% CI Coverage 0.972 0.948 0.952 0.944 0.907 0.964 0.944

17% Censoring
Mean 0.169 0.906 0.778 -0.214 0.864 0.770 1.076

Bias -0.331 0.006 0.028 -0.714 -0.036 0.020 0.076

Empirical SE 0.182 0.100 0.126 0.163 0.153 0.187 0.230

Model SE 0.178 0.094 0.132 0.172 0.145 0.196 0.210

95% CI Coverage 0.935 0.935 0.955 0.967 0.943 0.963 0.955

50% Censoring
Mean 0.198 0.906 0.776 -0.023 0.900 0.770 1.022

Bias -0.302 0.006 0.026 -0.523 <0.001 0.020 0.022

Empirical SE 0.237 0.099 0.127 0.218 0.154 0.211 0.209

Model SE 0.230 0.095 0.134 0.225 0.149 0.198 0.198

95% CI Coverage 0.944 0.936 0.968 0.980 0.932 0.952 0.956
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Table 3.7: Simulation results - estimates of secondary parameters; event time link misspec-
ified

H3(c3(1)) H3(c3(2)) H3(c3(3)) H3(c3(4)) �1 �2

n=100
0% Censoring -1.073 0.116 1.287 2.474 2.063 0.825

7% Censoring -1.165 0.085 1.323 2.568 2.196 0.774

17% Censoring -1.174 0.092 1.335 2.557 2.267 0.762

50% Censoring -1.171 0.048 1.248 2.459 2.754 0.849

n=200
0% Censoring -1.056 0.058 1.150 2.226 2.115 0.910

7% Censoring -0.992 0.044 1.080 2.132 2.201 0.959

17% Censoring -1.008 0.027 1.068 2.092 2.311 0.945

50% Censoring -1.033 -0.001 1.040 2.068 2.706 0.925

*True thresholds are: -1, 0, 1, 2. True standard deviations are 1.

not shown, but it is important to note that this amount of misspecification leads to

a fairly unstable maximum likelihood procedure (maximum likelihood estimation

failed for as many as 30% of simulations) and leads to substantial bias in all of

the parameters. The use of the semiparametric procedure to inform a parametric

model and the use of residuals should help to avoid this scenario, however.

3.6 DFCI Head and Neck Data Analysis

We have 75 patients available for analysis from the DFCI head and neck study.

Because we are dealing with a rather small sample size, we are limited in the com-

plexity of the models that can be fit to the data. Also, from the simulation studies

we know that when there is a small sample size maximum likelihood estimation

may fail for some models. Despite these limitations, we were able to fit a number

of models to the HNC data.
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All models utilized the same three measurable outcomes, but differed in the

covariates included and the link function assumed for the event time. Specifically,

the measurable outcomes are defined as follows for patient i: Y
i1 is the observed

time from end of chemoRT to removal of the gastrostomy tube in days (note this

outcome is potentially censored), Y
i2 is weight loss after chemoRT in kg, and Y

i3

is diet (regular, soft, pureed, liquid, no food; ordinal 1-5). For identifiability, ↵3 is

constrained to be greater than 0. Using the latent variable transformation structure,

e
i

characterizes the level of dysphagia for patient i with a larger e
i

indicating worse

dysphagia. Z
i

is treatment or some other clinical factor of interest that is potentially

associated with dysphagia. In this way, � is the parameter of primary interest for

inference.

We found that using a log link for the time on the feeding tube and an iden-

tity link for weight loss after chemoRT provided the best performance. After con-

sidering a number of different models with varying covariates, the model that best

fit the data did not include any X covariates, but included both treatment and

T-stage as Z covariates. Both treatment (Z
i1) and T-stage (Z

i2) were of particular

interest to the DFCI investigators. Treatment here is an indicator of having induc-

tion chemotherapy in addition to chemoRT. Treatment is of interest to determine if

patients treated with the more aggressive induction chemotherapy followed by

chemoRT have worse dysphagia as compared to patients treated with primary

concurrent chemoRT. T-stage is clinically relevant because it has been shown to

be associated with adverse swallowing outcomes in the literature (Machtay et al.,

2008; Nguyen et al., 2009; Chapuy et al., 2011).

Results for this model can be found in Table 3.8. In particular all of the

factor loadings are significant, suggesting that all three of our surrogate measures

are contributing information about dysphagia. Specifically, a longer time on the

feeding tube is associated with worse dysphagia, more weight loss after chemoRT

is associated with worse dysphagia, and a more modified diet is associated with
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Table 3.8: Final head and neck results including treatment (Z
i1) and T-stage (Z

i2)

Estimate SE 95% CI
↵1 2.311 0.207 (1.904, 2.717)
↵2 4.713 0.520 (3.695, 5.732)
↵3 1.884 0.354 (1.190, 2.578)
�1 1.099 0.240 (0.629, 1.569)
�2 0.629 0.096 (0.441, 0.817)

worse dysphagia. �1 captures the relationship between treatment and dysphagia.

Results suggest that after accounting for T-stage, having induction chemotherapy

is associated with worse dysphagia. In other words, the more aggressive treatment

does seem to be related to more swallowing difficulty. Similarly, �2 looks at the

relationship between T-stage and dysphagia. After accounting for treatment, a

higher T-stage is associated with worse dysphagia. When the same model is fit

assuming a square root link for time on the feeding tube, all of the parameters

remain significant so we would draw the same conclusions. In addition, the �

parameter estimates are very close for both models, suggesting that the results are

robust to the particular link in this setting.

In selecting a final model, we utilized residual plots to consider model fit.

The semiparametric analysis from Chapter 2 produced transformation estimates

that suggested a log or square root link might be reasonable for the time on the

feeding tube and that the identity link would reasonable for weight loss. For the

time on the feeding tube, we fit both models assuming a log link and assuming

a square root link. Residual plots suggested that the log link was a better fit, al-

though as noted above this choice did not influence the � parameter estimates

much. Residual plots were also used to assess model fit in general. For example,

consider the residuals for time on the feeding tube from the model only including

treatment (Figure 3.6). There is a clear departure from normality, suggesting that

the model with treatment only does not fit very well. The residuals for weight loss
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Figure 3.6: Plot looking at the normality of the residuals for time on the feeding tube with
only treatment included in the model.

also demonstrated departure from normality, although the departure was not quite

as extreme. Residuals for the model including both treatment and T-stage can be

seen in Figures 3.7 and 3.8. From Figure 3.7 we see that there is huge improvement

in the model fit with the addition of T-stage. The density and Q-Q plots for both

of the continuous measurable outcomes suggest a pretty good fit. In particular, we

do not see a pattern in these residuals that would suggest that the link function is

incorrectly specified. Figure 3.8, however, does show a clear pattern in the Resid-

uals vs. Fitted plots. This suggests that there is likely a covariate missing from the

analysis. However, due to the small sample size and limited covariates available

for analysis, this is still the best fitting model.

The Swallowing Performance Scale (SPS) score as determined from a video

swallow study is another measure sometimes used to capture dysphagia. Ideally,

we would have the SPS score at baseline for all of the patients in the study so that

SPS score could have been used as an additional measurable outcome. However,

this information was not available due to the retrospective nature of the study. We

do have SPS score information for 48 patients (though the timing of the measure is
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Figure 3.7: Plots looking at the normality of the residuals for model including both treat-
ment and T-stage.
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Figure 3.8: Plots of residuals vs. fitted values for model including both treatment and
T-stage.
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all over the map). As an additional check of our model, we could look at the cor-

relation between the predicted latent variables (in this case ZT

i

�̂) and the SPS score

for the subset of patients with an SPS score. If our latent variable is really captur-

ing dysphagia we would expect there to be a positive correlation, as a higher SPS

score means worse dysphagia. We found the correlation to be 0.40. This suggests

that our latent variable is at least doing a reasonable job of capturing dysphagia.

3.7 Discussion

The latent variable transformation model that we have proposed for the HNC anal-

ysis is a useful approach for the DFCI data in particular, but also as a general latent

variable method. Specifically, the model we have proposed has the advantage of

being able to incorporate event times subject to censoring, continuous outcomes,

and discrete outcomes (binary, ordinal, or count) as measurable outcomes in a la-

tent variable framework. In this way, we have covered all potential outcome types

except for nominal outcomes. While you must pre-specify link functions in this ap-

proach, we have suggested the use of the semiparametric methodology proposed

in Chapter 2 to inform a parametric model and have demonstrated the use of resid-

uals to diagnose incorrect transformation functions. The performance of the latent

variable transformation model is quite good, even when you have a fairly small

sample size, unless you have substantial model misspecification.

In exploring dysphagia, specifically, we are limited by the small sample size

and retrospective design of the DFCI study. The small sample size is a general con-

cern because of the number of parameters that must be estimated using this latent

variable transformation approach. Not only do the ↵, �, and � parameters have to

be estimated, but so do the transformed thresholds and standard deviation param-

eters. When the models can be fit using maximum likelihood, the performance is

pretty good, even with a sample as small as 75 as in the DFCI data. However, we
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are limited by the sample size in the number of covariates that can be included.

Also, there are instances when models of interest simply cannot be fit because the

maximum likelihood procedure fails.

In exploring the DFCI data, we did run into models that simply could not

be fit and/or covariates that could not be included because of too few people in

each category. For example, DFCI investigators were interested in whether type of

radiation is related to dysphagia. However, there were just not enough patients in

each of the different radiation categories to be able to consider this variable in the

model. Also, the model including sex as the X covariate and treatment as the Z

covariate is an example of a model that could not be fit due to a failed maximum

likelihood procedure. Because the study was retrospective, we also did not have

the advantage of the treatment assignment being randomized and were missing

covariates such as smoking status and alcohol use that may be particularly relevant

to head and neck data.

Despite these limitations, we were able to use a small data set to learn some-

thing about dysphagia through the latent variable approach. Receiving induction

chemotherapy in addition to chemoRT appears to be associated with worse dys-

phagia as does a higher T-stage. Also, we have proposed a solid methodological

approach that can be useful in other settings and could be used to further investi-

gate dysphagia once more data is collected.
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