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Abstract

In this thesis we investigate the problem of defining an extension of sutured instanton

Floer homology to give an instanton invariant for a tangle. We do this in three separate steps.

First, we investigate the representation variety of singular flat connections on a punctured

Riemann surface Σ. Suppose Σ has genus g and that there are n punctures. We give formulae

for the Betti numbers of the space Rg,n of flat SU(2)-connections on Σ with trace 0 holonomy

around the punctures. By using a natural extension of the Atiyah-Bott generators for the

cohomology ring H∗(Rg,n), we are able to write down a presentation for this ring in the case

g = 0 of a punctured sphere. This is accomplished by studying the intersections of Poincarè

dual submanifolds for the new generators and reducing the calculation to a linear algebra

problem involving the symplectic volumes of the representation variety.

We then study the related problem of computing the instanton Floer homology for a

product link in a product 3-manifold

(Yg, Kn) := (S1 × Σ, S1 × {n pts}).

It is easy to see that the Floer homology of this pair, as a vector space, is essentially the

same as the cohomology of Rg,n, and so we set ourselves to determining a presentation for

the natural algebra structure on it in the case g = 0. By leveraging a stable parabolic

bundles calculation for n = 3 and an easier version of this Floer homology, I∗(Y0, Kn, u), we

are able to write down a complete presentation for the Floer homology I∗(Y0, Kn) as a ring.

We recapitulate somewhat the techniques in [27] in order to do this. Crucially, we deduce
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that the eigenspace for the top eigenvalue for a natural operator µorb(Σ) on I∗(Y0, Kn) is

1-dimensional.

Finally, we leverage this 1-dimensional eigenspace to define an instanton tangle invariant

THI and several variants by mimicking the definition of sutured Floer homology SHI in [22].

We then prove this invariant enjoys nice properties with respect to concatenation, and prove

a nontriviality result which shows that it detects the product tangle in certain cases.
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CHAPTER 0

Introduction

Given a 3-manifold Y with link K and cohomology class ω in H2(Y, L;Z/2) satisfying a

non-integrality assumption, Kronheimer and Mrowka have defined a relatively Z/4-graded

instanton invariant I∗(Y,K, ω), which roughly speaking counts singular flat connections and

instantons on Y and R×R, respectively [23]. This theory generalizes the original definition

of instanton Floer homology for a homology 3-sphere or 3-manifold with odd U(2)-bundle

(without link) due to Floer [6]. In this thesis we study the cohomology ring of a specific

moduli space of flat connections on a punctured Riemann surface Σ, and subsequenctly the

instanton Floer homology of a product 3-manifold S1 × Σ with a product link S1 × {n pts}

and class ω = 0 or PD([S1 × pt]). We are able to completely compute the ring structures

for both the cohomology ring and the Floer homology in the case that the genus of Σ is

zero. We then use this computation in order to define a new invariant for a class of sutured

3-manifolds with embedded tangle and briefly study its properties.

We briefly review the sequence of events for the analogous story of a compact (not

punctured) Rieman surface, product 3-manifold without link, and sutured manifold with-

out tangle. Suppose that Σ is a compact, closed genus g Riemann surface. The moduli

space M0
g(2, 1) of flat connections on an odd U(2) bundle with fixed determinant modulo

the determinant 1 gauge group is a compact 3g − 3 complex dimensional Kähler manifold.

Its cohomology ring was worked out completely in [29] and [14], the salient feature being

a presentation in terms of canonical generators and a set of relations which are defined re-

cursively in the genus g. Now, we consider the 3-manifold S1 × Σ and cohomology class

w = PD([S1 × pt]). As a vector space, the instanton Floer homology Iw∗ (S1 × Σ) is isomor-

phic to a direct sum of two copies of the cohomology H∗(M0
g(2, 1)). However, with respect

to the natural ring structure on Iw∗ (S1 × Σ) obtained by applying the functoriality of I∗ to

1



0. INTRODUCTION 2

a pair of pants cobordism from two copies of S1 × Σ to itself, this isomorphism does not

respect the multiplications on the two spaces. A presentation of Iw∗ (S1 × Σ) as a ring was

worked out by Muñoz in [27], using results from the theory of Donaldson polynomials of

4-manifolds, and computations of those invariants for certain elliptic surfaces. A key result,

as noted in [22], is that the eigenspace for the top eigenvalue 2g − 2 for multiplication by a

natural generator in Iw∗ (S1×Σ) is 1-dimensional. This is used in [22] to define an instanton

invariant SHI for a class of sutured 3-manifolds. There it is proved, for example, that SHI

detects whether a “taut” sutured 3-manifold is a product.

This thesis recapitulates this story in the singular or parabolic case. In Chapter 1, we

study the moduli spaceMg,n of flat connections on Σ which are singular at n punctures. For

us, singular means the holonomy of the connection around one of the punctures gives a trace

0 element of SU(2). It is possible to study the more general case that the trace be some other

number between ±2, but our eventual goal is to apply our results to singular instanton Floer

homology, where the holonomy is forced to be trace 0 for technical reasons (monotonicity

requirements for the underlying infinite-dimensional Morse theory). We investigate the co-

homology ring of Mg,n by finding a set of codimension 2 submanifolds Poincaré dual to a

subcollection of natural generators and studying their intersections. In the case that g = 0,

we are able to write down all the relations in the cohomology ring for these generators by

solving a linear algebra problem involving the top pairings. We obtain a presentation for the

ring H∗(Mg,n), which consists of relations defined recursively in the number n (throughout,

n must always be an odd number to avoid reducible connections).

In Chapter 2, we investigate the ring structure on the Floer homology

Vg,n := I∗(S
1 × Σ, S1 × {n pts}, ∅),

which is isomorphic as a vector space to H∗(Mg,n). We first review some of the salient fea-

tures of the construction of the functor I∗, and define an extended version which generalizes

relative Donaldson invariants to the singular case. Using the method in [27] of leveraging the

inductive nature of Vg,n in the number of points n, we reduce the question to studying the
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eigenvalues of a natural operator µorb([Σ]), corresponding to multiplication by a particular

generator. We effect a calculation in the case g = 0 and n = 3 by studying a 2-dimensional

moduli space of stable parabolic holomorphic bundles on S2 × S2. We then bootstrap by

leveraging an easier version of the Floer homology for a product link in a product 3-manifold

in order to obtain the eigenvalues for for g = 0 and all n. This is enough to write down

a complete presentation of V0,n. It is then proved that the top eigenvalue for µorb([Σ]) has

1-dimensional (generalized) eigenspace, analogous to the original nonzingular case of n = 0

and g > 1.

In Chapter 3 we take advantage of this 1-dimensional subspace of V0,n in order to define

an invariant THI for a class of tangles in certain sutured 3-manifolds, and prove a non-

triviality result which shows this invariant detects the product tangle. The crucial ingredient

in the definition of THI is a generalization of the excision formula for I∗ due to Floer [6]

to the case of cutting and regluing along 2-spheres intersecting a link in an odd number of

points. This generalization is analogous to the version of excision for cutting along genus

g surfaces proved in [22]. We also define “unreduced” invariants THI] and THI]even which

obey multiplicative laws for vertical concatenation and horizontal juxtaposition. Finally, we

prove that THI] detects the product tangle and product sutured manifold by comparing it

to the sutured instanton Floer homology SHI, defined in [22], of a derived sutured manifold

without tangle, and leveraging the analogous result for SHI.



CHAPTER 1

The Cohomology Ring of The Moduli Space of Flat Connections

1.1. Introduction

Given a compact Riemann surface Σ of genus g, it is well known that the moduli space of

stable, rank 2 holomorphic bundles E with given fixed odd degree determinant line bundle L

forms a smooth compact manifoldM0
g(2, 1) of real dimension 6g−6 [1]. The spaceM0

g(2, 1)

is naturally a Kähler manifold, in fact a rational projective variety over C, and has been

studied extensively. This space can also be studied from the point of view of representations

of the fundamental group of Σ into the group SU(2). Its cohomology ring has been studied

in great detail and presentations for it have been given by several authors [14,29].

In this chapter we are interested in the analgous problem for holomorphic vector bundles

on an orbifold surface Σ̌. The relevant object of study is the moduli space of parabolic vector

bundles over Σ̌. A parabolic vector bundle is a vector bundle on the (smoothed) surface Σ

along with a filtration of the fibers over the orbifold points, and a weight value for each

subspace in the filtration. There is a natural notion of a morphism and stability for such

bundles and, under suitable genericity assumptions on the weights, a corresponding smooth,

compact moduli space. It is the cohomology of this moduli space we study in the first part

of this thesis.

For a surface of arbitrary genus g with n orbifold points and arbitary weights, this moduli

space can be quite a bit more complicated than M0
g(2, 1). Our approach will be to use the

classical theorem of Mehta and Seshadri [25] that it is isomorphic to a suitable moduli space

of representations of the orbifold fundamental group πorb
1 (Σ̌). We eventually wish to apply

the results to a question in Floer homology, and the setup of that theory necessitates that we

restrict attention here to the case that all the parabolic weights are 1/4 and n is odd. In this

case, the problem becomes more tractable. We denote the moduli space of parabolic bundles

4
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(with fixed determinant) in this special case M0
g,n. The theorem of Mehta and Seshadri

shows thatM0
g,n is isomorphic to a certain representation variety Rg,n of πorb

1 (Σ̌) into SU(2).

We shall prove the following result for the genus 0 case:

Theorem 1.1.1. Let n = 2m + 1 ≥ 3. The cohomology ring H∗(R0,n;Q) is zero in odd

dimensions, and is generated as a ring by the class α of twice the natural symplectic form

on R0,n and degree two classes δ1, . . . , δn corresponding to the parabolic points, satisfying

δ2
j = δ2

k for all j, k. Let n = 2m + 1, define β := δ2
k ∈ H4(M0,n) and for each m ≥ 0 define

the polynomial r0,2m+1(α, β) for n ≥ 3 recursively via the relation:

r0,2m+3 = α · r0,2m+1 −m2β · r0,2m−1

with r0,1 = 1, r0,3 = α. Then for each subset J ⊂ {1, . . . , n} with |J | = s ≤ m, the polynomial

RJ
0,2m+1 = r0,2m−2s+1 ·

∏
k∈J

δk

is a relation in H∗(R0,n;Q). This set of relations, along with δ2
k = δ2

j is complete.

We shall find it necessary to consider both points of view of the space Rg,n, as a space

of parabolic bundles, and a space of representations. As a go between, we will also give a

description of this moduli space as a space of flat connections, where the natural symplectic

form on it is easiest to describe. To get a handle on the topology of Rg,n, we begin by

determining its Betti numbers. Methods for computing the Poincaré polynomials of moduli

spaces of parabolic bundles have been described by several authors. Hans Boden, in his thesis

[4], provides a comprehensive account of an adaptation of Atiyah and Bott’s equivariant

Morse theory method from [1] to the parabolic case that achieves this. Using his exposition,

we are able to read off a recursive formula in our case for the Betti numbers of Mg,n.

In order to determine generators and relations for the cohomology ring, we adapt the

method in [32], which can be summarized as follows. Lying over R0,n, there are natural

U(1) bundles coming from each of the marked points. The Chern classes of these bundles,

along with the class of a natural symplectic form on R0,n, fully generate the cohomology as
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a ring. These bundles are trivial outside certain real codimension two submanifolds given

by representations where two generators are mapped to equal or opposite elements of SU(2).

This allows us to identify representatives for the Poincaré duals of the first Chern classes of

these circle bundles. Each of these submanifolds behaves like a 2-sphere bundle over a copy of

the moduli space for two fewer parabolic points. We use this fact to analyze the intersection

numbers of the corresponding homology classes recursively in the number n of parabolic

points. We reduce the problem to linear algebra, and solve it by quoting a result from the

theory of orthogonal polynomials and an identity involving the so called Euler numbers. This

gives us relations in the cohomology ring. Once we write down the collection of relations in

Theorem 1.1.1, a dimension counting argument similar to that appearing in [29] suffices to

prove that they are a complete set.

1.2. Preliminaries

In this section we define the moduli spaces whose cohomology we are interested in.

Specifically, we give the three points of view - flat connections, representations, and parabolic

stable bundles - we shall need, and describe a canonical set of generators for the cohomology

ring. The thesis of Hans Boden [4] gives an excellent introduction to the various points

of view of the moduli spaces we are interested in. Our treatment of parabolic bundles

comes from the discussion there, while our treatment of flat connections is modelled on the

presentation in [32].

1.2.1. Moduli Spaces and the Symplectic Structure. We first describe the three

moduli spaces and explain briefly the isomorphisms between them. We then define the

symplectic structure on the moduli space of flat connections.

Stable Parabolic Bundles. The notion of a parabolic vector bundle on a Riemann surface

really arises from considering holomorphic orbifold bundles on an compact orbifold Riemann

surface Σ̌. By smoothing, such an orbifold can be viewed as simply a smooth Riemann

surface Σ, with cone angles specified at each of several marked points x1, . . . , xn. One can

also “smooth” a holomorphic orbifold bundle and this process naturally yields a standard
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holomorphic bundle along with a filtration and corresponding sequence of numerical weights

at each marked point. It turns out that the moduli space of stable parabolic bundles on Σ

(suitably defined) with fixed specified weights is isomorphic to a representation variety of

the orbifold fundamental group of Σ̌ into a Lie group. In this paper we will eventually only

be concerned with the representation theoretic point of view, keeping in mind applications

to the algebraic and analytic sides of the story as motivation. The parabolic bundle picture

is, however, indispensible, as it is the origin of the canonical cohomology classes on moduli

space and will pop up several times in later sections. We review both sides of the story

pertaining to the moduli space we are interested.

Our starting point is the compact Riemann surface Σ of genus g with the n marked points

x1, . . . , xn.

Definition 1.2.1. A parabolic vector bundle E on Σ with respect to the marked points

is holomorphic vector bundle along with the data of a descending filtration at each marked

point xk:

Exk = F
(0)
k ⊃ F

(0)
k ⊃ · · · ⊃ F

(sk)
k

and weights t
(0)
k < . . . < t

(sk)
k in [0, 1].

The notions of subbundles, quotients, morphisms, and exact sequences all have parabolic

analogs, which are generalizations of the normal concepts with additional coherence condi-

tions with respect to the weighted filtrations. There is also a notion of parabolic degree,

which is simply the degree plus the sum of the weights at all the marked points counted

with multiplicity according to the size of the quotients F
(j)
k /F

(j+1)
k . We define the parabolic

slope µpar(E) to be the quotient degpar(E)/ rk(E). The bundle E is then called stable if for

any proper parabolic subbundle F , one has µpar(F) < µpar(E) (for definitions and facts re-

garding parabolic bundles and stability, we refer the reader to §3 of [4]). For a suitable (that

is, generic) fixed collection of weights, there is a smooth, compact moduli space of stable

parabolic bundles. In this paper, we are concerned only with the case when E is rank two,

and it will be convenient to assume that deg(E) = 1. There are then only two weights t
(0)
k
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and t
(1)
k at each marked point, and the filtration consists of a choice of line Fk ⊂ Exk . We

also make the additional assumption that the sum t
(0)
k + t

(1)
k = 1, and set tk = t

(0)
k . Denote

the moduli space in this case by Mg,n(t1, . . . , tn). Finally, for a given fixed degree one line

bundle L (non-parabolic), there is a subset of the moduli spaceML
g,n(t1, . . . , tn) consisting of

those bundles whose underlying determinant bundle is isomorphic to L. When the weights

are understood, we will simply write Mg,n for the full moduli space and since the choice of

particular L will be inconsequential, we use M0
g,n to denote the fixed determinant space.

Let us briefly describe a construction of the moduli space of parabolic bundles. This will

be convenient when we discuss generators for its cohomology. We fix a C∞ bundle E of rank

two over Σ with c1(E) = 1, and fixed parabolic data at each of the n marked points; for us

this just means a 1-dimensional subspace Fk ⊂ Exk at the fiber over each xk (recall we have

fixed the weights to be 1/4, so these need not be specified). A holomorphic structure on E is

uniquely specified by a partial connection operator ∂E : Ω0(Σ)⊗ E → Ω0,1(Σ)⊗ E. Denote

by C the space of holomorphic structures on Σ. It is an infinite dimensional affine space

modeled on the vector space Ω0,1(Σ)⊗ E of (0, 1)-forms on Σ with values in E. Inside of C

is the space Cs, the space of holomorphic structures for which, along with the parabolic data

we have fixed, the corresponding parabolic holomorphic bundles are stable. Two natural

spaces of automorphisms act on C. We denote the first by Gc. It is the natural complex

analog of our G for flat connections, and consists of all smooth complex automorphisms of

the bundle E of determinant 1, ignoring the parabolic structure. The other is the subset of

those automorphisms preserving the parabolic structure, the “parabolic gauge group”:

Gc
par = {u ∈ SLC(E): u is smooth, and u(Fk) = Fk for all k}.

Since elements of this automorphism group fix the parabolic filtration, Gc
par preserves the

subspace Cs ⊂ C. The quotient Cs/Gc
par is then the space of isomorphism classes of stable

parabolic bundles, which we call Mg,n. Within Gc
par ⊂ Gc there is the subgroup of constant

automorphisms, which is a copy of C×. These act trivially on holomorphic structures and so
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we denote the quotients of our two gauge groups by this C× by Gc and Gc
par (the “reduced”

gauge groups). It is consequence of the stability condition that Gc
par acts freely on Cs.

The spaceMg,n admits a map det to the space Pic1(Σ) of isomorphism classes of degree

one line bundles, which is a torsor for the Jacobian variety J(Σ). Fixing a line bundle L ∈

Pic1(Σ), denote the fiber of det over L by M0
g,n (the moduli space with fixed determinant).

The Jacobian J(Σ) also acts on Mg,n by tensor product and restricting this action gives a

map

M0
g,n × J(Σ)→Mg,n

which is a (connected, so nontrivial) degree 4g covering.

Representation Varieties. Denote by Σ∗ the noncompact surface obtained by removing

the xk’s. Let a1, . . . , a2g be standard set of loops in Σ generating the fundamental group so

that their homology classes are a symplectic basis for H1(Σ) (that is, aj pairs with aj+1) and

for each removed point xk let dk denote a simple loop going once around the puncture. To get

a relationship between representations of the fundamental group of Σ∗ and parabolic bundles

with an odd first Chern class, we look at the Z/2 central extension Γ̂ of the fundamental

group Γ = π1(Σ∗) which has an extra order two central generator ζ and is determined by

the single relation
g∏
j=1

[a2j−1, a2j] ·
n∏
k=1

dk = ζ

We consider a space of representations of Γ̂ into SU(2). We bring the parabolic weights tk

into the picture by only allowing our representations to send the generator dk to an element

of trace 2 cos(2πtk). Let t denote the weight vector (t1, . . . , tk)

Definition 1.2.2. The representation variety Rodd
g,n (t) for the weight vector t is the

quotient of the space of representations of

ρ : Γ̂→ SU(2)
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such that Tr(ρ(dk)) = 2 cos(2πtk) and ρ(ζ) = −1 under the action of conjugation by SU(2)

on the target.

Denote by R̃odd
g,n (t) space of representations before quotienting by conjugation. The action

of SU(2) descends to one of PU(2) = SU(2)/{±1}. This action is free and the quotient

Rodd
g,n (t) is a smooth, compact manifold only as long as the tk’s are generic: for any collection

of signs εk = ±1, no sum Σn
k=1εktk may be an integer. This condition is exactly the one that

precludes reducible representations. Let t denote the weight vector (t1, . . . , tk). We have the

following important correspondence:

Theorem 1.2.3. (Mehta, Seshadri, [25]) For a generic collection of weights t, there is

a diffeomorphism

M0
g,n(t) ∼= Rodd

g,n (t).

This diffeomorphism, is not at all obvious. A map from Rg,n(t) →M0
g,n(t) can be con-

structed by going through orbifolds: a representation gives rise to a flat orbifold connection

ďA over Σ̌. Composing this operator with the projection to bundle-valued (0, 1) forms then

gives a holomorphic orbifold ∂ operator, whence via smoothing we obtain a parabolic bundle.

See [4] for details.

The topology of these moduli spaces depends on the weights tk. It is known (see [5],

for example) that the genericity condition splits the space of weight vectors t into chambers

separated by codimension one walls, and that as the weight vector passes through a wall, the

moduli space undergoes a well-understood monoidal transformation consisting of a blow up

and blow down along a submanifold. The geometric application (singular rank 2 instanton

Floer homology) we have in mind requires us to fix tk = 1/4 for all k. In this case we denote

the representation space

Rg,n := Rodd
g,n (1/4, . . . , 1/4).
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The spaceRg,n is a quotient of the space R̃g,n consisting of 2g+n-tuples (S1, . . . , S2g, T1, . . . , Tn)

of elements of SU(2) satisfying

g∏
j=1

[S2j−1, S2j] ·
n∏
k=1

Tk = −1.

and such that Tr(Tk) = 0, under the action of SU(2) by conjugation. The quotient is a

smooth, compact manifold of real dimension 6g − 6 + 2n, as long as n is an odd number

2m + 1, which we henceforth assume. For example, R0,3 consists of a single point: any

representation may be conjugated to one sending the three generators to i, j,k ∈ SU(2).

Notation. It will be convenient later onto use the notation S and T for the 2g and n

tuples of elements (S1, . . . , S2g) and (T1, . . . , Tn) of SU(2). Denote the equivalence class in

Rg,n of a point (S1, . . . , S2g, T1, . . . , Tn) in R̃g,n by [S1, . . . , S2g, T1, . . . , Tn] or simply [S, T ].

Flat Connections. The fact that isomorphism classes of flat connections and representa-

tions of the fundamental group are in bijective correspondence is an old idea in topology. In

the presence of the parabolic points, the discussion of this correspondence becomes some-

what awkward, and necessitates a careful discussion of exactly what kinds of connections

we allow, which we now undertake. We essentially copy the setup for this from [12]. In

what follows, all maps and forms are C∞. Recall that we have fixed a smooth vector bun-

dle E on Σ with c1(E) = 1. This removes the possibility for reducible connections in the

case that there are no marked points. We fix a hermitian inner product 〈·, ·〉 on E, and it

will be useful to introduce the principal U(2) bundle P corresponding to (E, 〈·, ·〉). Denote

by AdP is the associated principal PU(2) bundle and AdE the associated rank three real

vector bundle via the representation PU(2)→ SO(3). The bundle AdE sits naturally inside

EndE as the skew hermitian trace-free subspace. On the noncompact surface Σ∗, for each

k we identify a neighborhood Uk of the kth puncture with the cylinder (0, 1) × S1. This

gives coordinates (sk, θk) on Uk, with θk ∈ [0, 2π]. We want to study SU(2) connections

on E, but c1(E) 6= 0 and E cannot be made to have structure group SU(2). We therefore

use the familiar technique of studying connections on AdE, but use a subgroup of the full
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gauge group of AdE consisting of those automorphisms which are induced by determinant

1 gauge transformations on E. For each k, we fix a trivialization of E over Uk such that

for 1 ≤ k ≤ n the preferred line Fk is spanned by the vector (1, 0) ∈ C2. With respect to

these trivializations, connections on AdE over can be identified with 1-forms with values in

so(3). We denote by A the following space of connections on Σ∗ which are “standard” near

the punctures:

A =
{
A a C∞, SO(3) connection on AdE such that:

A(sk, θk) = 1
4
ad ( i 0

0 i ) dθk = 1
2

(
0 0 0
0 0 −1
0 1 0

)
dθk for sk ≥ 1/2, 1 ≤ k ≤ n

}(1.2.1)

These connections are fixed on the ends of Σ in order to ensure that the corresponding

connection has fixed holonomy around the punctures:

(1.2.2) hol∂Uk(A) = exp

(
2π · 1

2

(
0 0 0
0 0 −1
0 1 0

))
=
(

1 0 0
0 −1 0
0 0 −1

)
∈ SO(3).

At the puncture xk, the line Fk ⊂ Exk picks out a real 2-dimensional subspace Hk of (AdE)xk

corresponding to endomorphisms h for which h(Fk) ⊂ F⊥k , which is actually a complex line by

precomposing with complex scalars. Our space of connections is rigged so that the holonomy

around xk is exactly the element which is the identity on the real line `k := H⊥k and −1 on

the plane Hk.

Given a unitary automorphism g of E, there is an induced automorphism Adg on AdE

which arises by conjugation by g. We define the gauge group G to be the space of smooth

determinant 1 sections of Aut(E) of unitary automorphisms of E, and restrict to those

automorphisms whose action preserves the end behavior of our 1-forms. Namely, we define

(1.2.3) G =

g ∈ Aut(E): det(g) = 1, and ∀ k, there is z ∈ C, |w| = 1

such that g(sk, θk) = ( w 0
0 −w ) , for sk ≥ 1/2


where we use the trivialization near each each puncture to identify g with an SU(2)-valued

function. An element g acts by pulling back connections via the automorphism Adg on AdE.

In other words a section t of AdE is (g · A)-parallel if and only if Ad(g) · t = g ◦ t ◦ g−1 is
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A parallel. The gauge group is rigged so that Adg preserves the orthogonal decomposition

Hk ⊕ `k. We will think of G as acting on the bundle AdE over the entire surface Σ, while A

consists of connections only over Σ∗.

Let Aflat ⊂ A denote the subset of flat connections, that is, those connections satisfying

FA = d2
A = 0. It is not difficult to see that any smooth flat SO(3) connection on Σ∗ with

the proper holonomy around the punctures will be gauge equivalent to one in Aflat. Denote

by Bflat the quotient Aflat/G. It is a standard fact that Bflat is diffeomorphic to Rg,n. It will

be useful to understand this diffeomorphism later when we begin analyzing the symplectic

form in more detail. Fix a basepoint z ∈ Σ away from the punctures and trivialize E outside

z0. This gives a reduction of the structure group of P |Σ\{z0} to SU(2). With respect to the

trivialization, a connection on AdE over Σ∗ \ {z0} becomes an so(3) valued 1-form a. An

SU(2) connection B on E becomes an su(2) valued 1-form b, and the induced connection

AdB on AdE has 1-form given by adb. The Lie algebra homomorphism ad : su(2)→ so(3)

is an isomorphism so there is a unique b for which adb = a, and B is flat if and only if

A is. Letting z be a new basepoint near z0, the holonomy holz(A) gives a representation

of π1(Σ∗ \ {z0}) into SO(3) and holz(B) gives one to SU(2) which lifts the homomorphism

holz(A). The holonomy of B around a small loop γ0 based at z around z0 must be −1

since the bundle doesn’t extend across z0 but this holonomy must lift the holonomy of A,

which is the identity in SO(3). Hence, from a flat connection A we get a representation of

Γ̂ ∼= π1(Σ∗ \ {z0})/〈γ2
z0
〉 into SU(2) given by the holonomy of the lift B. What remains is

to check that the holonomy of B around the punctures has trace 0. To see this, we simply

note that we are free to fix our trivialization of E away from z0 in a way agreeing with the

fixed trivializations already chosen near each punctures. With respect to this, the 1-form of

A near the punctures has been fixed so that the holonomy around a small loop is the 3× 3

matrix in (1.2.2). The two SU(2) lifts of this matrix are ±i, which have trace 0. Now, the

action of the gauge group serves to conjugate the representation holz(B), hence we get the

desired map Bflat → Rg,n. For the rest of the paper, we fix the point z0 and trivialization
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of E on Σ \ {z0}, writing su(A) for the unique SU(2) connection with Ad(su(A)) = A away

from z0 (which we were calling B).

The Symplectic Structure. The tangent space to a point A ∈ A is naturally identified

with the space of 1-forms a with values in the bundle so(AdE) ⊂ End(AdE) of skew-adjoint

endomorphisms, which are zero near the punctures. The subspace corresponding to TAAflat

is the subspace satisfying dAa = 0, the linearization of the flatness condition. Let Tr(·, ·) :

so(3)⊗so(3)→ R denote the invariant positive definite form Tr(X, Y ) = −Tr(X ◦Y ), which

gives an inner product on so(AdE) ⊂ End(AdE). We then define a 2-form ω̃ on Aflat via:

(1.2.4) ω̃(a ∧ b) =
1

4π2

∫
Σ

Tr(a ∧ b)

Here, we use the natural composite of Tr with the wedge product ∧ on 1-forms. The tangent

space to an equivalence class [A] ∈ Bflat is the quotient TAAflat/TA(G · A). The key point is

that ω is annihilated by TA(G ·A). A vector in TA(G ·A) is given by dAv ∈ Ω1(Σ∗)⊗so(AdE)

for some v ∈ Ω0(Σ∗)⊗ so(AdE). We have:

ω̃(dAv ∧ b) =
1

4π2

∫
Σ

Tr(dAv, b) = − 1

4π2

∫
Σ

Tr(v, dAb) = 0

The second equality is due to Stoke’s theorem (Σ∗ is not closed, but all functions involved

are constant or zero near the boundary), and the third is because b is infinitesimally flat

(dAb = 0). Hence, ω̃ descends to a 2-form ω on the quotient Bflat. Nondegeneracy and

closedness are standard results going back to [1], where it is shown that ω is the symplectic

form onRg,n arising from an infinite dimensional symplectic reduction of (A, ω̃) with moment

map the curvature F• : A → Ω2(Σ, so(AdE)).

1.2.2. Universal Bundles and Generators for Cohomology. Fundamental to the

computation of the cohomology of M0
g(2, 1) is the knowledge that a certain canonical col-

lection of cohomology classes generate the full rational cohomology ring. These classes were

first described in [1], where the methods of infinite dimensional equivariant Morse theory

are used to show that they are generators. This technique was generalized in [3] (using [28])
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to the case of parabolic bundles, the essential aspects of which we review here. Because we

will be making explicit use of these specific cohomology classes in our computations of the

ring structure on H∗(M0
g,n), we will go into a fair amount of detail here.

The cohomology classes we describe all arise naturally from one or more “universal bun-

dles” over a product of Σ with a moduli space or classfiying space. This terminology is used

for several distinct concepts in this circle of ideas, so we first review the ones we need here.

One kind of universal bundle we can consider is a universal holomorphic parabolic bundle

E→M0
g,n × Σ.

Definition 1.2.4. A universal parabolic bundle over M0
g,n × Σ is a pair consisting of

a holonomorphic bundle E over the product and for each parbaolic point xk a rank one

subbundleFk ⊂ E|M0×{xk} over the parabolic point xk, with the following property: re-

stricting the pair (E, {Fk}) to the slice {E} × Σ should give a stable parabolic bundle on Σ

isomorphic to E .

In the case that such an E exists, we can get cohomology classes inM0 using characteristic

classes and the slant product operation

/ : H i(M0 × Σ)⊗Hj(Σ)→ H i−j(M0)

Theorem 1.2.5. (Biswas, [3]) Suppose that a universal parabolic bundle (E, {Fk}) exists

on M0 × Σ. Then as h ∈ Hj(Σ) ranges over a basis for the homology of Σ, the classes

c2(E)/h ∈ H4−i(M0;Q) for j = 1, 2 and c1(Hom(Fk,E)) ∈ H2(M0;Q) generate H∗(M0;Q)

as a Q-algebra.

The existence of a universal parabolic bundle, however, is a delicate matter and is not

always guaranteed. These difficulties mostly arise from an obstruction to the lifting of an

easily constructed projective universal bundle to a vector bundle. For us, all we really need is

this projective bundle, which has all the properties one would expect of the projectivization

of a universal vector bundle were it to exist.
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Proposition 1.2.6. There exists a CP 1-bundle P over M0×Σ, along with a section sk

over the slice M0 × {xk} for each k with the following properties:

• The bundle P is semi-holomorphic: it is smooth in M0 directions and holomorphic

upon restriction to Σ slices (in a way varying smoothly over M0)

• Over {E}×Σ the pair (P, {sk}) restricts to a projective bundle pair holomorphically

isomorphic to the projectivization of the parabolic pair (E , {Fk}).

Proof. We begin on the infinite dimensional space Cs ×Σ, letting π denote the projec-

tion to Σ. The pullback π∗E is equipped with the following tautological semi-holomorphic

structure: over {∂A}×Σ the holomorphic structure is the one given by ∂A, and over Cs×{xk}

has line subbundle π∗Fk. Using the natural smooth structure on the affine space Cs, this

assignment gives a smoothly varying holomorphic structure on Σ slices. This induces a semi-

holomorphic structure on the projectivization P(π∗E), which naturally carries the section

P(π∗Fk).

There is an action of the gauge group Gc
par on the total space of P(π∗E) covering its action

on Cs, as follows. Given a point (`, ∂A, x) in the the total space of P(π∗E) with ` ⊂ Ex, an

element g of the gauge group acts via:

g · (`, ∂A, x) = (gx(`), g · ∂A, x)

Because Gc
par preserves the Fk’s, this action preserves the subbundles π∗(Fk). The action is

not free, since it factors through the quotient Gc
par → Gc

par: constant scalar automorphisms

certainly act trivially on connections and lines. However, the resulting action of Gc
par is free

(in fact, free on the base). Hence, we may form the quotient projective bundle P→M×Σ.

The group Gc
par preserves slices through points in Σ and also the section P(π∗Fk), so that we

get sk →M× {xk}.

That there is a holomorphic structure in Σ directions is clear: the action by an element

g ∈ Gc
par on P(π∗E) is by a holomorphic isomorphism from the restriction to the slice through

{∂A} to the restriction through {g · ∂A}. This also make it clear that the pair (P, {sk}) has
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exactly the desired tautological property on restriction to Σ slices. Continuity in M0 direc-

tions is obvious, so we obtain the desired semi-holomorphic structure. Restricting everything

to the fixed determinant subset M0 gives a universal bundle on the correct space. �

Remark. The technique of passing to the projective bundle is technical device which

allows us to get an action of the reduced gauge group, and is analogous to passing from a

U(2)-bundle to the adjoint SO(3)-bundle in the flat connection story.

There is an analogous universal bundle overRg,n×Σ, carrying a family of flat connections

over Rg,n×Σ∗, seen as follows. Recall that Aflat is our space of flat connections on AdE over

Σ∗. Letting π now denote the projection to Aflat × Σ→ Σ, there is an obvious tautological

family of connections on π∗(AdE), which on the slice through A is just the connection dA.

This family is smooth in Aflat directions, and is preserved by the natural action of the smooth

SU(2) gauge group G. The center {±1} of G of constant scalar automorphisms acts trivially

on Aflat. In the holomorphic case, the center of the gauge group acted trivially on the base

but not on the bundle; here we avoid this problem by passing to the adjoint bundle. The

gauge group G acts on π∗(AdE) via:

g · (t, A, x) = (gx ◦ t ◦ g−1
x , g · A, x)

where t ∈ (AdE)x ⊂ End(Ex). The center acts trivially, so this action descends to a free one

of the quotient G. The quotient of π∗AdE by G is an SO(3) vector bundle Ead → Rg,n ×Σ.

Since an automorphism g preserves the complex line Hk ⊂ AdExk for each k, it preserves the

complex line subbundle π∗(Hk) ⊂ AdE|Aflat×Σ. Hence, inside of Ead, there is a subbundle

Vk over Rg,n × {xk} coming from the quotient of π∗(Hk) for each k. The pair (Ead, {Vk})

has a flat structure A in Σ directions which moves continuously in Rg,n directions, and on

{[A]}×Σ the bundle restricts to one with a flat connection on Σ∗ isomorphic to A, with the

isomorphism carrying (Vk)[A] to the subspace Hk.

In order to recover generating sets of characteristic classes, let us relate the classes coming

from our adjoint bundles to a hypothetical bona fide universal bundle. For any complex
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vector bundle E, we have:

p1(AdE) = −4c2(E)

In addition, given Fk ⊂ E, the subbundle Wk
∼= Hom(F⊥k ,Fk) of matrices with no diagonal

terms with respect to the orthogonal decomposition has

c1(Wk) = −c1(Hom(Fk,E))

over the copy of Σ. We conclude:

Theorem 1.2.7. The rational cohomology ring H∗(M0;Q) is generated as a Q-algebra

by elements p1(Ead)/h, for h ∈ H∗(Σ;Q), and the classes c1(Vk).

1.3. Betti Numbers of The Moduli Space

While §1.2.2 provides a generating set for the cohomology ring H∗(Rg,n;Q), and §1.5

will describe relations among them, proving that these relations are a complete set for g = 0

will require knowledge of the Betti numbers of R0,n. A convenient formula for these that is

general enough to accommodate an arbitrary choice of parabolic weights appears in [4], and

we can actually obtain formulas for the general case g 6= 0 without much additional work.

To apply this to the specific case of equal weights treated here, we will need to interpret that

formula a bit. To this end, we briefly review the methodology in [4].

As seen in [28], the space of holomorphic structures C on E → Σ comes with a stratifi-

cation analogous to the stratification described in [1] in the non-parabolic case. The subset

of Cs ⊂ C for which the fixed weights and 1 dimensional subspaces Fk give a stable parabolic

structure on the rank two bundle E is an open subset. The point is that not all bundles

in the complement are born equal: some unstable bundles are more unstable than others.

Given an unstable rank two bundle E , there is a unique destabilizing line subbundle F sitting

in a slope-decreasing short exact sequence

0→ F → E → Q → 0
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Still following [4], we define λ = deg(F). Conceptually, the larger λ is, the more unstable E

is. We can get more data from F by recording whether it coincides with Fk at each parabolic

point. Namely, let ek = dim(Fxk ∩ Fk), and denote by e the vector of the ek’s, which are

either 0 or 1. The invariant e is a property of E and is exactly the intersection matrix

considered in [28]. The pair (λ, e) is called the type of E , and we let Cλ,e denote the locally

closed submanifold of C consisting of holomorphic structures on E of type (λ, e). The crucial

point is that this strata for a fixed type is connected ( [28], Prop. 3.5). The codimension

dλ,e of the strata Cλ,e is

(1.3.1) dλ,e = 2λ+ n+ g − 1 +
∑
k

ek

which essentially appears in [4] as equation (17).

Remark 1.3.1. In [4], the assumption is made that degpar(E) = 0, which is achieved by

taking deg(E) = −n. The moduli space in this case is isomorphic to ours as can be easily seen

by comparing the representation varieties. For the rest of this section, we temporarily assume

deg(E) = −n so as to use the formulas appearing there without attempting modification.

The essential content of [4] is that the stratification of C via the strata Cλ,e is equivariantly

perfect for the action of the complex gauge group Gc
par. As a result, one can record the

equivariant Poincaré polynomial of the total space as a sum over terms coming from the

individual strata. These contributions can be computed exactly for the unstable strata, thus

yielding a formula for the Poincaré polynomial for the quotient. We may now record the

result in [4] on the betti numbers of M0
g,n. For a topological space X, let Pt(X) denote its

Poincaré polynomial
∑

d rkH∗(X) · td.

Theorem 1.3.2. The Poincaré polynomial of the representation variety Rg,n for n ≥ 1

is given by:

(1.3.2) Pt(Rg,n) =
(1 + t)2g−2

(1− t)2

(1− t+ t2)2g(1 + t2)n−1 − (1− t2)
∑
λ,e

t2dλ,e
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where the sum ranges over all types (λ, e) which are destabilizing.

Proof. We know that Rg,n
∼=M0

g,n. Formula (1.3.2) is just equation (21) of [4] divided

by the Poincaré polynomial of the Jacobian J(Σ), since the equation there is for the moduli

space Mg,n, which is a cohomologically trivial bundle over M0
g,n with fiber homeomorphic

to J(Σ). �

Example 1.3.3. Let us illustrate how to use (1.3.2) to compute the Poincaré polynomial

in a simple example: R0,3, which consists of the single equivalence class [i,k, j]. We need to

understand the domain of the sum in the formula. The parabolic degree of the destabilizing

line bundle F of a parabolic bundle E of type (λ, e) is:

degpar(F) = λ+
3∑

k=1

(
1
4
(1− ek) + 3

4
ek
)

= λ+ 3
4

+ 1
2

3∑
k=1

ek.

For such F to be destabilizing we need µ(F) ≥ µ(E) = 3/2. Letting e =
∑3

k=1 ek, we

therefore need

(1.3.3) 4λ+ 2e ≥ −3

It is convenient to visualize the pairs (λ, e) satisfying 1.3.3; see Figure 1.3.3.

e

λ

4λ+ 2e ≥ −3

Figure 1.1. The locus of unstable pairs (λ, e) for n = 3.
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We see that we can take the sum to over all e and λ ≥ −1, except that we must add a

contribution for (−2, 3) and subtract one for (−1, 0). We have:

∑
λ,e

t2dλ,e = t2 − 1 +
∑

λ≥−1,e

t2(2λ+2+e)

= t2 − 1 + t4
∑
λ≥−1

t4λ

( ∑
e1=0,1

t2e1
∑
e2=0,1

t2e2
∑
e3=0,1

t2e3

)

= t2 − 1 + (1− t4)−1(1 + t2)3

Since g = 0 here, formula (1.3.2) reduces to

1

(1− t2)2

(1 + t)2 − (1− t2)
∑
λ,e

t2dλ,e

 .

Plugging in for the summation and applying simple algebra, we see that Pt(R0,3) = 1, as

expected.

Focusing on the genus 0 case temporarily, we can use (1.3.2) to get a beautiful result

which yields explicit formulae for the Poincaré polynomials.

Proposition 1.3.4. Suppose n = 2,+1 > 3. Then up to its middle dimension n −

3, the Poincaré polynomial Pt(R0,n) equals the Poincaré polynomial of the graded algebra

C[α, β, δ1, . . . , δn]/(δ2
i ), where α, β, δi have degrees 2, 4, and 2, respectively.

Proof. The proof is an exercise in bookkeeping for the sum over strata in (1.3.2). For a

type (λ, e) to be destabilizing, we now require (againg letting e denote the sum of the ek’s):

(1.3.4) 4λ+ 2e ≥ −n

Let Qn ⊂ Z2 be the subset of the lattice points in the (λ, e) plane satisfying (1.3.4) and

bounded by 0 ≤ e ≤ n. It can be approximated by the subset λ ≥ −m, 0 ≤ e ≤ n; this

approximation leaves out a small triangle of lattice points to the left of λ = −m, but errantly

includes a triangle of the same size but rotated 180◦, to the right of λ = −m (see Figure

1.3).
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Tn

T ′n

λ

e

Figure 1.2. The triangles Tn and T ′n.

Let Tn denote the triangle of lattice points in Qn with λ < −m. Each lattice point (λ, e)

in Qn contributes a sum of terms t2dλ,e consisting of vectors e with
∑

k ek = e. There are
(
n
e

)
such vectors, so the contribution of the point (λ, e) is

(
n
e

)
t4λ+2n−2+2e. Each point (λ, e) in Tn

pairs with the point (λ′, e′) = (−n − λ, n − e) obtained by rotating 180◦ about the center

(−n
2
, n

2
). The approximating half space λ ≥ −m misses (λ, e) ∈ Tn, but wrongfully includes

(λ′, e′) in the rotated triangle T ′n. The correction for this in the sum over unstable strata is

therefore

(1.3.5)

(
n

e

)(
tn−2+(4λ+n+2e) − tn−2−(4λ+n+2e)

)
.

We want to separate the sum
∑

Qn
t2dλ,e into the part

∑
λ≥−m,e t

2dλ,e , plus the correction

which we momentarily denote by
∑

Tn
(· · · ), consisting of a sum of terms (1.3.5). We focus

first on the the rectangular sum. We have:

∑
λ≥−m,e

t2dλ,e = t2n−2
∑
λ≥−m

t4λ

( ∑
e1=0,1

t2e1 · · ·
∑
en=0,1

t2en

)

= (1− t4)−1(1 + t2)n
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Going back to the formula for the Poincaré polynomial plugging in g = 0 we get:

Pt(R0,n) =
1

(1− t2)2

(
(1 + t2)n−1 − (1− t2)

[
(1− t4)−1(1 + t2)n +

∑
Tn

t2dλ,e

])

= − 1

1− t2
∑
Tn

(t2dλ,e)

We see that the entire cohomology is determined by the contributions from the triangle Tn.

Let T ′n denote the rotation of Tn about the center point (−n
2
, n

2
). Pairs (λ, e) ∈ T ′n, that is

with 4λ+ 2e < −n and λ ≥ −m, are in bijection with pairs (µ, e) with 4µ+ 2e ≤ n− 3 and

µ ≥ 0. The contribution to the above sum for such a pair is obtained by dividing equation

(1.3.5) by t2 − 1:

(1.3.6)

(
n

e

) D∑
i=0

t4µ+2e+2i

where D = n− 3− (4µ+ 2e). Now, we consider the graded algebra

B0,n := C[α, β, δ1, . . . , δn]/(δ2
i ),

where α, β, δk have degrees 2, 4, and 2, respectively. The dimenension in each grading of

B0,n can be found by counting monomials of the form αaβbδe11 · · · δenn for ek = 0, 1. For fixed

e =
∑

k ek, the number of such monomials with fixed a and b is
(
n
e

)
. The contribution to

Pt(R0,n) from such a monomial can be viewed as coming from the term t2a+4b+2e in the above

sum (1.3.6) for µ = b and i = a. This shows that the Poincaré polynomials of R0,n and B0,n

are equal up to the middle dimension n− 3. �

We can use this theorem to get our first glimpses of the recursive nature of the Rg,n in

the number of parabolic points n, and eventually the genus g.

Corollary 1.3.5. Suppose n = 2m + 1 > 3. For the genus 0 representation varieties,

we have:

(1.3.7) Pt(R0,n+2) = (1 + t2)2Pt(R0,n) + 2n−1tn−1
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Proof. This follows from the isomorphism

B0,n+2
∼= B0,n ⊗ C[δn+1, δn+2]/(δ2

n+1, δ
2
n+2).

Let T d0,n denote the collection of monomials αaβbδe11 · . . . ·δenn in B0,n of degree d. For example,

T 4
0,n = {α2, β, αδ1, . . . , αδn, δ1δ2, . . . , δn−1δn}

For d up to the middle dimension of R0,n, the coefficient of td in Pt(R0,n) is the cardinality

of T d0,n. For d strictly less than the middle dimension 2m for R0,n+2, any monomial in

T d0,n+2 can be obtained by multiplying a monomial in T d
′

0,n by δn+1, δn+2, both, or neither, for

d′ ≤ 2m− 2, which is the middle dimension for R0,n. This argument shows that Pt(R0,n+2)

and (1 + t2)2Pt(R0,n) agree up to degree 2m− 2.

In degree 2m, we consider the collection of those monomials in T 2m
0,n+2 arising from mul-

tiplying a monomial in T 2m−2e1−2e2
0,n by δe1n+1δ

e2
n+2 for (e1, e2) = (1, 0), (0, 1), (1, 1), along with

those arising from multiplying a monomial in T 2m−4
0,n by β. These 4 disjoint subsets contribute

2
∣∣T 2m−4

0,n

∣∣+ 2
∣∣T 2m−2

0,n

∣∣ to
∣∣T 2m

0,n+2

∣∣, which is the same as the contribution to the coefficient of

t2m in Pt(R0,n+2) from (1 + t2)2Pt(R0,n) by Poincaré duality. It remains to count those

monomials in T 2m
0,n+2 not arising this way. These are precisely those monomials in only the

variables α and δi’s for i ≤ n. Of course, these are in bijection with vectors e = (e1, . . . , en)

with e =
∑

k ek ≤ m, which is easy seen to equal 2n−1 = 22m. The equation (1.3.7) now

follows immediately. �

With a bit more work, we get:

Corollary 1.3.6. We have the following recursive formulas for the the Poincaré poly-

nomials, where n ≥ 1:

Pt(Rg,n+2) = (1 + t2)2Pt(Rg,n) + 2n−1t2g+n−1(1 + t)2g(1.3.8)

Pt(Rg+1,n) = (1 + t3)2Pt(Rg,n) + 2n−1t2g+n−1(1 + t)2g(1 + t2)(1.3.9)
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Proof. Let Sg,n denote the sum
∑

λ,e t
2dλ,e in (1.3.2). We can solve (1.3.7) for an equa-

tion giving S0,n+2 in terms of S0,n:

(1.3.10) S0,n+2 = (1 + t2)2S0,n − 2n−1(1− t2)tn−1

Increasing the genus does not change the domain of the sum in (1.3.2), but multiplies it by

the factor t2g so that Sg,n = t2gS0,n. Hence:

(1.3.11) Sg,n+2 = (1 + t2)2Sg,n − 2n−1(1− t2)tn−1

holds for all g. Plugging this equation into (1.3.2) for arbitrary g, the equation (1.3.8) follows

by some straightforward algebra. To prove formula (1.3.9), we may argue by induction on

n. Let ∆g,n denote the difference Pt(Rg+1,n) − (1 + t3)2Pt(Rg,n). Suppose that ∆g,n =

22g+n−1tn−1(1 + t)2g(1 + t2). Now, we use (1.3.8) to compute ∆g,n+2. We have:

∆g,n+2 = Pt(Rg+1,n+2)− (1 + t3)2Pt(Rg,n+2)

= (1 + t2)2∆g,n + 2n−1t2g+n+1(1 + t)2g+2 − 2n−1t2g+n−1(1 + t)2g(1 + t3)2

= 2n−1t2g+n−1(1 + t)2g
[
(1 + t2)3 + t2(1 + t)2 − (1 + t3)2

]
= 2n−1t2g+n−1(1 + t)2g

(
4t2 + 4t4

)
= 2n+1t2g+n+1(1 + t)2g(1 + t2)

which is exactly what need for (1.3.8) to hold in general. The base cases of n = 1 are easy

to check and left to the reader. �

Remark 1.3.7. The formula (1.3.8) should be interpreted as saying that the homology

of Rg,n+2 is the same as that of CP 1 × CP 1 × Rg,n, with 2n−1 times the homology of the

Jacobian J(Σ) added in the middle dimensions. On the other hand, formula (1.3.9) says that

the homology of Rg+1,n is obtained as the homology of SU(2)×SU(2)×Rg,n with 2n−1 times

the homology of the genus g Jacbobian crossed with P1 added in the middle dimensions.

Corollary 1.3.5 is strong evidence that the cohomology ring is a free algebra on generators

α, β, and δi, modulo δ2
i = x for some x, up to the middle dimension, with relations in degree

2 higher than the middle.
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Corollary 1.3.8. H2(Rg,n) = n+ 1

Example 1.3.9. If we set g = 0 but let n = 5, we expect a 4-dimensional moduli space.

By Corollary 1.3.5:

Pt(R0,5) = (1 + t2)2Pt(R0,3) + 4t2 = 1 + 6t2 + t4

(or more simply we could just use Corollary 1.3.8). As noticed by Boden in [4], the paper [15]

proves that the only possibility for a four-dimensional representation variety (in genus 0) with

b2 = 6 is CP 2#5CP 2
. This follows by considering the structure of a toric variety on these

moduli spaces.

Finally, let us relate the topology of Rg,n for positive n to the original non-parabolic case

Rg,0. The formula (1.3.2) in Theorem 1.3.2 only applies for positive n. However, the sum

Sg,1 is very easy to evaluate: we have either e = (0) or (1), and in either case the sum is over

all λ ≥ 0. Thus the sum becomes (1− t4)−1(1 + t2), and after some algebra we obtain:

(1.3.12) Pt(Rg,1) =
(1 + t3)2g − t2g(1 + t)2g

(1− t2)2
.

This is exactly (1 + t2) times the now well known formula for the Poincaré polynomial of

Rg,0:

(1.3.13) Pt(Rg,1) = (1 + t2)Pt(Rg,0)

This is to be expected since Rg,1 is a P1-bundle over Rg,0.

1.4. Canonical Line Bundles on Rg,n

In this section we describe a natural collection of line bundles over Rg,n as well as explicit

submanifolds of the moduli space whose Poincaré duals can be used to write down the first

Chern classes of these line bundles. These line bundles and submanifolds are exactly of the

type studied in [32], though the assumptions there on the genericity of parabolic weights

and methods of symplectic reduction preclude the full application of his results to our case.
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Specifically, setting all the weights to be 1/4 makes the calculation of the Poincaré duals

of the first Chern classes of the line bundles somewhat more tedious, and the inductive

technique in that paper of reducing the number of parabolic points by one fails, because we

require n to be odd. However, we give an analogous scheme by which n can be reduced by

two. The resulting recursive description of Rg,n will eventually allow us to completely write

down the cohomology ring for g = 0, using these Chern classes as generators. We first define

these line bundles, and show that their first Chern classes are naturally identified with a

subset of the generating set of classes found in §1.2.2.

1.4.1. Line bundles Vk and submanifolds D±k,l. The line bundles we want to study

are those associated to explicit U(1) bundles over Rg,n. Recall our standard generating set

{aj, dk, ζ} (for j = 1, . . . , 2g and k = 1, . . . , n) with ζ2 = 1 for the central extension Γ̂ of

the fundamental group of Σ∗. The unreduced representation space R̃ consists of all maps

Γ̂ → SU(2), with a trace condition on the dk and with ζ mapping to −1. Viewing R̃g,n as

sitting in SU(2)2g+n, inside of R̃g,n we have, for each k, a subspace

Vk := {(S1, . . . , S2g, T1, . . . , Tn) ∈ R̃g,n| Tk = i}

where the k parabolic coordinate is exactly i. Any representation in R̃g,n can be conjugated

to one in Vk, so the quotient map Vk → Rg,n is surjective. A fiber can be identified with the

stabilizer of i: if ρ ∈ Vk maps to ρ in Rg,n, any other element of the preimage of ρ arises

by conjugating ρ, but to stay in Vk the conjugating element g ∈ SU(2) must fix i. This

stabilizer is the one parameter subgroup S1
i through i. The action of S1

i on the fiber decends

to a free one of the quotient S1
i /{±1}; both are isomorphic to the group U(1), so Vk becomes

a principal U(1)-bundle over Rg,n.

For each pair k, l, let we define the subspace D±k,l ⊂ Rg,n:

D±k,l = {[S, T ] | Tk = ±Tl}.
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The union D+
k,l ∪D

−
k,l is exactly the locus where Tk and Tl commute. It is not difficult to see

that the spaces D±k,l are smooth, orientable, connected, real codimension 2 submanifolds of

Rg,n. It is a careful study of these spaces and their intersections which gives us a great deal

of information about the cohomology ring of Rg,n.

The first step, as seen in [32], is to notice the line bundles Vk and the submanifolds D±k,l

are intimately related.

Lemma 1.4.1. The U(1) bundle Vk is trivial on the complement of D+
k,l t D

−
k,l in Rg,n,

for any l 6= k.

Proof. We shall describe an explicit section Rg,n → Vk outside D+
k,l tD

−
k,l. Let [S, T ] ∈

Rg,n be such that Tk and Tl do not commute. It is not hard to see that there is a unique

representative of [S, T ] for which Tk = i, the k-component of Tl is 0, and the j-component

of Tl is positive, assuming Tk and Tl are not equal or antipodal. Perhaps the best intuition

for this comes from geography: there is a unique oriented orthogonal transformation of the

earth which maps a given point to the north pole and any other point not the south pole

to lie on the Prime Meridian. This recipe gives a unique representative T for any given

conjugacy class, and this assignment is certainly continuous in Rg,n, so gives a section. �

Corollary 1.4.2. Suppose n ≥ 3, and let [D±k,l] denote the homology classes associated

to D±k,l with some choice of orientations. Then there are integers r, s such that

(1.4.1) PD(c1(Vk)) = r[D+
k,l] + s[D−k,l]

This raises the question of what happens when n = 1. The author can find no obvious

projection Rg,1 → Rg,0 by studying the representation varieties. Nonetheless, such a projec-

tion map is easily defined by studying the correpsonding moduli spaces of stable parabolic

bundles. Suppose E is a stable parabolic bundle over Σ with one parabolic point x1. As-

suming deg E = −1 (which we are free to do by tensoring with a line bundle of degree −1),

we have degpar E = 0. We claim that E is actually stable as a nonparabolic bundle. Indeed,

if L were a (nonparabolic) destabilizing line bundle, then we must have degL > −1
2

and so
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degL ≥ 0. But then degpar L ≥ 1
4
, so L would be a parabolic destabilizing line bundle for

the parabolic bundle E , which is a contradiction. Hence, we have a forgetful map

f :M0
g,1 →M0

g,0

It is a surjective morphism of projective algebraic varieties, whose fiber is the P1 coming

from the choice of parabolic line F1 ⊂ Ex1 .

In fact what this shows is that when n = 1, Cs ⊂ C actually parametrizes stable non-

parabolic holomorphic structure on E → Σ as well. To getMg,0, we simply take the quotient

by the larger (nonparabolic) gauge group Gc. The parabolic gauge group Gc
par is a subgroup

of Gc and the coset space Gc/Gc
par is a P1. After passing to the fixed determinant subspaces,

this realizes the P1 bundle

M0
g,1 = Cs/Gc

par → Cs/Gc =M0
g,0.

Let us study the corresponding universal bundles. OverM0
g,1×Σ we have Pg,1 and section sk

over x1 ∈ Σ, constructed as a quotient of P(π∗E) over Cs×Σ. OverM0
g,0 we have Pg,0. There

is an obvious fiberwise map Pg,1 → Pg,0 covering the bundle mapM0
g,1×Σ→M0

g,0×Σ which

explicitly realizes the first as isomorphic to the pullback of the second. It is straightforward

to check also that for the SO(3) universal bundle Ead(g, n) over Rg,n × Σ, we have

Ead
g,1
∼= f ∗(Ead

g,0).

Before tackling the computation of the constants r, s in Corollary 1.4.2, we first relate

the line bundles Vk to the universal bundle constructions from §1.2.2 and make a few notes

on the symmetry inherent in our setup.

1.4.2. The Universal Bundle and Vk’s. We would like to identify Vk with natural

bundles arising from the universal pair over Rg,n × Σ. We recall the universal bundle pair

(Ead, {Vk}) over Rg,n × Σ, constructed as the quotient of a pullback pair (π∗AdE, {π∗Hk})

by the gauge group G. Fix a basepoint z ∈ Σ∗ away from the punctures, and consider the
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subgroup

Gz ⊂ G,

called the “based” gauge group, of gauge transformations which are the identity at z. The

quotient G/Gz is isomorphic to SU(2), and Aflat/Gz is naturally an SO(3) bundle over Rg,n =

Aflat/G. Given a connection A on AdE, we write [A] for the G equivalence class, and 〈A〉z

for the equivalence class modulo Gz.

Lemma 1.4.3. The residual SO(3) action on the quotient Aflat/Gz is isomorphic as a

principal bundle to R̃g,n → Rg,n.

Proof. We define an explicit map

Aflat/Gz → R̃g,n

using the holonomy of flat connections. The point is that by modding out by the based

gauge group, we can still get from a flat connection its true holonomy representation and

not just its conjugacy class. To wit, recall we have fixed an auxillary point z0 near z and

trivialization of E outside z0, so that a flat connection A on AdE gives rise to a flat SU(2)

connection su(A) away from z0. This gives a homomorphism

holz(su(A)) : Γ̂→ SU(2).

The based gauge group preserves the holonomy up to conjugation by the local group (Gz)|z,

which is trivial by definition, and so holz(su(A)) is independent of the based gauge repre-

sentative. We therefore get a map 〈A〉z 7→ holz(su(A)) which is a fibered bijection between

the bundles, and clearly SO(3)-equivariant. �

Lemma 1.4.4. Let W be the rank three R vector bundle associated to the principal SO(3)

bundle R̃g,n → Rg,n. Then for any z ∈ Σ∗ away from the punctures, W is isomorphic to

Ead|Rg,n×{z}.
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Proof. By definition, W is the bundle R̃g,n×SO(3) so(3), and a vector in the total space

of the restriction of Ead to the Rg,n slice through z is the G orbit of a pair (t, A) where

t ∈ (AdE)z. A map Ead → W over the Rg,n slice can be defined by

G · (t, A) 7→ (holz(su(A)), t)

where t is an element of AdEz ∼= so(3). Independence on the choice of representative (t, A) is

seen by a straightforward unwinding of the definitions, which we carry out for completeness.

For g ∈ G, we must show that (holz(su(g · A)〉), gz ◦ t ◦ g−1
z ) and (holz(〈A〉z), t) are SO(3)-

equivalent. Indeed: the holonomy of su(g ·A) is that of su(A) conjugated by gz, so these two

pairs are identified by the action of the element gz ∈ SO(3). The map is certainly a linear

isomorphism on fibers. �

When the basepoint z is near an xk (say sk(z) < 3/4 for some k), we get a different

kind of based gauge group which we shall denote by Gk, consisting of gauge transformations

which are the identity near the kth puncture. Since the original gauge group G was only

allowed to take values U(1) ⊂ SU(2) near the punctures, the quotient G/Gk is isomorphic

to U(1). Hence, the quotient Aflat/Gk is a principal U(1) bundle over Rg,n. Let 〈A〉k denote

the Gk equivalence class of A. We now finally bring the discussion back to our line bundles

Vk defined at the beginning of the section.

Lemma 1.4.5. The U(1) bundle Aflat/Gk → Rg,n is isomorphic to the bundle Vk → Rg,n.

Proof. The proof is analogous to that of Lemma 1.4.3. Since x is near the puncture,

we have a chosen unitary identification Ez → C2 under which the line Fk is spanned by

(1, 0). Given a connection A, the holonomy holz(su(A)) gives an element of R̃g,n. Since

Ez is fixed by the based gauge group, this element is independent of the representative for

the orbit Gk · A. Moreovoer, because we have fixed the 1-form of A (and thus of su(A))

near the punctures, the holonomy of su(A) around a small loop around xk staying inside the

locus where t ≥ 1/2 will be precisely i. This implies that holz(su(A)) ∈ R̃g,n is in Vk. The

identification 〈A〉k 7→ holz(su(A)) is manifestly a U(1)-equivariant bijection. �
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Lemma 1.4.6. There is an isomorphism

Vk
∼= Vk

Proof. We mimic the proof of Lemma 1.4.4. For clarity of notation, we let Lk specifically

denote the complex line bundle Vk×U(1)C associated to the principal U(1)-bundle Vk ⊂ R̃g,n

over Rg,n. Here, w ∈ U(1) ⊂ C acts on C by simple multiplication, but the action on Vk

(in order to make it a free one) is by conjugating a representation by a choice of square root

diag(w1/2, w−1/2). Now, a vector in the total space of Vk is a gauge orbit of a pair (t, A)

where t ∈ Hk ⊂ (AdE)xk ⊂ End(Exk). With our fixed isomorphism Exk
∼= C2, t is just a

matrix ( 0 w
−w 0 ). Still letting z be a basepoint near xk, we define a map Vk → Lk via:

G · (( 0 w
−w 0 ) , A) 7→ (holz(su(A)), w)

Let us prove the independence on gauge representative. Suppose g ∈ G, and let gz = ( v 0
0 v−1 )

for a unit length v ∈ C. Then we have:

holz (su(g · A)) =
(
v 0
0 v−1

)
· holz(su(A)) ·

(
v 0
0 v−1

)−1

and:
(
v 0
0 v−1

)
( 0 w
−w 0 )

(
v 0
0 v−1

)−1
=
(

0 v2w
−v−2w 0

)
.

The pair ((
v 0
0 v−1

)
· holz(su(A)) ·

(
v 0
0 v−1

)−1
, v2w

)
is equivalent to (holz(su(A)), b) under the action of v2 ∈ U(1). This shows independence of

the representative, and the resulting map is certainly a linear isomorphism. �

Corollary 1.4.7. We have c1(Vk) = c1(Vk) in H2(Rg,n;Q).

The upshot of this is that we may now use the D±k,l’s to study the cohomology ring of

Rg,n: we know that their first Chern classes of the Vk’s are Poincaré dual to a pair of D±k,l’s,

and we also know that these classes are part of a natural generating set for the cohomology.

What remains is to determine the relations they satisfy.
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1.4.3. Action of the Mapping Class Group and Flips. When analyzing the D±k,l’s,

it will be convenient to exploit the considerable symmetry inRg,n arising from the symmetries

of Σ∗.

Action of the Mapping Class Group. On the space of connections on E → Σ∗ there

is a (left) action of the basepoint preserving mapping class group Mod∗g,n by the operation

of pullback. Let us make this precise. Fix a basepoint z ∈ Σ and for each φ ∈ Modg,n, fix

representative f : Σ∗ → Σ∗ for φ with f(z) = z and with the property that on the coordinate

cylinders Uk ∼= (0, 1)×S1 near each puncture, f agrees with the coordinates. In other words,

if f maps the kth puncture to the jth, then it gives a diffeomorphism Uk to Uj which is just

(sk, θk) 7→ (sj, θj + ξ) for some constant ξ. In addition, fix a fiberwise isometry F : E → E

covering f which is the identity at z, and let F̂ : AdE → AdE denote the induced isometry.

Given a connection A ∈ A, we define a new connection M̃φ(A) by setting, for a local section

t of AdE and tangent vector X ∈ TxΣ∗:

(1.4.2) dM̃φ(A)(t) ·X = F̂ (dA(F̂−1 ◦ t ◦ f) · df(X))

This complicated looking formula is exactly what is required so that a section t is Mφ(A)-flat

if and only if F̂ ◦ t ◦ f−1 is A-flat. We see that M̃φ gives a map on A which preserves the set

of flat connections. Now, if g is a gauge transformation, then t is M̃φ(g · A)-flat if and only

if Adg ◦ F̂ ◦ t ◦ f−1 is A-flat, if and only if (F̂−1 ◦Adg ◦ F̂ ) ◦ t is M̃φ(A)-flat. Moreover, it is

clear that

(F̂−1 ◦ Adg ◦ F̂ ) = Ad(F−1 ◦ g ◦ F )

and thus

M̃φ(g · A) = (F−1 ◦ g ◦ F ) · M̃φ(A)

This shows that M̃φ preserves gauge equivalence classes. Hence, M̃φ descends to a diffeomor-

phism Mφ on Rg,n. One can check that although the map M̃φ on A itself may depend very

much on the choices made (for example, f and F ), these choices do not affect the holonomy

of a flat connection and so Mφ depends only the mapping class φ. Indeed, the holonomy of
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Mφ(A) around a loop γ based at z is clearly just the holonomy of A around the loop f(γ),

which is certainly invariant under the choice of f for φ and completely independent of F .

We therefore get an action of the mapping class group Mod∗g,n on Rg,n. Another way to see

this action is simply by looking at the action of Mod∗g,n on the Z/2 extension Γ̂ of π1(Σ∗):

precomposing representations by this action induces an one on R̃g,n (which lifts the action

from Rg,n).

Inside of Mod∗g,n, there is a copy of the braid group Bn on n strands arising from those

diffeomorphisms which are supported on a small disk containing the punctures. There is

a natural surjective homomorphism τ : Bn → Sn where Sn is the symmetric group on n

elements given by observing how a mapping class permutes the punctures.

Lemma 1.4.8. Let φ ∈ Bn ⊂ Modg,n, and set σ = τ(φ). Then Mφ(D±σ(k),σ(l)) = D±k,l, and

M∗
φ(Vσ(k)) ∼= Vk.

Proof. The first statement is straightforward. If φ is a mapping class carrying neigh-

borhoods of xk and xl to those of xσ(k) and xσ(l) respectively, then the holonomies of the

connection Mφ(A) around xk and xl are just those of A around xσ(k) and xσ(l). Hence, Mφ

carries connections with equal or antipodal holonomies around xσ(k) and xσ(l) to those with

equal or antipodal connections around xk to xl, respectively.

For the second statement about Vk, let us make use of an explicit presentation for Bn.

It is well known that Bn is generated by n− 1 elementary braids b1, . . . , bn−1 subject to the

relation bibi+1bi = bi+1bibi+1 for each i, and where bi and bj commute for |i− j| ≥ 2. The

action of Bn on π1(Σ∗) is given by

bi(dk) =


dk, if k 6= i, i+ 1

di+1, if k = i

d−1
i+1didi+1, if k = i+ 1

,

and Bn fixes the aj’s. The lemma will be proved if we can show it is true when φ arises from

an elementary braid bi, since these generate the action. Since τ(bi) is just the transposition
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(i i + 1), we need to show that M∗
φ(Vi+1) and Vi are isomorphic. Clearly, the action of Mφ

on R̃g,n maps the subset Vi+1 to Vi (since ρ ◦ bi(di) = ρ(di+1) = i). In fact, it is easy to check

that this map is equivariant with respect to the action of U(1) by conjugation. This proves

directly that the pullback of Vi+1 by the action of bi on the base is isomorphic to Vi as a

U(1) principal bundle, completing the proof. �

Flips. There is an additional set of symmetries in Rg,n which we call “flips”. For any subset

J ⊂ {1, . . . , n} of even cardinality, we get an involution on R̃g,n, denoted by M̃J :

M̃J(S, T1, . . . , Tn) = (S, ε1T1, . . . , εnTn)

where εk takes the value -1 if k ∈ J and 1 if not. Since multiplication by −1 commutes with

conjugation, this map descends to a map MJ on Rg,n. The maps M̃J and MJ are called flips.

Suppose φ ∈ Mod∗g,n is a mapping class which permutes the punctures according to a

permutation σ of the indices. Then we have

(1.4.3) Mφ ◦Mσ(J) = MJ ◦Mφ

Let us record the effect of the maps MJ on the line bundles Vk and submanifolds D±k,l

Lemma 1.4.9. We have M∗
J(Vk) ∼= V ∗k if k ∈ J , otherwise M∗

J(Vk) ∼= Vk. In addition,

MJ(D±k,l) = D±k,l if |{k, l} ∩ J | is even, and MJ(D±k,l) = D∓k,l if it is odd.

Proof. The second statement is completely obvious, so we focus on the line bundles

Vk. In the case that k /∈ J , the map M̃J simply maps Vk to itself (U(1)-equivariantly).

So, we suppose k ∈ J . As an S1 fiber bundle, M∗
J(Vk) is just M̃−1

J (Vk) by definition of

pullback, which is just the set of representations [S, T ] with Tk = −i. The map on R̃g,n

which conjugates a representation by j brings M̃−1
J (Vk) back to Vk, but this map is not U(1)-

equivariant. In fact, acting by z ∈ U(1) on M̃−1
J (Vk) is the same as acting by z on Vk, so

that these bundles are conjugates. �
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Interaction with the Symplectic Structure. The maps MJ and Mφ have the convenient

property that they are actually symplectomorphisms of the sympletic manifold (Rg,n, ω).

Proposition 1.4.10. M∗
J(ω) = M∗

φ(ω) = ω.

Proof. Let us first prove that M∗
φ(ω) = ω. Let [ρ] ∈ Rg,n, choose a connection A ∈ Aflat

with holz(su(A)) = ρ, and let B = M̃φ(A). The tangent space to the equivalence class

[ρ] ∈ Rg,n consists of equivalence classes 1-forms with values in so(AdE) which vanish on

the loci sk ≥ 1/2 near each puncture and are in the kernel of the connection operator dA.

For such a 1-form a, the pushforward 1-form a′ = (dM̃φ)A(a) is given at x ∈ Σ∗ by (letting

X ∈ TxΣ∗ and v ∈ Ex):

a′x(X) · v = F̂x
−1
(
af(x)(df(X)) · F̂x(v)

)
Despite this complicated-looking formula, given two such 1-forms a, b, it is not hard to see

that their pushforwards satisfy Tr(a′ ∧ b′) = f ∗Tr(a ∧ b), since the map F̂ preserves the

bilinear form Tr on so(AdE). Hence:

M∗
φ(ω) ([a] ∧ [b]) =

1

4π2

∫
Σ

Tr (a′ ∧ b′)

=
1

4π2

∫
Σ

f ∗ (Tr (a ∧ b)) =
1

4π2

∫
Σ

Tr (a ∧ b) = ω ([a] ∧ [b]) .

This proves that elements of Modg,n preserve ω.

As for the map MJ , we will need to lift this diffeomorphism to one on Aflat where

the definition of ω originates; we need an operation on connections A which negate the

holonomies of su(A) around xk for k ∈ J . The idea is that if A′ is a connection with

holz(su(A′)) = MJ(holz(su(A))), then A and A′ will not be guage equivalent with respect to

G but will be gauge equivalent with respect to the full gauge group Ĝ of SO(3) automorphisms

of AdE over Σ∗ \{z0}, not necessarily arising from an SU(2) automorphism of E. The group

G is naturally a subgroup of Ĝ of index |H1(Σ;Z/2)|. Still using our trivialization of E

outside the auxillary point z0, let uJ be an SO(3) automorphism of AdE over Σ∗ \ {z0} such
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that with respect to this trivialization, uJ gives a function Σ∗ \{z0} → SO(3) with g(z) = Id

for whom the induced homomorphism uJ∗ : Γ̂→ π1(SO(3), Id) ∼= Z/2 satisfies:

• uJ∗(aj) = 0, for 1 ≤ j ≤ 2g.

• uJ∗(dk) = 1 for k ∈ J , and 0 for k /∈ J .

• uJ∗(ζ) = 0, where ζ is the central order two generator.

Such a uJ can be shown to exist using a homotopy equivalence of Σ∗ \ {z0} with a wedge of

circles. Moreover, we can arrange uJ to be the identity near the puncture xk for k /∈ J , and

for k ∈ J , the explicit function:

(1.4.4) uJ(sk, θk) =
(

cos θk 0 − sin θk
0 1 0

sin θk 0 cos θk

)
= Ad

(
0 eiθk/2

−e−iθk/2 0

)
.

Even though the matrix
(

0 eiθk/2

−e−iθk/2 0

)
is not well defined on Uk \{xk}, the expression does

give an adjoint which is single-valued. Near xk for k ∈ J , if a is the fixed connection 1-form

of A, the 1-form of uJ · A is

AduJ (a) + uJd(u−1
J ) = ad

[
1
4

(
0 eiθk/2

−e−iθk/2 0

)
( i 0

0 −i )
(

0 −eiθk/2
e−iθk/2 0

)
+1

2

(
0 eiθk/2

−e−iθk/2 0

)(
0 ieiθk/2

ie−iθk/2 0

)]
= ad

[
1
4

( −i 0
0 i ) + 1

2
( i 0

0 −i )
]

= 1
4
ad ( i 0

0 −i ) = a

We see that acting by uJ preserves A near the punctures and so gives a map on A, which

certainly preserves the flat locus and descends to a function on G equivalence classes. The

holonomy of su(uJ ·A) around the loop dk will clearly be that of su(A) for k /∈ J . Moreover,

since uJ is just an SO(3) gauge transformation with uJ(z) = Id, the SO(3) holonomy of

uJ · A based at z is exactly that of A. Suppose if k ∈ J and let s(θk) denote a section

[0, 2π] → E over the loop dk that is su(A)-parallel. Along dk : [0, 2π] → Σ∗, with respect

to the trivialization of E, uJ is AdvJ for some vJ : [0, 2π] → SU(2). Since uJ does not

extend across the kth puncture for k ∈ J , it must be the case that the lift vJ takes the value

vJ(2π) = −1 instead of 1. Hence, the holonomy of su(uJ · A) around dk must be −1 times

that of su(A). This shows that uJ lifts the map MJ to Aflat. Because uJ is really just a
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gauge transformation, it certainly preserves the closed 2-form ω̃ on Aflat. We conclude that

MJ preserves ω as desired. �

Interaction with the Universal Bundle. There is one last result on the effect of flips

and mapping classes we will need when we begin working with cohomology classes.

Proposition 1.4.11. For a mapping class φ ∈ Modg,n, let f be the chosen representative,

and let σ be the corresponding permutation of the punctures. Then as bundles on Rg,n × Σ,

we have

(i) (Mφ × f−1)∗(Ead) ∼= Ead.

(ii) M∗
φ(Vk) ∼= Vσ(k).

For J ⊂ {1, . . . , n} with |J | even, we also have

(iii) (MJ × Id)∗(Ead|Rg,n×Σ∗) ∼= Ead|Rg,n×Σ∗

(iv) M∗
J(Vk) ∼=


Vk, if k /∈ J

V∗k, if k ∈ J

Proof. Recall that given the mapping class φ we have chosen a diffeomorphism represen-

tative f with controlled behavior near the punctures, and lifting isomorphism F̂ : AdE →

AdE. To prove (i), we will construct a fiberwise isomorphism of Ead to itself covering

Mφ× f−1. A point in the total space of Ead is a G-equivalence class (t, A, x) with t ∈ AdEx.

We define the map via:

(
(t, A, x)

)
7→
(
F̂x−1(t), M̃φ(A), f−1(x)

)
.

To show that this is independent of the choice of representative (t, A, x), let g ∈ G. A

different representative is g · (t, A, x) = (gx ◦ t ◦ g−1
x , g · A, x), which gets sent to

(1.4.5)
(
F̂x
−1(gx ◦ t ◦ g−1

x ),Mφ(g · A), f−1(x)
)
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Since Mφ(g ·A) = (F−1 ◦ g ◦ F ) ·Mφ(A), it is clear that acting by the gauge transformation

F−1 ◦ g ◦ F on
(
F̂x
−1(t), M̃φ(A), f−1(x)

)
gives exactly the output (1.4.5), proving independence of gauge representative. Hence, the

recipe (1.4.5) is well defined on equivalence classes and gives the desired isomorphism of bun-

dles. The second isomorphism (ii) of line bundles follows by an entirely analogous argument.

For (iii), we recall from the proof of Proposition 1.4.10 that there is an SO(3) gauge trans-

formation uJ lifting MJ to the space of flat connections. We define a fiberwise isomorphism

from Ead to itself covering MJ × Id via:

(1.4.6) (t, A, x) 7→ ((uJ)x · t, uJ · A, x).

It is exactly because uJ does not extend across the puncture that we cannot extend this map

to one on Ead over all of Σ. To see independence on gauge representative, for g ∈ G the

different representative (gx ◦ t ◦ g−1
x , g · A, x) is sent to:

(
(uJ)x(gx ◦ t ◦ g−1

x ), uJ · (g · A), x
)

= (uJ ◦ Adg ◦ u−1
J ) · ((uJ)x(t), uJ · A, x) .

It remains to show that uJ◦Adg◦u−1
J = Adg′ for a gauge tranformation g′ ∈ G. A determinant

1 automorphism g′ of E satisfying this equation will certainly exist and be unique up to sign

but it remains to check that g′ is a constant diagonal element of SU(2) near a puncture.

This is obvious when k /∈ J . Near the kth puncture for k ∈ J , we have:

uJ ◦ Adg ◦ u−1
J = Ad

(
0 eiθk/2

−e−iθk/2 0

)
◦ Ad ( w 0

0 w ) ◦ Ad
(

0 −eiθk/2
e−iθk/2 0

)
= Ad ( w 0

0 w )

We prove the final isomorphism (iv) in the case k ∈ J . Let h ∈ Hk ⊂ AdEx so that

h = ad ( 0 −v
v 0 ) for v ∈ C. We define a fiberwise bijection Vk → Vk covering MJ onRg,n×{xk}

via:

(1.4.7) (ad ( 0 −v
v 0 ) , A) 7→ (ad ( 0 −v

v 0 ) , uJ · A).
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Suppose gxk = diag(w,w). The different representative

g · (h,A) = (ad [( w 0
0 w ) ( 0 −v

v 0 ) ( w 0
0 w )] , g · A) =

(
ad
(

0 −w2v
w2v 0

)
, g · A

)
is sent to

(
ad
(

0 −w2v
w2v 0

)
, uJ · (g · A)

)
. It is not hard to check that this is the same as acting

by uJ ◦ Adg ◦ u−1
J on (ad ( 0 −v

v 0 ) , uJ · A). The proof is completed by noting that (1.4.7) is

complex conjugate-linear, and so gives a fiberwise isomorphism Vk → V∗k covering MJ . �

Proposition 1.4.12. In Corollary 1.4.2 above, we have |r| = |s| = 1.

Proof. Let us first treat the case n ≥ 5. By Lemma 1.4.8, we can assume without

loss of generality that k = 3 and l = 4. We will use an auxillary submanifold to cut down

the moduli space so that the necessary computation may be performed on a copy of the

two-sphere. Let

S ⊂ Rg,n

denote the subset of points [S, T ] where the Sj’s are all 1. There is an obvious identification

S ↔ R0,n which carries D±k,l ∩ S ⊂ Rg,n to D±k,l ⊂ R0,n and for which the pullback of Vk

is just Vk. Hence, we can assume without a loss of generality that g = 0. Define another

submanifold Z ⊂ R0,n by:

Z = D+
4,5 ∩D+

5,6 ∩ · · · ∩D+
n−1,n

As a general rule, all intersections of the above type will turn out to be transverse. An

outline of a proof of transversality in this case would go as follows. Observe first that issues

of transversality can be dealt with upstairs in R̃0,n with the preimages of the D+
k,l’s. Next,

argue that show that any 2-way intersection is transverse by reducing to the case of n = 5.

Then, note that everytime another pair is added to the intersection, we are really studying

an intersection in representation variety for 2 fewer points. The general case then follows by

induction.

A point in Z is an equivalence class [T1, T2, T3, T4, . . . , T4], where T4 appears n−3 = 2m−2

(and so an even number of) times. Hence, we must have T1T2T3 = (−1)m. Up to conjugation,

the representation is [(−1)m+1j,k, i, T4, . . . , T4], which defines T4 uniquely. This gives both a
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map f : Z 7→ Ci, as well as a trivializing section of V3|Z . To compute r and s, we will study

this restriction V3|Z near the intersections D±3,4 ∩ Z. These intersections are transverse, and

each is easily seen to be isomorphic to a representation variety for three parabolic points: a

single point. Denote these intersection points by ρ±.

In order to compute the values of r and s, we need to compute the winding number of

the trivialization τ3,4 of V3|Z\{ρ±} coming from Lemma 1.4.1 and D+
3,4, with respect to the full

trivialization τ ′ over all of Z. We will study the trivializations along the loop γ : S1 → Ci

defined by

γ(eiθ) = [(−1)m+1j,k, i, eiθj, . . . , eiθj]

where the multiplication occurs in the unit quaternions. For a point γ(eiθ) in the loop, the

trivialization τ3,4 requires us to find a number in the complex circle S1
i by which we may

conjugate eiθ · j so that it just becomes j. This number is just eiθ/2 (or its opposite). Since

the trivialization τ ′ is just given by

τ ′
(
[(−1)m+1j,k, i, eiθj]

)
=
(
(−1)m+1j,k, i, eiθj

)
,

we see that the difference between the two trivialization is conjugating by eiθ/2. Recall that

the U(1) structure of V3 is by the quotient of S1
i by {±1}, so the “clutching” function is

really just eiθ 7→ eiθ and so is of degree ±1. There is an ambiguity in signs arising from the

lack of orientation chosen for the D+
l,k’s and general disregard for sign conventions regarding

the definition and computation of the first Chern class. This completes the proof in the case

n ≥ 5.

If n = 3, consider the embedding ι : Rg,3 ↪→ Rg,5 given by

[S, T1, T2, T3] 7→ [S, T1, T2, T3,−T3, T3]

We may assume without loss of generality that k, l = 1, 2. It is straightforward to see that

V1(g, 3) ∼= ι∗V1(g, 5). Since D±k,l(g, 3) = ι−1(D±k,l(g, 5)), the result follows from the n = 5

case. �
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1.5. Relations in the Cohomology Ring

We know from Theorem 1.2.7 that the cohomology ring of Rg,n comes with a generating

set of classes of degrees 2, 3, and 4, arising from a universal bundle pair (Ead, {Vk}) on

Rg,n × Σ. In order to understand the relations between these classes, it is necessary to

describe them more concretely. For example, by the definition of slant product / the degree

four class p1(Ead)/[pt] is just p1(Ead|Rg,n×{pt}). This, we know by Lemma 1.4.4, is just

p1(W ), where again W is the rank three R vector bundle associated to the SO(3) bundle

R̃g,n → Rg,n.

In §1.4.2 we identified the classes c1(Vk) ∈ H2(Rg,n) with the classes c1(Vk), and we

found explicit submanifolds representating their Poincaré duals. These submanifolds have

the property that intersections between two of them (with one common index) behave like

representation variety for two fewer marked points. The key to exploiting this property is

identifying the restrictions of the other cohomology classes to these intersections with the

corresponding classes in the lower representation varieties. This will give information about

how the pairings of these other classes with the c1(Vk)’s behave. In what follows, for a

homology class h ∈ H∗(Σ), we will use the simple shorthand [h] to denote p1(Ead)/[h], so

that, for example, [pt] = p1(W ).

1.5.1. The Class of the Symplectic Structure. There is another natural cohomol-

ogy class on Rg,n: the degree two class [ω] of the symplectic form. By Corollary 1.3.8 and

Theorem 1.2.7, we know that H2(Rg,n;Q) is spanned by the classes [Σ] and c1(V1), . . . , c1(Vn).

Hence, [ω] must be a linear combination of these:

(1.5.1) [ω] = A[Σ] +
n∑
k=1

Dkc1(Vk)

By symmetry the Dk’s must all be equal. We claim that A 6= 0. To see this, suppose on the

contrary that [ω] = D
∑n

k=1 c1(Vk). We average M∗
J applied to this equation over all even J .

The number of even J containing an index is the same as the number not containing it and

M∗
J(c1(Vk)) = ±c1(Vk) depending on whether k ∈ J , so the right hand side of the averaged
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equation vanishes. However M∗
J([ω]) = [ω], so we arrive at [ω] = 0. But [ω] cannot be zero

as it is the class of a symplectic form on a compact manifold. We conclude that A 6= 0, and

we have proved:

Proposition 1.5.1. The n+ 1 classes [ω], c1(V1), . . . , c1(Vn) are a basis for H2(Rg,n).

The class [ω] is more convenient than [Σ] for us because it behaves well under the sym-

metries, including flips. What we lack is a geometric description for the Poincaré dual of

[ω]. Instead, for us the important data concerning this class will be the pairing of its top

power with the fundamental class of the moduli space, called the symplectic volume. The

paper [12] gives a formula for this top pairing in the case of arbitrary rational weights tk. We

note that in that paper, their weights in (0, 1) correspond to twice the value of our weights

in (0, 1/2). We have rewritten their formula to agree with our conventions.

Theorem 1.5.2. ( [12], Prop. 4.12, and eq. (5.3)) The pairing of the top power of [ω]

with the moduli space is given by:

(1.5.2) 〈[ω]3g−3+n,Rg,n(t)〉 =
(3g + n− 3)!

2g−2π2g−2+n

∞∑
N=1

1

N2g−2+n

n∏
k=1

sin(2πNtk)

Corollary 1.5.3. For the case n ≥ 1 and odd and t = (1/4, . . . , 1/4), we have

(1.5.3) 〈[ω]3g+n−3,Rg,n(t)〉 =
(3g + n− 3)!

23g+n−3g!
|E2g+n−3|

where Ej is the jth Euler number defined to be the coefficient of xj/j! in the Taylor series

of sech(x) = 1/ cosh(x).

Proof. We plug in the weight tk = 1/4 in (1.5.2) and simplify. For these values of tk,

the even N terms in the sum in (1.5.2) vanish, are we are left with:

(1.5.4) 〈[ω]3g−3+n,Rg,n(t)〉 =
(3g + n− 3)!

2g−2π2g−2+n

∞∑
M=1

(−1)M

(2M + 1)2g−2+n

The sum now appearing consists of alternating negative powers of the odd integers, which is

a well documented function of the exponent 2g− 2 + n known as a the Dirichlet β function.
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It can be computed exactly, and one has:

β(2l + 1) =
(−1)lπ2l+1E2l

22l+2(2l)!

Plugging β(2g − 2 + n) in for the sum in (1.5.4) gives the desired formula. �

1.5.2. Inductive Properties of the Moduli Space. In order to get information

about pairings with the classes c1(Vk), let us further analyze the D±k,l’s and their inter-

sections. Given a pair (k, l) of indices, we can construct a map to a smaller representation

variety D±k,l → Rg,n−2 in the following way. Let b ∈ Bn be such that the correpsonding

permutation carries (n− 1, n) to (k, l). Then b gives a diffeomorphism from D±k,l to D±n−1,n.

There is then a map D±n−1,n → Rg,n−2 given by:

(1.5.5) [S, T1, . . . , Tn−2, Tn−1,±Tn−1] 7→ [S, T1, . . . , Tn−3,∓Tn−2]

Indeed, Tn · Tn = −1. This map is clearly surjective, and its fiber is just the freedom is

choosing Tn: it is a copy of the sphere Ci. Hence, by composing it with b, we see that D±k,l

is a Ci fiber bundle over Rg,n−2.

Remark 1.5.4. This situation is to be contrasted with that in [32], where all of the para-

bolic weights tk are distinct. There, the analogue of D±k,l is also a (connected component of a)

subspace where Tk and Tl commute but admits an isomorphism to an actual representation

variety for one fewer parabolic point, where the parabolic weights tk and tl are replaced by

the single weight tk ± tl. Such a representation variety for us does not exist (smoothly), of

course.

Consider now an intersection D+
j,k ∩ D

+
k,l with j, k, l distinct. Rechoose b so that its

permutation carries (n − 2, n − 1, n) to (j, k, l), so b gives a diffeomorphism D+
j,k ∩ D

+
k,l to

D+
n−2,n−1∩D+

n−1,n. There is then a map from D+
n−2,n−1∩D+

n−1,n to Rg,n−2 given by restricting

the map (1.5.5):

(1.5.6) [S, T1, . . . , Tn−2, Tn−2, Tn−2] 7→ [S, T1, . . . , Tn−3,−Tn−2]
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which is a diffeomorphism. Composed with the map induced by b, we get a diffeomorphism

of D+
j,k ∩D

+
k,l with Rg,n−2. There are many such maps as a result of, for example, the choice

of the braid b, but they all differ by postcomposing with the maps from flips and mapping

classes on Rg,n−2. There are similar isomorphisms for intersections D±j,k ∩ D
±
k,l. Moreover,

the inverse of (1.5.6) gives a section of the 2-sphere fiber bundle (1.5.5). It is also easy to

see that 1.5.6 carries D±a,b ∩ D
+
n−2,n−1 ∩ D+

n−1,n to the corresponding D±a,b inside R̃g,n−2, for

a, b ≤ n − 3, and to D∓a,b if one of a, b is n − 2, n − 1, or n. The moral is that successive

intersections of the D±k,l’s behave like representation varieties for fewer parabolic points. This

recursive property is the key to understanding the cohomology of Rg,n.

Proposition 1.5.5. Let ι : D±k,l → Rg,n be the inclusion, and π : D±k,l → Rg,n−2 be a map

arising from from formula (1.5.5) and the discussion preceding it, and let τ : {1, . . . , n−2} ↪→

{1, . . . , n} denote the corresponding inclusion of index sets. If Ead(g, n) denotes the universal

bundle on Rg,n × Σ, then we have:

• Ead(g, n)|D±k,l×Σ
∼= (π × id)∗Ead(g, n− 2)

• Vτ(k)(g, n)|D±k,l×Σ
∼= (π × id)∗Vk(g, n− 2) or (π × id)∗Vk(g, n− 2)∗

Proof. As in the proof of Proposition 1.5.6, we again assume we are working with

D−n−1,n, let π be the map (1.5.7) and we use all the same notation from there. Let Âν denote

the space of flat connections on Σ̂∗ arising from the operation of extending connections

in V by the product connection; it is the space of flat connections on a surface with two

fewer punctures whose 1-forms with respect to the induced trivialization on Σ̂∗ \ {z0} are

zero on a disk U . Denote the composition Aν → V → Âν by using a hat. Now, since

Aν/Gν = Aflat/G, the bundles Ead(g, n) and Vk(g, n) can also be constructed as the quotient

of the pullback of AdE and Hk to Aν×Σ and Aν×{xk}. We claim that a fiberwise isometry

Ead(g, n)→ Ead(g, n− 2) covering π × id may be defined by the formula:

(t, A, x) 7→ (t, Â, x)
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for A ∈ Aν and t ∈ AdEx. Note that the underlying compact surface Σ and bundle E for

any number of punctures is the same, so we are free to repeat “x” and “t” on the right hand

side. It is obvious that this is well-defined: if g ∈ Gν and ĝ is the tranformation g replaced

by 1 on U , then g · (t, A, x) is sent to ĝ · (t, Â, x). This proves the first bundle isomorphism.

The second is proved via an almost identical argument. The ambiguity between the line

bundle and its dual arises from the effect of flips on the Vk’s. �

As a corollary, we see that the classes [pt] and [aj] restricted to D±k,l are all pulled back

fromRg,n−2 in the expected way. Finally, we need to study how the projection D±k,l → Rg,n−2

behaves with respect to the class [ω]. We have:

Proposition 1.5.6. Denote by ωg,n the symplectic form on Rg,n. Let π : D±k,l → Rg,n−2

be any of the natural 2-sphere fiber bundles arising from the map (1.5.5), and let ι : D±k,l ↪→

Rg,n be the inclusion. Then we have ι∗(ωg,n) = π∗(ωg,n−2).

Proof. We illustrate the Proposition in the case D−k,l, as the other case follows by

invoking Lemma 1.4.9. Without loss of generality, we may take k, l = n− 1, n, and π is the

map:

(1.5.7) [S, T1, . . . , Tn−2, Tn−1,−Tn−1] 7→ [S, T1, . . . , Tn−2].

Any of the other natural choices for π differ by postcomposing with the known symplecto-

morphisms of Rg,n−2. We need to realize this map as an operation on flat connections in

A in order to understand its interaction with the symplectic form. It will be convenient to

work with SU(2)-connections, so fix a basepoint z ∈ Σ∗ away from the punctures and recall

our trivialization of E away from the auxillary point z0. Connections are now the same as

su(2)-valued 1-forms on Σ∗∗ = Σ∗ \{z0}, and these 1-forms are fixed near the punctures. Let

U ∈ Σ be a disk containing the neighborhoods of only the punctures xn−1, xn and such that

z ∈ ∂U and z0 /∈ U , let Σ̂∗ denote the surface obtained by filling in these two punctures, and

set V = Σ \U . Let A−n−1,n denote the space of connections A for whom [A] ∈ D−n−1,n. Every

connection in A−n−1,n has SU(2) holonomy around ∂U equal to the product of two antipodal
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elements of SU(2), which is just the identity. Since π1(SU(2)) = 1, for any A ∈ A−n−1,n we

can find a gauge equivalent A′ such that the 1-form of su(A′) vanishes on a fixed annular

neighborhood ν of ∂U . Let Aν denote the subset of such (flat) connections; this subset

is acted on by the subgroup Gν of gauge transformations which are constant on ν and the

quotient is all of D−n−1,n.

Let U ,V denote the spaces of flat connections on U, V respectively, with the desired

behavior near the punctures and whose 1-forms vanish near the boundary. Restriction of

connections gives a homeomorphism η̃ : Aν → U × V . If ω̃U and ω̃V denote the 2-forms on

U and V coming from restricting the domain of integration in the definition (1.2.4) of ω̃ on

Aν ⊂ A, then splitting the domain of integration implies that

(1.5.8) η̃∗(ω̃U ⊕ ω̃V) = ω̃

Letting G1
ν ⊂ Gν denote the subgroup of g with g|ν = 1, the map η̃, the 2-forms in equation

(1.5.8), and the relationship 1.5.8 descend to

η̃′ : Aν/G1
ν → U/G1

ν × V/G1
ν ,

2-forms ω̃′V , ω̃′U , and ω̃′ and the equation η̃′∗(ω̃′U ⊕ ω̃′V) = ω̃′. Now, given A′ ∈ V and A′′ ∈ U ,

there are corresponding connections Â′ and Â′′ on Σ̂∗ and Û , the sphere gotten by capping

off U with another disk, obtained by extending via the trivial connection. This identifies

(using the ideas of Lemma 1.4.3) the factor U/G1
ν with the space

R̃U = {Tn−1, Tn ∈ Ci : Tn−1Tn = 1} ∼= Ci

and the factor V/G1
ν with R̃g,n−2. The space Aν/G1

ν is clearly just the preimage D̃−n−1,n

in R̃g,n. Implicitly using all these identifications, it is straightforward to check that ω̃′V

corresponds to the closed 2-form ω̃′g,n−2 on R̃g,n−2 which is the pullback of ωg,n−2, and ω̃′

is the pullback of ωg,n on Rg,n. We have achieved now the isomorphism of manifolds with

2-forms:

η̃′ : (D̃−n−1,n, ω̃
′
g,n) ∼= (Ci, ω̃

′
U)× (R̃g,n−2, ω̃

′
g,n−2)
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The quotient Gν/G1
ν is isomorphic to SU(2) and the residual action of this group on R̃g,n−2

is projectively free. The quotient on both sides (where the action on the right hand side is

the simultaneous one) gives the Ci-fiber bundle π. We are done then if we can show that ω̃′U

is actually 0. The key point is that all the connections in U are actually gauge equivalent;

the quotient of Ci by SU(2) is a single point. Any two tangent vectors in TA′′U then differ

by (dg)g−1 for some gauge transformation g, which is in the annihilator of the linear form

ω̃′U (see the discussion on the symplectic structure in §1.2.1). Hence, ω̃′U must vanish. �

Corollary 1.5.7. The restriction of the map π in 1.5.6 to the intersection Dε1
j,k ∩D

ε2
k,l

is a symplectomorphism.

Proof. This restriction is a diffeomorphism by the discussion preceding Proposition

1.4.12, and its inverse gives a section of the 2-sphere bundle π. �

Up until now, we have been entirely focused on the line bundles Vk and degree two

classes c1(Vk). We now consider the degree three classes [aj] for 1 ≤ j ≤ 2g. Their role in

the cohomology ring has been well understood for over twenty years, as we now review. As

shown in [31], it is convenient to introduce the class γj = 1
16

[a2j−1][a2j] (our normalization

here will be justified later on) for 1 ≤ j ≤ g. For each j, there is a natural embedding

ιj : Rg−1,n ↪→ Rg,n given by

[S, T ] 7→ [S1, . . . , S2j−2, 1, 1, S2j−1, . . . , S2g−2, T ]

whose image is exactly the collection of representations [S, T ] for which S2j−1 = S2j = 1.

In [31], it is proved that the submanifold ιj(Rg−1,n) is Poincaré dual to γj (at least in the case

n = 0, and the proof adapts readily to our situation). It is straightforward to check using

the methods of the current paper that ιj respects the symplectic forms, and the universal

bundle pair over Rg−1,n is pulled back via ιj. This fact shows that the cohomology ring also

has an inductive structure in the genus g. Putting everything together, we have:

Proposition 1.5.8. The product class γj1 · · · γjrc1(Vk1) · · · c1(Vks) is a constant multiple

of the Poincaré dual to a collection of 2s submanifolds of Rg,n each symplectomorphic to a
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copy of Rg−r,n−2s by a map under which the classes [pt], [aj], and c1(Vk) (where j 6= 2ji, 2ji−1

and k 6= ki for any i) are all pulled back accordingly.

Proof. This is all a straightforward synthesis of facts proved up to this point. The

result follows by induction after proving it in the case r, s = 0, 1 or 1, 0. The case when the

class is c1(Vk) for some k follows from Propositions 1.5.5 and 1.5.6. The case of the class γj

follows from [31] and the discussion preceding the proposition. �

Corollary 1.5.9. Suppose f(a, b) is a polynomial such that f([ω], [pt]) ∈ H∗(Rg,n;Q)

equals the zero class. Then the polynomial

γj1 · · · γjrc1(Vk1) · · · c1(Vks) · f([ω], [pt]) = 0

equals the zero class in the ring H∗(Rg+r,n+2s;Q).

1.5.3. The Four Dimensional Class of a Point. We would like to record some

properties of the degree four class [pt] and the degree three classes [aj]. We first prove an

easy equation relating [pt] to the degree two classes c1(Vk).

Lemma 1.5.10. For any k, we have [pt] = −c1(Vk)
2

Proof. We will prove this by studying a corresponding isomorphism of universal bundles

on Rg,n. By definition [pt] = p1(Ead|Rg,n×{pt}) where pt ∈ Σ. Since the isomorphism

type of Ead|Rg,n×{pt} is independent of the choice of pt as Rg,n is connected, we are free to

choose pt = xk for any k. Write Ead
k → Rg,n for the restriction of Ead in this case. By

definition of Vk, it is clear that Ead
k is isomorphic as a real vector bundle to R⊕Vk. Hence,

p1(Ead
k ) = −c1(Vk)

2. �

Remark 1.5.11. One can prove Lemma 1.5.10 directly by studying the associated vector

bundle constructions of W and Vk from PU(2) and U(1) bundles. Let Lk again denote the

line bundle Vk ×U(1) C and W the associated bundle R̃g,n×SO(3) R3. Then for (ρ, w) in Vk, a
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map Lk ⊕ R→ W is given by

(
(ρ, w), r

)
7→

ρ,
 r w

−w −r


Lemma 1.5.12. The class [pt] is Poincaré dual to a union of four, disjoint, codimension

four submanifolds D1, D2, D3, and D4 each with a symplectomorphism τκ to Rg,n−2 for

κ = 1, 2, 3, 4. Letting ικ : Dκ → Rg,n denote the inclusions, these symplectomorphisms also

satisfy τ ∗κ [pt] = ι∗κ[pt] and τ ∗κ [aj] = ι∗κ[aj] for 1 ≤ j ≤ 2g.

Proof. By Lemma 1.5.10, we have [pt] = −c1(Vk)
2 for all k. By Proposition 1.4.12, we

see that

PD([pt]) = ([D+
12] + [D−12]) ∩ ([D+

23] + [D−23])

for some choice of orientations for these submanifolds. Each of the four terms D±12 ∩ D±23

in the expansion is symplectomorphic to Rg,n−2 by 1.5.7, through a map under which the

universal bundle Ead pulls back to the restriction. The classes [pt] and [ak] therefore also

pull back, being defined through the universal bundle. �

Corollary 1.5.13. Suppose f is a polynomial in the [aj]’s, c1(Vk)’s, [ω], and [pt] which

is a relation in H∗(Rg,n;Q). Then the polynomial f × [pt]s is a relation in H∗(Rg,n+2s;Q)

1.5.4. The Classes [Σ] and [ω]. We now make a brief digression on the relationship

between the class [Σ] and [ω]. It will be convenient later to nail down precisely the linear

combination (1.5.1). What we need is to describe the action of the flips MJ on the class [Σ].

The issue is that [Σ] is not preserved; by Proposition 1.4.11, the pullback of the universal

bundle Ead by MJ is only an isomorphism away from the xk’s. Fix an even J , and suppose

k ∈ J . Recall that we have small disk neighborhoods Uk with polar coordinate (sk, θk) around

each puncture xk and a trivialization of the U(2) bundle E. Let Σ◦ denote Σ \ ∪nl=1Ul. The

map MJ lifts to the space of flat connections via an SO(3) gauge transformation uJ , and

the map (1.4.6) is an isomorphism of Ead to (MJ × Id)∗Ead over Rg,n × Σ∗. The bundles

are also isomorphic when restricted to Rg,n × Uk. To see this, we note that the bundles are
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isomorphic when restricted to Rg,n × {x} for any point x ∈ Σ◦, and so this is also true for

x ∈ Uk. Since Rg,n × Uk contracts to Rg,n, the isomorphism is automatic. In fact, the proof

of Lemma 1.5.10 shows that the restriction of Ead to Rg,n × {xk} is isomorphic to R⊕Vk,

and so the restriction of (MJ × Id)∗Ead to Rg,n × {xk} is isomorphic to R ⊕ V∗k, which is

isomorphic to R⊕Vk as a real bundle. Hence, we can describe the new bundle (MJ×Id)∗Ead

as being obtained by cutting Ead along Rg,n×∂Uk for each k and regluing with a “clutching

function”. We can compute this function as follows: it is the composition of the following

circle of maps:

Ead

��

(MJ × Id)∗Eadoo

R⊕Vk

−1⊕Id
// R⊕V∗k

// R⊕ (MJ × Id)∗Vk

OO

The maps, beginning with the vector (t, A, θ) in Ead|x for x = (1, θk) ∈ ∂Uk, t = ad
(
s −z
z −s

)
∈

AdE|x and A a flat connection, compose to:

(
ad
(
s −z
z −s

)
, A
)
θk
7→
(
s, (ad ( 0 −z

z 0 ) , A)
)
θk
7→(

−s, (ad ( 0 −z
z 0 ) , uJ · A)

)
θk
7→ (by equation (1.4.7))

(ad ( −s −zz s ) , uJ · A)θk 7→(
ad
(

0 −eiθk/2
e−iθk/2 0

)
( −s −zz s )

(
0 eiθk/2

−e−iθk/2 0

)
, A
)
θk

=
(

ad
(

s −eiθkz
e−iθkz −s

)
, A
)
θk

(1.5.9)

We see that near xk, Ead is isomorphic to the pullback of R⊕Vk to Rg,n× Ũk for a slightly

larger disk neighborhood Ũk ⊃ Uk, and (MJ × Id)∗Ead is obtained by cutting this bundle

along Rg,n × ∂Uk and regluing R⊕Vk to itself via (s, v) 7→ (s, e−iθkv), for each k ∈ J . It is

not difficult to see that the characteristic classes of these two bundles are therefore related

by:
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Lemma 1.5.14. Upon slant product with [Σ], the first Pontryagin classes of Ead and

(MJ × Id)∗Ead are related by:

p1

(
(MJ × Id)∗Ead

)
/[Σ] = p1

(
Ead
)
/[Σ]− 2

∑
k∈J

c1(Vk)

Proof. This is standard bundle theory and unwinding the definition of the slant product.

�

We can use the lemma to determine the relationship between the cohomology classes [Σ]

and [ω]. As before, by symmetry we know [ω] = s[Σ] + t
∑n

k=1 c1(Vk) for some constants s, t.

The class ω is invariant under flips, and the lemma implies that the only linear combinations

of [Σ] and c1(Vk) which are flip-invariant are scalar multiples of [Σ] −
∑n

k=1 c1(Vk). We

conclude that

(1.5.10) [ω] = A

(
[Σ] +

n∑
k=1

c1(Vk)

)

for some nonzero constant A. In fact, from [12] we see that in our notation A = −1/4.

Define the graded commutative polynomial algebra

Ag,n := C[α, β, δ1, . . . , δn]⊗ ∧∗[ψ1, . . . , ψ2g],

where we assign α and δk degree 2, ψj degree 3, and β degree 4 (i.e. α, β, and the dk’s are

commutative and the ψj’s anti-commute with each other). We denote by Hg,n the C-algebra

H∗(Rg,n;C). We can define a map Ψ : Ag,n → Hg,n via:

α 7→ 2[ω]

β 7→ − 1
4
[pt]

ψj 7→ − 1
4
[aj]

δk 7→ 1
2
c1(Vk)
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The fractional factors in front of each generator are used to make the presentation of the

cohomology ring simpler and stem from the fact that we use the Pontryagin class of an

adjoint universal bundle, rather than the second Chern class of a standard universal bundle.

We remark that this notation gives

(1.5.11) Ψ(α) = −1
2
[Σ] +

n∑
k=1

Ψ(δk).

What we have proved so far is that Hg,n is isomorphic to the ring Ag,n/Ig,n for some

ideal of relations Ig,n = ψ−1(0), which includes the relations β− δ2
k for each k. For each g, n,

n ≥ 1, there is a natural inclusion

ι0,1g,n : Rg,n ↪→ Rg,n+2

arising from the isomorphism D−n,n+1 ∩ D+
n+1,n+2 7→ Rg,n, which by virtue of the results of

this section has the property that pulling back the images under Ψ of the generators α, β,

ψj, and δk (for k = 1, . . . , n) gives the corresponding generators for the smaller cohomology

ring. It can also be checked that δn+1 pulls back to −δn and δn+2 pulls back to δn. Let

π0,1
g,n : Ag,n+2 → Ag,n denote the corresponding ring map. Then Corollary 1.5.9 implies that

π(Ig,n) ⊂ Ig,n. More generally, there are inclusions

ιr,sg,n : Rg,n ↪→ Rg+r,n+2s

with corresponding ring maps πr,sg,n : Ag+r,n+2s → Ag,n, under which

δk 7→


(−1)k−nδn, k > n

δk, k ≤ n

, αj 7→


±0, j > 2g

αj, j ≤ 2g

and we have the inclusion πr,sg,n(Ig+r,n+2s) ⊂ Ig,n. This is a direct consequence of Corollary

1.5.9 and [28]. This encapsulates the inductive structure of the moduli spaces, and in the

case of no marked points is well known.
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Notation. From now on, we denote by a hat the image under Ψ in Hg,n of a generator

in Ag,n by a hat. For example, we have β̂ = δ̂2
k for all k.

There is an immediate relation in the cohomology ring resulting from comparing different

versions of the volume class on Rg,n. Namely, if we let 2D = dimR(Rg,n) = 6g + 2n− 6 and

set e = D mod 2 = 0, 1, then the images of α̂D and β̂bD/2cα̂e are both multiples of eachother.

We are thus interested in pairings of the form
〈
α̂rβ̂s,Rg,n

〉
for r + 2s = D. Lemma 1.5.12

allows us to compute these, once we know the symplectic volume formula (1.5.3), at least

for s ≤ m:

(1.5.12) 〈α̂rβ̂s,Rg,n〉 =
(3g + n− 2s− 3)!

(2g + n− 2s− 3)!
|E2g+n−2s−3| =

r!

(r − g)!
|Er−g| .

However, there will be relations of smaller degree involving only α̂ and β̂, which arises from

this formula and Poincaré duality. The role of Poincaré duality is in the following statement:

if f ∈ Ag,n with deg f = r and 〈Ψ(f)Ψ(f ′),Rg,n,=〉 0 for all f ′ of degree 2D − f ′, then f is

a relation in Ig,n. It also implies that there must be at least one relation of degree D+ 2, or

just over half the dimension, since the Betti numbers must be symmetric about the middle

dimension and the dimension of the degree d part of Ag,n strictly increases with d.

1.6. The Case g = 0

Recall that we have set n = 2m + 1 > 1, and we now set g = 0. In this case A0,n is

generated by α, β, and the δk’s, and D = n− 3 = 2m− 2 (in fact, β is redundant).

Proposition 1.6.1. There is a unique polynomial r0,n(α, β) in I0,n of degree 2m monic

with respect to α. It is obtained via the recursion

r0,2m+3(α, β) = α · r0,2m+1(α, β)−m2β · r0,2m−1(α, β)

r0,1(α, β) = 1, r0,3(α, β) = α

(1.6.1)

Proof. We will argue by induction. We know a relation of degree 2m must exist due

to Poincaré duality. The content of the lemma is that there is a relation involving only α

and β, that it is unique, and that there is a recursive formula in n which it satisfies. To see
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that there is a relation in α and β and that it is unique, let Wm denote the vector space of

possible polynomials r0,n(α, β) of degree 2m. Letting e denote the remainder upon dividing

m by 2, such a polynomial looks like

r0,n(α, β) = Amα
m + Am−2α

m−2β + . . .+ Aeα
eβbm/2c

so that dimWm = bm/2c+1. For each of the bm/2c choices of s = bm/2c−1, bm/2c−2, . . . , 0,

there is a monomial αm−2−2sβs of complementary degree 2m − 4. We get bm/2c linear

functionals

`s : r0,n 7→
〈
r0,nα̂

m−2−2sβ̂s,R0,n

〉
and the relation we seek will lie in the kernel of each of them. Since dimWm has one greater

dimension than this collection of functionals, a (nonzero) r0,n will certainly exist.

We can rephrase this as saying the vector (Ae, . . . , Am−2, Am) ∈ Rbm/2c+1 of coefficients is

in the kernel of the (bm/2c−1)×bm/2cmatrix (Eij) where Eij =
〈
α̂2e+2j+2iβ̂bm/2c−1−i,R0,n

〉
with i = 0, . . . , bm/2c−1 and j = 0, . . . , bm/2c. By the formula (1.5.12), we have in the case

g = 0 the very simple expression Eij = |E2e+2i+2j|. This is an example of a “Hankel” matrix,

a type of matrix which arises when studying the so-called “moment problem” in connection

with the theory of orthogonal polynomials and continued fractions (here, with the sequence

of moments |E0| , |E2| , |E4| , . . .). This theory, along with the known continued fraction

expansion for the formal generating function
∑∞

i=0 |Ei|xi, implies that the polynomial r0,n

is unique up to scale and satisfies the beautiful recurrence relation (1.6.1). We relegate the

proof of this formula to the appendix.

The polynomial r0,n is rigged to pair to 0 with each of the complementary degree mono-

mials involving just α̂ and β̂. It remains to check that this r0,n pairs to 0 with complementary

polynomials in not just α̂ and β̂ but also the δk’s. Because of the relation δ̂2
k = 4β̂, we simply

need to check that r0,n pairs to 0 with terms of the form α̂rβ̂sδ̂k1 · · · δ̂kt with r+2s+t = m−2

and the ki’s distinct. By inductive hypothesis, we have the relation r0,n−2k in the ideal I0,n−2s.

The recurrence relation implies that r0,n is also a relation in I0,n−2s. By Corollary 1.5.9 the
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product δk1 · · · δkt · r0,n is a relation in I0,n, which is enough to ensure the vanishing of all

pairings in A0,n with r0,n. �

From this, we can write down a large collection of relations which must hold in the ring

H0,n.

Corollary 1.6.2. For each J ⊂ {1, . . . , n} with |J | = s ≤ m, the polynomial

(1.6.2) RJ
0,n = r0,n−2s(α, β) ·

∏
k∈J

δk

is in the ideal of relations I0,n

Proof. Simply combine Proposition 1.6.1 and Corollary 1.5.9. �

All that remains to show is that this is a complete set of relations. For this we mimic

the approach in [29] and describe an explicit basis for H∗(R0,n), and show that any other

monomial can be expressed a linear combination of monomials in the basis and the relations

RJ
0,n. In what follows, we denote δJ =

∏
k∈J δk.

Lemma 1.6.3. Let S0,n denote the collection of monomials αaβbδJ with a + b + |J | <

m. Then any other monomial αa
′
βb
′
δJ
′

with a′ + b′ + |J ′| ≥ m can be reduced to a linear

combination of monomials in S0,n and the relations RJ
0,n and δ2

i − β.

Proof. We can certainly assume |J | < m, since δJ is a relation if |J | ≥ m. We first

treat the case J = ∅. Because the leading term (with respect to α) of R∅0,n = r0,n is αm and

all other terms are monomials in α and β with lower exponent sum, we can certainly reduce

the monomial αaβb for a + b ≥ m to a linear combination of αrβs with r + s < m. Hence,

we suppose |J | ≥ 1. Now, suppose that φ ∈ Mod0,n. If we can reduce M∗
φ(z) for a monomial

z, then we can certainly reduce z, because the collection of relations RJ
0,n is preserved by

the mapping class group action. Since the mapping class group action serves to permute the

δi’s, without a loss of generality we may prove the lemma for monomials with J = J ′ ∪ {δn}

where J ′ ⊂ {1, . . . , n− 2}.
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We argue by induction on n. Suppose the lemma is true for n and for J ⊂ {1, . . . , n+ 2}

assume that J = J ′ ∪ {δn+2} with J ′ ⊂ {1, . . . , n}. Suppose that a+ b+ |J | ≥ m+ 1. Then

a + b + |J ′| ≥ m and so by inductive hypothesis, the monomial αaβbδJ
′

may be reduced to

a linear combination of relations RK
0,n, δ2

i − β, and monomials in S0,n. Multiplying RK
0,n by

δn+2 gives the relation R
K∪{δn+2}
0,n+2 , and so multiplying this linear combination by δn+2 gives a

reduction for our monomial αaβbδJ , as desired. This completes the proof. �

Proposition 1.6.4. Along with the relations δ2
i −β, the set of relations RJ

0,n is a complete

set.

Proof. We saw in §1.3 that the Poincaré polynomial of R0,n agreed with that of the

graded algebra C[α, β, δ1, . . . , δn]/(δ2
i ) up to the middle dimension. The algebra

C[α, β, δ1, . . . , δn]/(δ2
i − β)

has the same Poincaré polynomial. Hence, there can be no relations other than δ2
i − β in

H∗(R0,n) below degree 2m, which is the degree of RJ
0,n. Now, by Lemma 1.6.3 the relations

imply that S0,n as above contains a basis. But it is a simple matter to check that the if

S0,n(d) denotes the number of monomials of degree d, then S0,n(d) is the same as the the

dimension of the degree d part of C[α, β, δ1, . . . , δn]/(δ2
i − β) up to the middle dimension.

Moreover, it is easy to check that S0,n(2n− 6− d) = S0,n(d), and so by Poincaré duality, we

must have that S0,n actually is a basis, and so we have a complete set of relations. �

We have therefore proved Theorem 1.1.1.

1.7. The Case n = 1

The case when g 6= 0 and n = 1 turns out to be readily accessible for us as it is closely

related to the original story for no marked points. Recall that Rg,1 is a CP 1-bundle over

Rg,0, with the projection given by a forgetful map on parabolic stable bundles.
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Proposition 1.7.1. The cohomology ring Hg,1 = H∗(Rg,1) is naturally an algebra over

Hg,0 = H∗(Rg,0), and has a presentation

(1.7.1) Hg,1
∼= Hg,0[δ1]/(δ2

1 − β).

Proof. Let f : Rg,1 → Rg,0 denote the bundle projection. This establishes Hg,1 as an

algebra over Hg,0. By the discussion following Corollary 1.4.2, the universal bundle on Rg,1

is pulled back from Rg,0, and so if a relation in [Σ], [pt], and the [aj]’s holds in Rg,0, then

it holds in Rg,1. It is well-known that the cohomology ring of a CP 1-bundle is generated as

an algebra over the cohomology of the base by an additional generator τ satisfying a single

additional relation τ 2 + cτ + d = 0, where c and d are characteristic classes. For us, we

know that the relation c1[V1]2 + [pt]2 = 0 (and thus δ2
1 − β = 0) holds, by Lemma 1.5.10.

The Poincaré polynomial of Hg,0[δ1]/(δ2
1 − β) is clearly exactly (1 + t2) times the Poincaré

polynomial of Hg,0, which is exactly what we know to be the polynomial of Rg,1, by (1.3.13).

We conclude that τ 2 + cτ + d and δ2
1 − β must be proportional and the theorem follows. �

It is now well-known that the cohomology ring of the moduli spaceRg,0 has a presentation

based on a triple of relations which are recursive in the genus g. Let (r
(1)
g,0, r

(2)
g,0, r

(3)
g,0) be the

relations given in [29] as Proposition 3.2 (noting that we switch sub- and superscripts from

that notation): (r
(1)
1,0, r

(2)
1,0, r

(3)
1,0) = (α, β, γ) and:

r
(1)
g+1,0 = αr

(1)
g,0 + g2r

(2)
g,0

r
(2)
g+1,0 = βr

(1)
g,0 +

2g

g + 1
r

(3)
g,0

r
(3)
g+1,0 = γr

(1)
g,0

(1.7.2)

Then it is a result of previous work on Rg,0
∼=M0

g(2, 1) that the ideal Ig,0 ⊂ Ag,0 of relations

is generated by relations R
(i),J
g,0 , where J ⊂ {1, . . . , g} and

(1.7.3) R
(i),J
g,0 = R

(i)
g−s,0

∏
j∈J

γj

where s = |J |.
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Let α̂ denote the image of the class α in Ag,0 in Hg,1 under the isomorphism (1.7.1. The

class α̂ in Hg,0[δ1]/(δ2
1 − β) is no longer proportional to the class of the symplectic form and

thus differs from the image of α ∈ Ag,1 under the map Ψ : Ag,1 → Hg,1: it is pulled back from

the symplectic form on Rg,0. In fact, since the universal bundle on Rg,1 is pulled back (again,

see the discussion following Corollary 1.4.2), we have α̂ = −1
2
p1(Ead)/[Σ]. By (1.5.11), we

have Ψ(α) = α̂ + δ1. Under the change of variable α 7→ α− δ1, we have the relations:

r
(1)
g+1,1 = (α− δ1)r

(1)
g,1 + g2r

(2)
g,1

r
(2)
g+1,1 = βr

(1)
g,1 +

2g

g + 1
r

(3)
g,1

r
(3)
g+1,1 = γr

(1)
g,1

(1.7.4)

and (r
(1)
1,1, r

(2)
1,1, r

(3)
1,1) = (α− δ1, β, γ). We set

(1.7.5) R
(i),J
g,1 = R

(i)
g−s,1

∏
j∈J

γj

Corollary 1.7.2. The ideal of relations Ig,1 ⊂ Ag,1 is generated by the relations R
(i),J
g,1

above and δ2
1 − β.



CHAPTER 2

Instanton Floer Homology of a Product Link

2.1. Introduction

Given a closed, oriented 3-manifold Y with SU(2)-bundle E and w2(E) = w, instanton

Floer homology gives a vector space Iw∗ (Y ) obtained as the homology of a chain complex

whose generators are isomorphism classes flat SU(2) connections on Y . The differential of

this complex is defined by studying instantons on the cylinder R × Y . This construction

is informed by viewing it as an infinite dimensional, S1-valued Morse theory with Morse

function the Chern-Simons functional, whose critical points are simply the flat connections.

A natural problem is understanding the vector space Vg,0 := Iw∗ (Yg) for Yg the product

S1×Σ and w dual to the S1 factor. It has the additional structure of an algebra by applying

the functoriality of I∗ to the 4-manifold with boundary F ×Σ, where F is a pair of pants, in

order to get a multiplication map Vg,0⊗Vg,0 → Vg,0. This space was studied in [27], where a

presentation for this ring was given in terms of natural generators α, β and ψj, j = 1, . . . , 2g

and relations. An important piece information extracted from this ring presentation is the

spectrum of the multiplication by α map, which is shown to be the set of even integers

between ±(2g − 2). This information, along with the fact that the eigenspaces for the top

values ±(2g − 2) are 1-dimensional, was used in [22] to defined a version of instanton Floer

homology for sutured 3-manifold.

A version of instanton Floer homology for three-manifolds Y with link K, denoted

I∗(Y,K) was described by Kronheimer and Mrowka in [17]. There, the critical points are flat

connections which have a singularity along K of a presecribed type, causing the holonomy

around a small meridian to give a trace 0 element of SU(2). A natural generalization of the

product 3-manifold story above is to allow Σ to be a surface of genus g along with marked

points x1, . . . , xn and to study the Floer homology of the product Yg = S1 × Σ with the

60
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product link Kn = S1 × {x1, . . . , xn} (here n must be odd). There is an analogous ring

structure on the vector space

Vg,n := I∗(Yg, Kn)⊗ C.

In this chapter we shall study the case g = 0 by combining our results from Chapter 1 on the

ring structure of H∗(R0,n;C) with techniques in Floer homology to determine a presentation

for the ring V0,n.

We model our approach on Muñoz’s, but it does not seem that there are suitable tools

readily available to perform a strictly analogous computation, appealing to Donaldson invari-

ants of algebraic surfaces; the relevant surface would include a sphere of square 0. Instead,

we find an eigenvector by leveraging a somewhat simpler version U0,n of the Floer homology

of the pair (Y0, Kn) obtained by using a bundle on Y0 \ Kn which does not extend to Y0.

Machinery for studying the instanton Floer homology for such a bundle is provided by the

recent paper [23] of Kronheimer and Mrowka. The vector space U0,n is not a ring but there

is a multiplication map U⊗2
0,n → Vg,n. An eigenvector in U0,n is easy to find, and this gives

one in V0,n. As a consequence, we are able to write down a complete presentation of the

ring V0,n (see Theorem 2.9.10). From this presentation it is easy to read off the spectrum for

multiplication by a natural generator α, which is the set of odd integers between ±(n− 2),

and the eigenspaces for the values ±(n − 2) are 1-dimensional. We shall use this fact in

the next chapter to define a version of instanton Floer homology for sutured manifolds with

embedded tangle.

2.2. Preliminaries on Floer Homology

There are by now several different constructions and versions of instanton Floer homology

in the literature. Our work here requires the full power of the singular instanton theory for

a three-manifold Y with link K. In fact, we will need a slightly more general construction,

laid out in detail by Kronheimer and Mrowka in [23], which allows for a bundle on the

complement Y \K of the link which does not necessarily extend to all of Y . We summarize
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here the definitions and constructions required to build this version of I∗. All of this material

and more can be found in [23] and the references therein.

2.2.1. Singular Connections. As with most constructions in gauge theory, the heart

of the technical content of [23] required to define the Floer homology groups is describing

the particular Sobolev spaces of connections and gauge groups acting on them. Here, we

will study connections on a bundle which are singular along a codimension 2 locus. The

issues involved in setting this up fall into two categories: global topological issues coming

from the kinds of vector bundles our connections live in, and analytical issues arising from

defining suitable Banach spaces. Once the topological issues have been settled, the analytical

ones follow mostly standard lines, once the language and techniques of orbifold bundles is

introduced.

We begin with a closed Riemannian 4-manifold X with embedded surface Σ, and P a

PU(2)-bundle on X \ Σ. Rather than choosing a smooth metric, we pick an orbifold metric

ǧ on X \ Σ which has cone angle π around Σ, so that it is locally the quotient of a smooth

metric on D2 ×D2 by the rotation (z1, z2) 7→ (z1,−z2). We view X as an orbifold singular

along Σ which local group Z/2 at points on Σ, writing X̌ to denote X viewed in this way.

See [18] for details on orbifold metrics.

We are interested in connections A on P away from Σ, with the following behavior near

Σ: for each x ∈ Σ, there is a B4 neighborhood U of x over which there is a trivialization of

P and local cylindrical coordinates x1, x2, r, θ (for which Σ is the locus r = 0) such that the

connection 1-form of A is given by

(2.2.1) a0 +
1

4
ad

i 0

0 −i

 dθ.

Here, a0 is a regular so(3)-valued 1-form over U , and ad : su(2) → so(3) is the canonical

isomorphism of Lie algebras. This connection is singular along Σ, and has holonomy around

a small circle linking Σ equal to an order 2 element of PU(2) ∼= SO(3). Any connection with

this local behavior determines a double cover Σ∆ → Σ: locally there are two possible ways
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of modifying A to extend across Σ by adding a singular 1-form, giving a Z/2 local system ∆.

The approach in [23] is to start with this double cover Σ∆. We let X∆ be a non-Hausdorff

space in which Σ has been replaced with Σ∆, which admits a map

π : X∆ → X∆,

where π is 2-to-1 over Σ and is a homoemorphism away elsewhere. One then studies a bundle

P∆ → X∆

along with additional information called “singular bundle data”, subject to some additional

conditions. The topological issue, and the reason for introducing the double cover Σ∆,

is exactly the fact that ∆ may not be a trivial local system. In that case, the bundle

P = P∆|X\∆ will not extend across Σ, complicating somewhat the topological classification

of possible bundles. We recall the definition of singular bundle data (see [23], Definition

2.1). In what follows ν̃∆ is the pull back of the normal disk bundle νΣ over Σ to Σ∆, and ν∆

is its non-Hausdorff quotient under π as a subset of X∆.

Definition 2.2.1. For a 4-manifold X with embedded surface Σ, singular bundle data

for the pair (X,Σ) will mean the following data:

• a double cover Σ∆ → Σ and non-Hausdorff space X∆ with a map π to X realizing

the cover Σ∆;

• a principal PU(2)-bundle P∆ on X∆;

• a 2-plane bundle Q̃→ Σ∆ with an identification of the orientation bundles o(Q̃)→

o(Σ∆);

• an orientation-preserving bundle isometry

ρ : NΣ∆
→ Hom−(τ ∗Q̃, Q̃)
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where τ : XΣ → XΣ is the involution inducing the quotient map π, NΣΣ
is the

normal 2-plane bundle to Σ∆ insideXΣ, and Hom− denotes the 2-plane of orientation

reversing conformal maps.

• an identification on ν∆ of the resulting quotient bundle Q∆ with an O(2) reduction

of P∆|ν∆
.

As noted in [23], when this data exists, the double cover Σ∆ is determined by the PU(2)-

bundle P = P∆|X∆\Σ∆
on the complement of Σ in X.

Orbifolds and the Space of Connections. Given the singular bundle data and bundle

P∆, [23] provides a recipe for writing down a model connection A1 on the bundle P over

X \ Σ having the desired local behavior near Σ. The connection A1 does not extend across

Σ, but it does extend as an orbifold connection on an orbifold bundle PU(2)-bundle P̌ over

X̌. For us, an orbifold bundle will be an orbifold total space admitting a map of orbifolds to

X̌ and having fibers affine copies of PU(2) or quotients of PU(2) by the local group, which

in our case is just Z/2. There is a notion of a section for such a bundle, and then of an

orbifold connection, which is a differential operator on the space of sections. The connection

A1 can be seen to extend to a smooth orbifold connection Ǎ1 on P̌ , at which point the story

becomes fairly standard. Write gP̌ for the adjoint orbifold bundle of Lie algebras (which has

fiber so(3) over X \Σ. The orbifold connection Ǎ1 provides us with kth derivative operators

∇k
Ǎ1

: Γ
(
∧pT ∗X̌ ⊗ gP̌

)
→ Γ

(
Symk(T ∗X̌)⊗ ∧pT ∗X̌ ⊗ gP̌

)
.

The metric induces norms on the spaces of sections of all these bundles, allowing us to define

Sobolev spaces Ľ2
k,Ǎ1

of 1-forms. We define a space of connections

Ck(X,Σ, P̌ ) := {A1 + a | a ∈ Ľ2
k,Ǎ1

(∧1TX|X\Σ ⊗ gP̌ )}

The Banach manifold Ck(X,Σ, P̌ ) can be seen to be independent of the choice smooth orbifold

connection Ǎ1. In fact, Ck(X,Σ, P̌ ) only depends on the choice of orbifold bundle P̌ , which

in turn depends on the topological data of P∆ and the auxilliary singular bundle data.
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The Gauge Group. Given the orbifold principal PU(2)-bundle P̌ , we can form an orbifold

bundle of groups SU(P̌ ) with fiber SU(2) by taking the bundle associated to P̌ by the action of

PU(2) on SU(2) by conjugation. As usual, the bundle SU(P̌ ) acts on P̌ by automorphisms in

the standard way, but not all automorphisms of P̌ arise this way. We define the gauge group

of P̌ to be those bundle automorphisms coming from sections of SU(P̌ ): the determinant 1

gauge group. We consider the Banach Lie group

Gk+1(X,Σ, P̌ )

of such automorphisms coming from the Ľ2
k+1 Sobolev completion of smooth sections of

SU(P̌ ). There is the usual action of the gauge group on the space of connections by pullback,

and we use k + 1 when acting on Ck to preserve regularity. In the end we wish to study

connections A on X \ Σ satisfying an approximate anti-self-duality condition F+
A = V (A),

where V is a “small” gauge-invariant smooth function Ck → Γ(∧+(X̌) ⊗ gP̌ ). However, we

only want to consider such connections up to gauge. Thus, we define the space of gauge

equivalence classes:

Bk(X,Σ, P̌ ) := Ck(X,Σ, P̌ )/Gk+1(X,Σ, P̌ )

This space is not a Banach manifold because of the presence of reducible connections. If

A ∈ C is reducible then its stabilizer in G will be larger than the identity and B will be

singular at [A]. We denote the set of irreducible connections by C∗ and the quotient by the

gauge group B∗, which is an open subset and an infinite-dimensional Banach manifold.

The 3-dimensional Case. We also need to study the corresponding situation on a 3-

manifold Y . In this case, our connections should be singular along a link K ⊂ Y . The story

for 4-manifolds is readily modified for this case: we view Y as an orbifold Y̌ with point

groups Z/2 along K and study orbifold connections on an orbifold bundle P̌ over Y̌ . We

obtain a Banach manifold Ck(Y,K, P̌ ) and gauge group Gk+1(Y,K, P̌ ). The space of mod

gauge Bk(Y,K, P̌ ) is just the quotient Ck(Y,K, P̌ )/Gk+1(Y,K, P̌ ). In general, there will be
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reducible connections in C so we copy the above and use a star to denote the irreducible

locus.

2.2.2. The Instanton Floer Functor. Since it is awkward to work directly with the

orbifold bundles P̌ on a 3-manifold Y , we follow [23] by introducing a category whose

objects naturally determine such bundles up to isomorphism. The data we need to specify

just consists of a geometric representative for the Stiefel-Whitney class of P . We let w̃ink

be the collection of triples (Y,K, ω) consisting of:

• A compact, closed, oriented, (possibly disconnected) 3-manifold Y

• An link K ⊂ Y

• An embedded 1-manifold with boundary ω ⊂ Y meeting K normally at its end-

points.

Given such a triple, there is a unique isomorphism class of orbifold bundles P̌ for which

w2(P̌ |Y \K) = PD(ω) in H2(Y,K;Z/2). To define the Floer homology of a 3-manifold Y

with link K and orbifold bundle P̌ , one constructs a chain complex whose generators are

a finite collection of points in Bk(Y,K, P̌ ) which are critical points for a perturbed Chern-

Simons functional. In order to avoid reducible connections, we restrict the class w̃ink to

include only those objects (Y,K, ω) satisfying the following non-integrality condition ( [23],

Definition 3.1):

Definition 2.2.2. We say that the triple (Y,K, ω) satisfies the non-integrality condition

if, in each connected component Yi of Y , there is an embedded surface Σ ⊂ Yi such that

either

• Σ is disjoint from K and ω intersects Σ transversely an odd number of times;

• Σ intersects K transversely an odd number of times.

Let wink be the collection of triples (Y,K, ω) satisfying the non-integrality condition.

For each such triple, the constructions of instanton Floer homology give an abelian group

I∗(Y,K, ω). We review briefly the contents of this process, which is described in detail in [23].
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The Chain Complex. Our chain complex will be generated by almost flat connections in

C(Y,K, P̌ ). In order to define these, we will need a perturbation of the flatness condition. As

shown in [17], there is a Banach space P of perturbation functions f : Bk → R and a residual

subset U of such f for which the perturbed Chern-Simons functional CS + f : Bk → R/Z

has non-degenerate critical points. There exists an ε > 0 for which |f | < ε implies that

the critical point set does not contain any reducibles. This is a consequence of the non-

integrality assumption. The critical point set Cf will be finite, and we construct a chain

complex C∗(Y,K, P̌ ) with generators the elements of Cf . To define the differential ∂, suppose

we are given any two generators β0, β1. We choose gauge representatives B0, B1 and consider

the orbifold bundle P̌ = R× P̌ over the 4-orbifold X̌ = R× Y̌ . Choosing an orbifold metric

ǧ on Y̌ , X̌ acquires the product metric, and we study a perturbation of the ASD equation

for connections on P̌ . Fix a smooth orbifold connection Ǎ0 on P̌ which agrees with the

pullbacks of B0 and B1 for large positive and large negative t ∈ R, respectively. We define

the following Banach space of connections on the cylinder:

Ccyl
k (Y,K, P̌ , B1, B0) = {Ǎ0 + a |; |a ∈ L2

k,Ǎ0
(∧1X̌ ⊗ gP̌ )}

The fact that connections in the space must differ from Ǎ0 by an Ľ2
k 1-form implies they

are all asymptotic to B0 and B1 on the ends, but this Banach space does not depend on the

particular choice of Ǎ0. In addition, because the Bi are irreducible, so will the connections

in Ccyl. Define the gauge group

Gcyl
k+1(Y,K, P̌ )

consisting of Ľ2
k+1 determinant 1 gauge transformations which are asymptotic to the identity

on the ends. We then define the quotient:

Bcyl
k (Y,K, P̌ , B0, B1) = Ccyl

k (Y,K, P̌ , B1, B0)/Gcyl
k+1(Y,K, P̌ )

Given the perturbation f , there is a corresponding function

Vf : Bcyl
k → Ω+(X)⊗ gP̌
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and approximate anti-self duality equation F+
A + Vf (A) = 0. The function Vf is rigged so

that the pull backs along the cylinder of critical points in Bk are solutions to this equation

in the case B0 = B1. We obtain a moduli space of solutions

Mf (Y,K,B1, B0)

which is independent of k for k large enough, and is a smooth finite dimensional manifold.

The definition of this moduli space depended on the representatives B0, B1. In reality it only

depends on the homotopy class z of the path in Bk from β1 to β0 given by a connection in

Ck. The moduli space is the space of trajectories to the downward gradient flow of CS + f

in the homotopy class z, so we write it as

Mz,f (Y,K, P̌ , β1, β0),

or simplyMz,f (β1, β0). Its expected dimension is given by a spectral flow index grz(β1, β0),

and the moduli spaces of trajectories from β1 to β0 of a certain dimension d is a union

Mf (β1, β0)d =
⋃

z|grz=d

Mf,z(β1, β0).

By monotonicity, a result of choosing the singularity of the connections to have holonomy

an order 2 element of SO(3) around circles linking the singular locus, and the resulting

finiteness theorem (Corollary 3.25) of [17], this union is finite. On each of these spaces there

is a translation action by R and in low dimensions they are smooth manifolds with boundary.

The quotient of the 1-dimensional moduli spaces by this action is a finite collection of points,

which when counted up to sign, gives the matrix coefficient from β1 to β0 of the differential

∂:

(2.2.2) ∂ · β1 =
∑
β0

 ∑
z|grz(β1,β0)=1

#
Mz(β1, β0)

R

 · β0

Monotonicity also gives a compactness result for the trajectory spaces, and so this sum

is finite as well. Keeping track of the correct signs is a delicate issue involving assigning
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orientations to the moduli spaces of trajectories. One then checks that ∂2 = 0 by studying

the 2-dimensional moduli space between critical points. Taking a quotient of this space

by the R-action yields a compact 1-manifold with boundary, and the compactness theorem

implies that these boundary points give exactly the terms in ∂2 between the two critical

points. They thus pair up, and the orientation scheme implies their signs cancel, giving zero.

In the end, given the triple (Y,K, ω) we get a chain complex C∗(Y,K, P̌ ) and define

I∗(Y,K, ω) := H∗(C∗(Y,K, P̌ ))

to be its homology. Independence of all the choices (metric and perturbations) is proved

by constructing product cobordisms interpolating two choices. There is a natural relative

grading modulo 4 on I∗(Y,K, ω) coming from the possible values of the index gr(·, ·). In

the case that Y is a disjoint union of triples (Yi, Ki, ωi), it is a trivial consequence of the

definition of the chain complex that there is the isomorphism of relatively Z/4-graded vector

spaces:

I∗(Y,K, ω) =
⊗
i

I∗(Yi, Ki, ωi).

Functoriality. What remains is to discuss the maps between Floer homologies of triples

arising from cobordisms. Our approach to this is to turn wink into a category whose

morphisms are certain isomorphism classes of cobordism triples (W,S,Ω). This approach is

laid out in detail in [23], and we recall the specifics here. To set this up, let (Y0, K0, ω0),

(Y1, K1, ω1) be triples in wink, and suppose that (W,S,Ω) is a triple consisting of oriented 4-

manifold W with boundary, properly embedded 2-manifold with boundary S, and 2-manifold

Ω with corners such that:

• There is an orientation preserving identification φ : ∂W → Y 1 t Y0 where Y 1 is Y1

with the opposite orientation;

• The map φ restricts to an identification of ∂S to K1 tK0;

• The boundary of Ω consists of two pieces, one meeting S normally in a compact

embedded 1-manifold, and the other corresponding to ω0 t ω1 in ∂W under φ.
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Furthermore, Ω only intersects S in its boundary plus a union of transverse inter-

sections.

Definition 2.2.3. An oriented cobordism triple from (Y1, K1, ω1) to (Y0, K0, ω0) consists

of the triple (W,S,Ω) and data above. Two triples are considered isomorphic if there is a

diffeomorphism between them respecting the boundary identifications.

The class wink becomes a category by specifying that the morphisms are exactly the

isomorphism classes of such cobordism triples. What we desire is a functor from wink to

the category Ab of abelian groups, which means we must assign to each cobordism triple

(W,S,Ω) as above a map

I(W,S,Ω) : I∗(Y1, K1, ω1)→ I∗(Y0, K0, ω0).

We describe this procedure briefly, as all the details are covered in depth in [23].

To construct I(W,S,Ω), we study moduli spaces of approximately ASD connections on

an orbifold bundle P̌ . Unlike in 3 dimensions, the data (W,S,Ω) does not specify a unique

isomorhpism class of orbifold bundle on W restricting to the unique induced orbifold bundle

P̌ on Y , but rather a collection of such bundles which are pairwise isomorphic outside a

finite collection of points. This is due to the presence of 4-dimensional characteristic classes.

As a result, we will consider a disjoint union of moduli spaces on W arising from the all the

possible choices giving the right dimension.

Fix one such bundle P̌ . We choose an orbifold metric ǧ on the interior of (W,S) which has

two cylindrical ends R−×Y1 and R+×Y0. Let fi be a perturbation function for Yi such that

there is again a finite non-degenerate critical point set Cfi for CS+fi on Bk(Yi, Ki, P̌i), where

P̌i is the unique orbifold bundle on Yi for the given triple. Fix two critical points βi ∈ Cfi and

let Bi be gauge representatives. Let P̌ be an orbifold bundle on (W,S,Ω) with the correct

Stiefel-Whitney class, with isomorphisms of P̌ on the cylindrical ends to the pullbacks of

P̌i. We choose a smooth orbifold connection Ǎ0 on P̌ which agrees with the pullbacks of

the Bi’s on the ends for large positive and negative t ∈ R, and define a Banach space
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Ck(W,S, P̌ , B1, B0), gauge group Gk+1(W,S, P̌ ), and connection space Bk(W,S, P̌ , B1, B0)

just as in the cylinder case. The functions fi give a perturbation function Vf1,f2 into the

self-dual forms on the connection space by using a cutoff function on the ends of W (see [23]

eq. (17)), and we have a moduli space

M(W,S, P̌ , B1, B0)

of solutions to F+
A + Vf1,f2(A) = 0, depending on the representatives Bi, and not depending

on k (for k large enough).

Following [23], we can separate the possible triples (P̌ , B1, B0) of bundles and gauge

representatives into equivalence classes. We fix one such triple (P̌ , B0, B1).

Definition 2.2.4. A (P̌ , B0, B1)-marked bundle is an equivalence class of data

(P̌ ′, B′0, B
′
1;T ′)

where T ′ is an identification of bundles P̌ ′ → P̌0 ouside a finite set in W for which Bi

pulls back to B′i for large positive or negative t ∈ R. Two sets of data (P̌ ′, B′0, B
′
1;T ′)

and (P̌ ′′, B′0, B
′
1;T ′′) are equivalent if there is a determinant 1 isomorphism (over all of W )

between them (where we use the identifications T ′ and T ′′ to define determinant).

We will often denote simply by the letter z such an equivalence class, in order to highlight

its resemblence to a homotopy class of paths in the space of connections on a 3-manifold.

We get a countable collection of moduli spaces Mz(W,S,Ω, β1, β0). The map Ψ(W,S,Ω) is

defined by looking at those which are 0-dimensional. For generic perturbations the moduli

spaces will be cut out transversely and can be given orientations after making some addi-

tional choices (for example, basepoints in Bk(Y,K, P̌ )). The dimension ofMz(W,S,Ω, β0, β1)

depends on the ”homotopy class” z between β1 and β0 (even though there is not naturally a

path in a space of connections mod gauge to which z corresponds); we denote it by grz(β1, β0).
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We set:

(2.2.3) I(W,S,Ω)([β1]) =
∑
β0

∑
z|grz(β1,β0)=0

#Mz(W,S,Ω, β1, β0) · [β0].

Again, this sum is finite due to a compactness theorem, in turn relying on a monotonicity

result due to the particular choice of conjugacy class for the holonomy of our connections

around the singularities.

There is quite a bit more that needs to be checked at this point. Firstly, one must check

that I(W,S,Ω) is actually a chain map - it is defined in terms of generators of the chain

complex and we must check that the given matrix commutes with the boundary map ∂.

The proof of this fact is related to the proof that ∂2 = 0: looking at the 1-dimensional

moduli spaces on (W,S,Ω) gives compact 1-manifolds with boundary. Let M denote the

matrix given by (2.2.3). Each 1-dimensional component has 2 boundary components, one

contributing to the matrix coefficient for M between ∂(β1) and β0 and the other between

β1 and ∂(β0). This provides an equality for the matrices of ∂ ◦M and M ◦ ∂. One must

also check that I(W,S,Ω) does not depend on the perturbation functions or the metric.

This can be shown by studying parametrized moduli spaces over a path in the space of

perturbations and metrics, as is covered in some detail in [23]. However, this will fail if W

has a closed 4-dimensional component W0 - the invariant obtained by counting instantons

on this component may actually depend on the metric in the same as the dependence of

Donaldson invariants for manifolds with b+ = 1. The space of metrics CW0 is broken into

a collection of chambers by walls along which reducible connections may arise. We can fix

the problem if whenever W contains a closed component W0, along with the triple (W,S,Ω)

there is specified a chamber σ of CW0 .

We also have an issue relating to signs and orientations. The term #Mz(W,S,Ω, β1, β0)

refers to a signed count of points - these signs can all be pinned down by orienting all the

moduli spaces, except that in the end the overall sign of (2.2.3) depends on some arbitrary

choice separate from the triple (W,S,Ω). Thus, we will understand that I(W,S,Ω) denotes

the pair of homomorphisms defined by (2.2.3) and its negative. As a result, for now I∗ gives
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a functor from wink to p-Ab, the “projective” category of abelian groups whose morphisms

are oppositely signed pairs of morphisms in Ab. Later, we will describe a way to nail down

the sign of I(W,S,Ω) for most of the specific cobordisms we work with.

For the considerations of this paper, it will be convenient to take I∗ to be a vector space

rather than an abelian group; we will want to consider dual vector spaces and eigenspaces

of various operators. From now on, we let I∗ denote the vector space obtained by taking the

homology of the complex chain complex (C∗⊗C, ∂⊗C), and will speak of a projective functor

into the category C-vec of C vector spaces. It will be convenient to have a definition of I∗

when the 3-manifold is empty. In this case, we assign it the vector space C. A cobordism from

∅ to (Y,K, ω) will just be a 4-manifold with this as its oriented boundary triple. Functoriality

in this case gives a pair of maps C→ I∗(Y,K, ω), which is equivalent to giving a pair {v,−v}

of elements in the Floer homology. We call the vector v the “relative” invariant of the 4-

manifold triple. In the case that both incoming and outgoing ends of a cobordism triple

(W,S,Ω) are empty, we just have a closed 4-manifold and the invariant becomes a single

number in C. This number will correspond to the simple integer Donaldson invariant for

this 4-manifold.

Composition. In order to complete the description of our functor wink→ C-vec, we must

check that composition of cobordisms agrees with composition of the corresponding maps.

In other words, suppose we have two cobordism triples (W10, S10,Ω10) and (W21, S21,Ω21)

between (Y1, K1,Ω1), (Y0, K0, ω0) and (Y1, K1,Ω1), (Y2, K2,Ω2), and let (W20, S20,Ω20) denote

the cobordism obtained by gluing the incoming boundary piece of the first to the outgoing

piece of the second. The equation we desire is:

(2.2.4) I(W20, S20,Ω20) = I(W10, S10,Ω10) ◦ I(W21, S21,Ω21)

with the understanding that we choose sign representatives for each of these and are content

with equality up to sign. We can prove such an equality by standard means, but only in the

case that Y1 is connected. The reason for this is that the necessary gluing argument relies
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on the assumption that the stabilizer of a flat connection B1 on Y1 in the gauge group is,

under the hypothesis of non-integrality (Definition 2.2.2), the constant subgroup {±1}. This

will be the case when Y1 is connected, but in general the stabilizer is {±1}n if there are n

connected components. As discussed in [23], in the disconnected case most of the stabilizing

gauge transformations will not extend to ones on the cobordism. As a result, there will be

2n−1 different ways to glue connections on the different pieces, leading to a larger count on

the glued up cobordism than the product over the two halves. There are a few ways around

this difficulty. The approach of [23] is to modify the definition of I∗(Y,K, ω) to include

the specification of a subgroup φ of the cohomology group H1(Y ;Z/2), which acts on the

space of connections mod gauge (and thus critical point set Cf and moduli spaces). This

is equivalent to enlarging the gauge group to include more automorphisms of P̌ than those

arising as determinant 1 gauge transformations. A cobordism triple (W,S,Ω) will also come

with a subgroup Φ ⊂ H1(W,S,Ω) and one demands that when gluing two cobordism maps

with subgroups Φ10 and Φ21, the group Φ20 to be used on the glued-up triple is the largest

one restricting to Φ10 and Φ21 on the smaller pieces.

Another approach is to simply ignore the issue, and assert that in each situation, (2.2.4)

holds up to a nonzero constant. We lose strict functoriality for I∗, but recover.

Proposition 2.2.5. For triples (W10, S10,Ω10), (W21, S21,Ω21), and (W20, S20,Ω20) as

above, suppose that there are no closed components of the 4-manifolds. Then there is a

constant C such that

(2.2.5) I(W20, S20,Ω20) = C · I(W10, S10,Ω10) ◦ I(W21, S21,Ω21)

In the case that W20 carries an almost complex structure, the constant C is a nonzero power

of 2.

Proof. The standard approach to proving such a composition formula is to consider a

family of metrics on W20 for which there is a product “neck” between the pieces having been

glued together of length, say, T . This family ǧt is parametrized by R+, and over W20 × R+
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there is a parametrized moduli space Mt built from the 0-dimensional moduli spaces for

each metric. It can be shown that for suitable perturbations and family ǧt the total space

ofMt is a smooth 1-manifold in Bk×R+. There is a natural compactification of this family

obtained by adding ∞ to R+ to get the segment [0,∞]. We define the metric corresponding

to∞ to be a “broken” one, given by a metric ǧ∞ on W20 \Y1 and having cylindrical ends on

each of the pieces W21 and W10 on either side of Y1. For fixed incoming critical point β2 and

outgoing β0, we need a gluing theorem that says that the fiber of the compactification ofMt

in Bk× [0,∞] over∞ is related to the product of 0-dimensional moduli spacesM10 andM21

over W21 and W10. These moduli spaces should be defined to consist of approximately ASD

connections asymptotically equal to β2 and β0 on the far left and far right ends, respectively,

and the product should be a fiber product over the common maps of each to the critical point

set C1 for Y1 obtained by looking at the limiting connections on the Y1 ends. Such a theorem

is true, by appealing to an implicit function theorem argument; for each “broken” trajectory

in the fiber product ofM10 andM21, there should be a nearby glued up trajectory inM20.

As discussed above, a different stablizer in the gauge group for critical points on Y1 and

those on the glued up pieces of the cobordism leads to multiple possible glued up trajectories.

Hence, we obtain (2.2.5) for the constant C. �

Unfortunately, we cannot rule out cancellations between the various (non-determinant

1) gauge equivalent trajectories, and thus that C is non-zero, without further assumptions.

However, we have:

Lemma 2.2.6. Suppose that W20 in Proposition 2.2.5 carries an almost complex structure.

Then the constant C is a power of 2, and hence is nonzero.

Proof. In order to conclude that C is nonzero, we need a way to compare the signs

associated to the multiple flowlines arising from different gluings. The different gluings are

the same up the SO(3) automorphisms on Y1, so flowlines are actually gauge equivalent

modulo the full SO(3) gauge group on W20. These different flowlines might cancel if some of

these gauge transformations are orientation reversing. Let Aut(P̌20) denote the full group of
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SO(3) gauge transformations which are L2
k regular over W20, and let B̂W20 denote the quotient

of the space of connections by Aut(P̌20), so that there is a quotient map BW20 → B̂W20 .

Defining the chain maps associated to W20 requires orienting the space BW20 ; one must first

prove it is orientable and then make a choice. As shown in [23], if W20 has an almost complex

structure, then B̂W20 is orientable as well. This implies that each of the non-determinant 1

gauge transformations in Aut(P̌ ) is orientation preserving. Hence, C will just be equal to the

number of different flowlines obtained by gluing two fixed flowlines by different gluings. This

is exactly the cardinality of the image of H1(W20;Z/2) in H0(Y1;Z/2) under the image of the

Mayer-Vietoris boundary map, which must be a power of 2. In particular, C is nonzero. �

The condition on closed components is necessary for the instanton Floer functor to be

defined. In general, if any of W10, W21, or W20 have closed components, we must specify

chambers in the space of metrics. Let σ10, σ20 be chambers in the space of metrics on

the collection of closed components of W10, W21, respectively. Gluing W10 and W21 may

produce new closed components in W20; let σ20 be the chamber in the space of metrics on

the collection of closed components of W20 obtained by using metrics specified by σ10 and

σ21 on old closed components, and, on any new closed components, the chamber given by

metrics having a long neck along the gluing locus. In this case, we have:

(2.2.6) I(W20, S20,Ω20;σ20) = C · I(W10, S10,Ω10;σ10) ◦ I(W21, S21,Ω21;σ21)

This will be particularly useful when comparing cohomological pairings on the space of flat

connections with pairings in Donaldson theory in §2.4.1.

Flips. Given a 4-manifold X with embedded surface Σ or 3-manifold Y with link K, there

are a natural set of symmetries between the moduli spaces of connections on the pair (X,Σ)

and the Floer homologies of triples (Y,K, ω) arising from the connected components of the

singular loci, known as “flips”. Begin with the pair (X,Σ) and suppose we have singular

bundle data P specified on our triple, consisting of the data in Definition 2.2.1. Suppose that

Σ is connected, and let τ be the involution on XΣ inducing the quotient map π to XΣ → X.
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We will construct a new collection of singular bundle data by pulling back P∆ via τ . We do

not change the double cover Σ∆, but immediately obtain a new bundle τ ∗P∆. We can pull

back Q̃ to obtain τ ∗Q̃, and since τ identifies TxΣ∆ with Tτ(x)Σ∆, we obtain the necessary

identifications of orientation bundles. Now, pulling back the map ρ via τ gives

ρ : τ ∗NΣ∆
→ τ ∗Hom−(τ ∗Q̃, Q̃).

There is an obvious isomorphism τ ∗NΣ∆
→ NΣ∆

(NΣ∆
is pulled back from a bundle NΣ → Σ)

and we have

τ ∗Hom−(τ ∗Q̃, Q̃) = Hom−(Q̃, τ ∗Q̃),

so we obtain another orientation-preserving map

ρ : NΣ∆
→ τ ∗Hom−(Q̃, τ ∗Q̃).

Lastly, it is easy to see that the resulting quotient bundle Q̃′∆ on ν∆ is just the pull back of

the original Q̃∆ via τ , and so the last data of the identification with an O(2) reduction of

P∆ comes for free: it is the pullback of the original one. We see that given singular bundle

data P, pulling back via τ gives a new set Pτ . The construction may also be carried out

without modification for the 3-dimensional pair (Y,K).

Definition 2.2.7. The singular bundle data Pτ obtained as above will be said to arise

from the flip on Σ or K.

In general, the flip changes the singular bundle data to something non-isomorphic. Sup-

pose that we are in the situation where the bundle P∆|X\Σ extends to a true bundle on all of

X, and suppose momentarily that Σ is connected. Then, as in [18,20], the singular bundle is

classified by the topological invariants k and l, called the instanton and monopole numbers,

respectively, and the second Stiefel-Whitney class Ω. The effect of the flip is to change these
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invariants to k′, l′, and Ω′ via:

k′ = k + l − 1
4
Σ · Σ

l′ = 1
2
Σ · Σ− l

Ω′ = Ω + [Σ]

(2.2.7)

See §A1 of [20] for details.

Now, suppose that Σ has a decomposition Σ1 t . . .tΣn into connected components and

fix an index i. We can form an involution τi on X∆ which is the identity over Σj for j 6= i

and which is the order two involution over Σi. The constructions above may be repeated

for τi, turning singular bundle data P into new data Pτi . In this way we get a collection

of commuting “partial” flips. In the case that there is a global extension of P∆|X\Σ over all

of X, we have defined the instanton number k, and monopole numbers l1, . . . , ln, and these

numbers change in the intuitive way under the partial flip via:

k′ = k + li − 1
4
Σi · Σi

l′i = 1
2
Σi · Σi − li

Ω′ = Ω + [Σi]

(2.2.8)

and l′j = lj for j 6= i. Since the partial flips all commute, we can more generally define a

partial flipping involution τJ for any J ⊂ {1, . . . , n}.

The value of the flip is that not only can it be used to pass between different sets of

singular bundle data, it can be used to transform the connections on them. Fixing (X,Σ)

and bundle data P, we have a Sobolev space of singular connections Ck(P), determinant 1

gauge group Gk+1(P), and connections mod gauge Bk(P). Likewise, we have similar spaces for

the flipped data Pτ . Given [A] ∈ Bk(P), we can pull it back to a connection [τ ∗A] ∈ Bk(Pτ ).

It is easy to verify that the pulled-back connection (which we view as a standard connection

on an SO(3)-bundle away from Σ) lives in the desired Sobolev space, and that the pullback

operation preserves gauge orbits. Now, choose a perturbation functional V such that it and
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V ◦ τ ∗ are suitably generic. The corresponding approximately ASD equation

F+(A) + V (A) = 0

cuts out a moduli spaceMV (P). We also have a moduli spaceMV ◦τ∗(P
τ ), and by construc-

tion, pullback via τ gives a diffeomorphism between them.

2.3. Extended Instanton Floer Homology

There is an extension of our projective functor I∗ : wink → C-vec to include the

specification of, along with a cobordism triple (W,S,Ω), a homology class h ∈ H∗(W ).

More generally, we will allow an element of a graded commutative tensor algebra over the

homology and additional generators coming from the connected components of S. The model

for this extension is Donaldson’s polynomial invariants and their extension by Kronheimer

and Mrowka to the singular instanton case. The idea is that a homology class h in W

gives rise to a cohomology class µ(h) in the space of connections modulo gauge through

a characteristic class of the universal bundle over B × W . The Poincaré duals of these

cohomology classes can be represented by compact embedded subspaces in B. If we have a

collection of homology class h1, . . . , hs we get subspaces Vi representing the µ(hi)’s, and if d

is the sum of the codimensions, the d-dimensional moduli spaceMd intersect V1∩· · ·∩Vs in a

collection of points, at least generically. Given the triple (W,S, ω), we will then define a map

whose matrix coefficient between β1 and β0 is gotten not by looking at the 0-dimensional

moduli spaces, but by looking at the intersection of the d-dimensional moduli spaces with

V1 ∩ · · · ∩ Vs. The material here is not strictly speaking new, as it uses ideas going back to

the original attempts to compute Donaldson invariants by splitting along a 3-manifold [6].

However, we extend the techniques to our situation where the connections are singular, as

well as introduce new operators coming from the singular loci. These new operators are

modelled on the classes σi from [16].
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We suppose that (W,S,Ω) is a cobordism triple between (Yi, Ki, ωi) and we denote by

A(W ) the graded commutative tensor algebra on the vector space H≤2(W ;C), whose ele-

ments consist of polynomials in generators of H2(W ), H1(W ), and H0(W ). In other words,

we set:

A(W ) = Sym∗(H0(W )⊕H2(W ))⊗ ∧∗H1(W ).

A polynomial z ∈ A(W ) naturally gives a cohomology class in the space of connections mod

gauge, analogous to the way we constructed generators for cohomology ring of the moduli

space of flat connections on a punctured surface in Chapter 1.

2.3.1. Geometric Representatives in B. We fix as before an orbifold bundle P̌ ,

perturbations, metric, critical points βi, gauge representatives Bi, and then corresponding

space of connections, gauge group and space of connections mod gauge, calling them CW ,

GW , BW (each depending on a Sobolev regularity k, which is suppressed in the notation).

There is a universal (orbifold) bundle

P̌ → BW ×W

carrying a connection Ǎ in W directions which varies smoothly in BW directions. Were we

in the situation that S is empty, we could take the first Pontryagin class of the universal

bundle and use slant product against homology classes in W to get cohomology classes in

BW . Even in this case, there are issues with pairing these classes against the moduli spaces

because in the general the higher dimensional moduli spaces are not compact. There is an

added difficulty involving orbifolds and singular connections. We first outline here solutions

to these technical issues, beginning with descriptions of the classes in BW that we will use,

and then proceed to define the extended Floer homology maps.

The Class of a Surface. Let Σ ⊂ W be an embedded surface, and suppose that it intersects

S transversely in a collection of point x1, . . . , xn. Let BW denote the space Bk(W,S, P̌ , β1, β0).

The topology of this space is largely determined by the topology of the gauge group, via the

usual arguments of homotopy theory. There are natural classes associated to Σ arising from
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considering just what happens to connections upon restriction to Σ. Let B∗ν(Σ) denote the Ľ2
k

space of irreducible connections C∗ν(Σ) on ν(Σ) modulo the gauge group Gν(Σ) of local gauge

transformations. Define the dense open subset of connections

B∗∗W = {[A] ∈ BW : A|ν(Σ) is irreducible}

and write

rν(Σ) : B∗∗W → B∗ν(Σ)

for the restriction map.

We will study cohomology classes on the space B∗ν(Σ). Any orbifold bundle on Σ extends

to a non-orbifold bundle across the singular locus. Likewise, the bundle P̌ |ν(Σ) extends to a

non-orbifold bundle P on all of the 2-disk bundle ν(Σ). Let Dk denote the fiber of ν(Σ) over

xk as a disk bundle over Σ, i.e., Dk is a connected component of S∩ν(Σ). By construction of

the space of connections, for any singular connection A on ν(Σ), there is a globally defined

connection A0 on P such that near each disk Dk there is a trivialization of P and polar

coordinates for which, as 1-forms:

A = A0 +
1

4
ad

i 0

0 −i

 dθ.

As in Chapter 1, if we fix a bump function η, there is a well-defined procedure by which

we may pass from A to A0 by adding 1-forms near the punctures. Without first producing

the extension P , this procedure takes a singular connection and produces a new connection

with holonomy around small circles linking S limiting to the identity map. This can be

done in families of connections as well. By standard arguments, over B∗ν(Σ) × (ν(Σ) \ S)

there is a universal bundle P and family of connections A0 with a tautological property

upon restriction to ν(Σ) slices. The procedure then gives a new family A with trivial

limiting holonomy around small circles linking S. This new family defines an extension

of the universal bundle P over B∗ν(Σ) × S, using the holonomy.
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We may now take the characteristic class p1(P) in H4(B∗ν(Σ)× ν(Σ)). Slant product with

[Σ] produces an integral degree 2 class in B∗ν(Σ). However, this class is not invariant under

the flip operation on connections. For us, this issue manifests itself in the dependence of

the resulting class p1(P)/[Σ] on the particular process of passing from the connection A to

A0. If Σ is disjoint from S, there is no issue. Otherwise, near each singular locus, there are

actually two natural 1-forms to add and these give different bundle extensions. As a result,

the class p1(P)/[Σ] is somewhat awkward to use in the context of the gluing theorems and

independence on the choice the representative for the homology class [Σ] needed later on.

We shall find it convenient to instead use a different degree 2 class, and for this we must

introduce classes associated to points on S.

The Class of a Point on S. We can define additional degree 2 cohomology classes in BW ,

one for each component Si of S. Choose a point y ∈ S, and a small ball neighborhood ν(y)

intersecting S in a disk. As in the discussion for the class associated to a surface [Σ], there

is an extension of P̌ to a non-orbifold bundle P over ν(y), and connections can be viewed as

being defined on P away from S. The holonomy of a connection around small loops around

S near y picks out a preferred complex line KA in the fiber of the associated rank 3 vector

bundle to P . Now, let Bν(y) denote the Banach space of singular connections on the ball mod

gauge. Over Bν(y) × ν(y), there is a universal bundle P and universal tautological singular

connection A in ν(y)-directions. The complex lines KA fit together to form a line subbundle

Ky over Bν(y) × {y}. Its first Chern class gives a degree 2 cohomology class on Bν(y), and

this pulls back to a class which we still denote by c1(Ky) in B∗∗W , which we now take to be

the space of connections mod gauge which are irreducible on ν(y). We now remark that, as

in the case of a surface Σ, the line bundle Ky depends on a choice of extension P across the

µ(y)∩S. It is not difficult to see that choosing the other extension yields the class −c1(Ky).

For a fixed point y ∈ S, let {κ1,κ2} be the two possible choices of bundle extension. In

order to define the class c1(Ky), we have to specify a choice of κi. Denote the corresponding

class by µ([y])κi .
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The Orbifold Class of a Surface. Returning to the degree 2 class associated to a surface

Σ, our discussion in Chapter 1 can be adapted here to show that if we choose an intersection

point y ∈ Σ∩S and change our extension P of P̌ by adding the other 1-form to connections

near y (i.e. passing from κ1 to κ2), then the class p1(P)/[Σ] changes by adding c1(Ky)

(defined using κ1). If we define the line bundle Ky by using the restriction to ν(y) of the

extension P on ν(Σ), we call this choice κΣ. We see that the class

p1(P)/[Σ]−
n∑
k=1

c1(Kyk)

where n = |Σ ∩ S| and yk is the kth intersection point, is a well-defined class, not depending

on the particular choice of extension P over Σ. We denote this class by µorb([Σ]).

In order to evaluate this class on potentially non-compact moduli spaces, we will find a

closed codimension 2 submanifold of B∗∗W representing it. For this we follow §5.2.2 of [8]: we

let LΣ be a smooth line bundle over Bν(Σ) with µorb([Σ]) as its first Chern class. There will

be a smooth, transverse (to zero) section s of LΣ whose pullback to the bundle r∗ν(Σ)(L) is

transverse. The zero set (r∗ν(Σ)s)
−1(0) is an (oriented) codimension 2 smooth submanifold

of B∗∗W , which we shall denote by VΣ, representing the Poincaré dual of µorb([Σ]). For the

class c1(Ky), we perform the same maneuver and get a codimension 2 submanifold Vy for y

in S, with the understanding that the orientation of Vy depends on a choice of extension of

P̌ across ν(y).

The Submanifold Vy,κi for y ∈ S. In order to evaluate the class c1(Ky) on moduli spaces,

we use the technique of [16], where the corresponding cohomology class is denoted σ. We

choose a small ball neighborhood ν(y) of y instersection S in a disk. There is a space of

connections mod local gauge B∗ν(y), a subspace B∗∗W of connection irreducible on ν(y), and a

correpsonding restriction map. On B∗ν(y) there is defined a line bundle Ky, depending on the

choice of κi. As in the case of a surface, we choose a transverse section of Ky such that the

zero section pulls back to a smooth submanifold intersecting all moduli spaces transversely.

Denote this oriented submanifold by Vy,κi .
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The Class of a Point in W \ S. Let x be a point in W away from S. We can obtain a

cohomology class µ(pt) of degree 4 in exactly the way described in §9.2.3 of [8]. That is, we

take the first Pontryagin class p1(P) of a universal bundle (which only needs to exist over

BW × (W \ S)). Like the case of a surface, we pick a neighborhood of x in W \ S and look

at the pullback of a natural degree 4 class on the space Bν(x) of connections on this small

ball by the restriction map from B∗∗W , now the set of connections irreducible on ν(x). While

we cannot always find a codimension 4 submanifold representing this cohomology class, we

can find a codimension 4 stratified subspace Vν(x), with a real codimension 4 strata and a

closed codimension 12 strata [19], and this is enough to define the pairings we need. Let Vx

be the inverse image of Vν(x) under the restriction map. Membership for this subspace for a

connection A depends only on the behavior of A on a small ball around x.

The Class of a Loop. Let γ be a smoothly embedded loop in W \ Σ representing an

element of H1(W ). The class [γ] gives a cohomology class of degree 3 in BW , and like the

case of both a point and surface, we can find a codimension 3 submanifold Vγ representing

it which is the (transverse) inverse image of a submanifold in the space of connections on a

tubular neighborhood of γ (see [19]).

Details for the last two of these constructions can be found in §2(ii) of [19].

2.3.2. Cobordisms and Polynomials. The algebra A(W ) comes with a natural grad-

ing which assigns [Σ] ∈ H2 degree 2, [γ] ∈ H1 degree 3, and [x] ∈ H0 degree 4. We also

define a graded commutative algebra A(W,S) = A(W )⊗ Sym∗(H0(S)), assigning the gener-

ators [y] ∈ H0(S) degree 2. Suppose first that we have a monomial χ ∈ A(W ) which is the

product of the degree 2 classes [Σ1], . . . , [Σr], degree 3 classes [γ1], . . . , [γs], degree 4 classes

[x1], . . . , [xt], and lastly degree 2 classes [y1], . . . , [yn]. At the outset, we fix representatives

yl for these latter classes, and the data of κ = {κ1, . . . ,κn} of choices of bundle extension

near each of them. We find smoothly embedded submanifolds (or more generally stratified

subspaces) of W representing them, and arrange that there are no triple intersections, single

intersections are transverse, and the intersections with S are all transverse. Using each of
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the recipes above, we can find closed subspaces VΣi , Vγj , Vxk , and Vyl,κl of BW corresponding

to each of them, using small enough tubular neighborhoods of the Σi, γj, xk, and yl with no

triple intersections. We denote by Vχ the intersection of all of these, which has codimension

d = 2r + 3s+ 4t+ 2n. Each V• in reality is a class in an open subset B∗∗W consisting of con-

nections irreducible on a tubular neighborhood. Let B◦W denote the subspace of connections

mod gauge which are irreducible on all the tubular neighborhoods (individually). Then each

V• and Vχ can be taken to be inside B◦W . For generic perturbations, the moduli spaces will

all be contained in this subspace as well.

Given any (P̌ , B0, B1)-marked bundle data z with corresponding moduli space of approx-

imately ASD connections Mz(W,S,Ω, β1, β0) having dimension d, the intersection

(2.3.1) Mz(W,S,Ω, β1, β0) ∩ Vχ

has expected dimension 0. As in [6], one can arrange the perturbations involved to be

generic enough that this intersection is completely transverse and orient everything so that

the points of intersection have signs. We define a map

I(W,S,Ω;χ) : I∗(Y1, K1, ω1)→ I∗(Y0, K0, ω0)

using these intersection numbers as the matrix entry between β1 and β0 at the chain level.

So far, we have only defined the V•’s in a way depending on the critical points βi. However,

these subspaces are pulled back from spaces of connections on open subsets of W , which are

independent of the βi. The proof that the intersection numbers (2.3.1) define a chain map

(commuting with ∂) then goes in much the same way as for without polynomials. Again,

while we can choose coherent orientations for everything, the overall sign of I(W,S,Ω;χ)

depends on an arbitrary choice, so we interpret this to mean a pair of oppositely signed maps

between the Floer homologies of the Yi.

Proposition 2.3.1. The intersection (2.3.1) is a compact zero-manifold and the map

I(W,S,Ω;χ) described above depends only on the homology classes of the submanifolds Σi,
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γj and xk of W and connected components of S in which the yl lie. It is graded symmetric

multilinear in these classes.

Proof. The compactness argument in the proof of Proposition 2.2 of [16] carries over

here with some modifications, the first being to treat the degree 3 classes arising from the γi.

The dimension counting argument for compactness carries through without modification, as

the γi are away from S, Σi’s, and xk’s. This argument also handles the case of the classes

µ([y])κ and µ([Σ]) separately, and thus the introduction of the class µorb([Σ]) presents no

difficulties. The key difference lies with the argument required to show that if a sequence of

connections Ai converges weakly to an A∞ but not strongly, then the lost action (integral of

norm-squared curvature) implies that A∞ lives in a moduli space of lower dimension. In [16]

and [18], this is arranged by assuming the holonomy parameter (which for us is fixed to

be 1/4) lies in an “interval of compactness”, determined by the cone angle of the orbifold

metric. Letting the angle tend to 0 increases the size of the interval. For us, we get that A∞

lives in a moduli space of lower dimension for free since for our choice of singular connection

spaces, the action of the connection is monotonic in the dimension of the moduli space. This

fact was already used to define the maps from cobordisms in §2.2.2, but it applies in this

more general situation.

The proof that the map I(W,S,Ω;χ) only depends on the homology classes of the em-

bedded submanifolds of W needs no major modification in the case that no Σi intersects S

(see, for example, Theorem 9.2.12 of [8]), as is the case with multilinearity. The key point

is that we may reduce to the case of a 2, 3, or 4 dimensional moduli space, and by compact-

ness we may view the intersection numbers as being an honest cohomology pairing, where

the statements are obvious. In the case that some Σi intersects S the relevant cohomology

class is the modified class µorb([Σi]). We must check that if Σ and Σ′ are homologous then

µorb([Σ]) and µorb([Σ′]) are equal cohomology classes in BW . Suppose that there exists an

extension of P̌ to a non-orbifold bundle P on W . Then the classes µ([Σ]), µ([Σ′]) can be

defined, and it is clear that they are equal. We also get, for y ∈ Σ ∩ S, the class µS([y]).
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The key is that Σ ∩ S and Σ′ ∩ S are homologous in S, and so we get an equality of sums

∑
y∈Σ∩S

µS([y]) =
∑

y′∈Σ′∩S

µS([y′]).

We conclude that µorb([Σ]) and µorb([Σ′]) are equal. Now, in general P̌ does not extend to a

non-orbifold bundle on W , but it will do so outside a finite collection of points Q in S. The

surfaces Σ and Σ′ are still homologous in W \ Q and Σ ∩ S and Σ′ ∩ S are homologous in

S \Q, so the previous argument is still valid. �

The result of Proposition 2.3.1 implies that we can extend the definition of I(W,S,Ω;χ)

from monomials to elements of A(W,S) by linearity. Once a coherent system of orientations

is chosen (there will be two choices), we get a map

I(W,S,Ω,−) : I∗(Y1, K1, ω1)⊗ A(W,S)→ I∗(Y0, K0, ω0).

Without choosing an orientation, we get a pair of such maps out of the tensor product,

differing in sign.

Gluing. So far we have extended the definition of I∗ to take a cobordism triple (W,S,Ω)

and polynomial χ ∈ A(W,S) and produce a map between the boundary Floer homologies. In

the case that χ is just the polynomial 1, we recover our original cobordism maps, and in this

case the assignment is (projectively) functorial; composition of cobordisms corresponds to

composition. We would like to have an analogue of this composition for our extended theory

for nontrivial polynomials χ. To set this up, we suppose again that we have two triples

(W10, S10,Ω10) and (W21, S21,Ω21) which can be glued up to give the triple (W20, S20,Ω20).

Let the boundary 3-manifolds be (Yi, Ki, ωi), for i = 0, 1, 2. The inclusions of (W10, S10) and

(W21, S10) into (W20, S20) induce maps of C-algebras:

(2.3.2) A(W10, S10),A(W21, S21) −→ A(W20, S20)

Proposition 2.3.2. The extended Floer homology maps enjoy the following gluing prop-

erty. Let χ ∈ A(W10, S10) and χ′ ∈ A(W21, S21), and denote by χ̂, χ̂′ their images in A(W20)
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under the maps (2.3.2). Then for some non-negative integer C we have:

I(W20, S20,Ω20; χ̂χ̂′) = C · I(W10, S10,Ω10;χ) ◦ I(W21, S21,Ω21;χ′)

In the above, C = ±1 if Y1 is connected.

Proof. The essential details of this go back to the original results of Fukaya on gluing

formulae for Donaldson invariants [11]. The proof of this is modelled on the proof of the

corresponding result (2.2.5), via “stretching the neck”. The only new details to consider are

related to compactness and these were already handled in the proof of Proposition 2.3.1. �

Operators on I∗(Y,K, ω). We can use the results of this section to endow the Floer

homology of a 3-manifold triple (Y,K, ω) with an action of an algebra on the homology of

Y and K. Let A(Y ) denote the graded commutative tensor C-algebra over H≤2(Y ;C), i.e.:

A(Y ) = Sym∗(H0(Y )⊕H2(Y ))⊗ ∧∗H1(Y ).

In the case that K is nonempty, will use the algebra A(Y,K) = A(Y )⊗ Sym∗H0(K). There

is a natural action of these algebras on the Floer homology I∗(Y,K, ω), giving a map µ(χ)

for a polynomial χ in A(Y ), or A(Y,K):

µ(χ) : I∗(Y,K, ω)→ I∗(Y,K, ω)

µ(χ) = I([0, 1]× Y, [0, 1]×K, [0, 1]× ω; χ̂)

where χ̂ is the image of χ in A(W ) or A(W,S) under map induced by the inclusion of

(Y, S) as the slice at t ∈ [0, 1] in the interior of the interval. These algebras come with the

same grading as in the 4-dimensional case, and the operator µ(χ) is a graded map on the

Floer homology which shifts degree by deg(χ) (recall that I∗(Y,K, ω) has a relative grading

mod 4). The operators µ(χ) can be understood in terms of the Morse theoretic picture of

I∗(Y,K, ω). For example, if χ = [Σ] ∈ H2(Y ), the recipe of the previous section can be used

to construct a codimension 2 submanifold VΣ of the space B(Y ) of connections mod gauge
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on P̌ → Y . The moduli spaces over the cylinder [0, 1] × Y , with the right metric, are just

those over R× Y and correspond to spaces of flowlines in B for the downward gradient flow

of the perturbed Chern-Simons functional. The map µ([Σ]) is given at the chain level by

counting intersection points of the 2-dimensional moduli spaces with VΣ.

Of course, these operators are so far a priori only defined up to a choice of sign. As

discussed before, the sign can be pinned down by choosing an almost complex structure

on the cylinder R × Y , and this is equivalent to choosing a nonvanishing vector field on

Y tangent to K along K [23]. Eventually, we will be using these operators in the context

of a product link in a product 3-manifold, for which there is a canonical such vector field,

namely the tangent vectors to the S1 factor. The corresponding almost complex structure

on R×S1×Σ will simply be the obvious product one. When this is the case, we will be able

to speak of the operators as having a fixed sign without further specification, understanding

that we are using the orientations on connection spaces arising from this canonical almost

complex structure. Lastly, in order to pin down the sign of µ([y]) for [y] ∈ H0(K) and K a

disjoint union of components K1, . . . , Kn, we must make a collection of choices

κ = (κ1, . . . ,κn).

Donaldson Invariants. As before, if we take (W,S,Ω,σ) to be a closed 4-manifold triple

with a specified chamber σ of the space of metrics CW on W , the constructions above give

a map (up to sign)

I(W,S,Ω,σ;−) : A(W,S)→ C.

These correspond to Donaldson polynomial invariants considered in [20] and [16]. Our

arguments here for gluing show that these invariants enjoy the usual gluing properties for

splittings along 3-manifolds, at least for homology classes living entirely in one half of the

decomposition.

The Effect of Flips. Suppose we are again in the case that (W,S,Ω;σ) is a closed 4-

manifold triple with metric chamber. We investigate the map A(W,S) → C in the context
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of the flipping operation discussed in §2.2. Let S = S1 t . . . t Sn be the decomposition of

S into connected components, and fix a monomial χ ∈ A(W,S) of degree d. The value of

I(W,S,Ω,σ;χ) is determined by looking at the d-dimensional moduli spaceMd on (W,S,Ω)

and evaluating cohomology classes. Let J ⊂ {1, . . . , n} be such that

∑
j∈J

[Sj]

is a mutliple of 2 in H2(W ). Then the flip τJ preserves the homology class of Ω modulo

2 and so (after choosing a flip-invariant perturbation function) gives an involution on the

space BW of connections mod gauge and the moduli space Md.

Lemma 2.3.3. The classes µ(pt) and µ(γ) for γ ∈ H1(W ) are preserved under τ ∗J . For

y ∈ Sj and set of extension choices {κ1,κ2}, we have:

τ ∗J (µ([y])κi) = µ([y])κ2−i = −µ([y])κi .

Finally, for [Σ] ∈ H2(W ), we have

τ ∗J (µorb(Σ)) = µorb(Σ).

Proof. The proof is entirely analogous to the work carried out in Chapter 1 for the flips

MJ . One studies how the universal bundle over Md ×W is pulled back under τ ∗J , showing

that the bundle is preserved, while the line subbundles lying overMd × S corresponding to

the point classes µ([y]) are transformed by conjugation or are preserved according to whether

y is in a flipped component of S. While the näıve class µ(Σ) is not preserved under the flip,

the modified class µorb(Σ) is (see Lemma 1.5.14 and equation (1.5.10). �

2.4. The Floer Homology of a Product S1 × Σ: A Review

The major problems associated with instanton Floer homology are related to its com-

putation, even for simple 3-manifolds. For 3-manifolds Y without a link, the theory laid
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out above goes back to Floer’s original work (see [6]). The first basic cases to consider are

fibered 3-manifolds, or simply product 3-manifolds S1×Σ for Σ a compact Riemann surface.

2.4.1. Relative Invariants and Relations. In this section we review the calculation of

the Floer homology in this basic case. To satify the condition of non-integrality, there are two

obvious choices for the Stiefel-Whitney class ω. One obvious choice for ω for the 3-manifold

S1×Σ is the product curve w := S1× pt. This case was studied by Dostoglou and Salamon

(who considered the more general case of a fibered 3-manifold) [9] and later Muñoz [27],

who gave a presentation for the natural ring structure on this Floer homology. Let Yg be

the 3-manifold S1 × Σ where Σ is a compact Riemann surface of genus g ≥ 2. The surface

pt×Σ is a non-integral surface for the triple (Yg, ∅, w), and so the Floer homology I∗(Yg, w)

is defined. Let F be a pair of pants surface, and view the 4-manifold triple (F ×Σ, ∅, F ×pt)

as a cobordism from two copies of Yg to one copy of Yg. Functoriality gives a map

I∗(Yg, w)⊗ I∗(Yg, w)→ I∗(Yg, w)

which is graded commutative and associative in the incoming factors.

Definition 2.4.1. Let Vg,0 be the C-algebra given by I∗(Yg, w) with the ring structure

induced by the above pair of pants cobordism.

By definition, as a vector space Vg,0 is the homology of a chain complex whose generators

are approximately flat connections on Yg for some perturbation of the Chern-Simons func-

tional. The bundle on Yg is the unique PU(2) = SO(3) bundle on S1×Σ with w2 dual to the

curve w, which is the pullback of the unique nontrivial SO(3) bundle on Σ. This bundle is

associated to the U(2) bundle with c1 = 1 on Σ via the homomorphism U(2)→ PU(2), and

we can view the space of connections as a space of U(2) connections with fixed determinant

connection θ. It is easy to see that the set of equivalence classes of flat connections is in

bijection with the space of representations of π1(Yg \w)→ SU(2) modulo conjugation which

send a meridian of a small loop around w to the element −1. This is the same as two copies

of the moduli space of flat connections Mg(2, 1) of rank 2 and degree 1 on Σ, with the two
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copies arising from a choice of the holonomy along the S1 factor, which must be ±1. Upon

perturbing the critical point set becomes discrete, but the differential is a deformation of

the regular Morse differential for (two copies of) the finite dimensional compact manifold

Mg(2, 1). The homology will then be a sub-quotient of H∗(Mg(2, 1))⊕2. However, it turns

out that Vg is actually the full homology of the space of flat connections, as first argued by

Dostoglou and Solomon [9]. There is a quicker proof of this fact, however, which uses the

extended Floer homology construction above, and relies on a description of cohomology of

the moduli space of flat connections Mg(2, 1) due to Siebert and Tian among others [29].

We briefly review this argument, which can also be found in [26], as we will revisit it to

prove an analogous result for a product 3-manifold with product link.

The strategy for obtaining a description of this Floer homology is to use the extended

invariants for the bounding 4-manifold D2×Σ. Let a1, . . . , a2g be a standard generating set

of loops in π1(Σ) so that their homology classes are a symplectic basis for H1. We obtain

elements in Vg,0 by taking the relative invariant I(D2 × Σ, ∅, D2 × pt;χ) for a polynomial

χ ∈ A(D2 × Σ). The algebra Ag,0 := A(D2 × Σ) is simply the graded commutative tensor

algebra on H∗(Σ), and so is generated by the [ai]’s, [Σ], and a class [x] for x ∈ Yg. Let

us introduce notation for these generators analogous to the notation used in Chapter 1.

We set α = −1
4
[Σ], β = −1

4
[pt], and ψj = −1

4
[aj], where we use the normalizing factor

−1
4

to account for the fact that we have used the characteristic class p1 of the universal

bundle in the extended invariants, rather than the second Chern class c2. We can get a map

Φ : Ag,0 7→ Vg,0 via

(2.4.1) Φ(χ) = I(D2 × Σ, D2 × pt;χ)

From now on we will denote this multiplication by juxtaposition, or a dot ·. The ring

structure on Vg,0 is natural because it interacts well with Φ.

Lemma 2.4.2. The map (2.4.1 is a homomorphism of algebras.



2.4. THE FLOER HOMOLOGY OF A PRODUCT S1 × Σ: A REVIEW 93

Proof. Let χ1, χ2 ∈ Ag,0(D2 × Σ) = Ag,0 be two polynomials. Then the statement of

the lemma is exactly the equation

I(D2 × Σ, D2 × pt;χ1) · I(D2 × Σ, D2 × pt;χ2) = I(D2 × Σ, D2 × pt;χ1χ2).

This is a straightforward application of our gluing results. The product of the relative

invariants I(D2 × Σ, D2 × pt;χi) is the same as the relative invariant associated to the 4-

manifold obtained by plugging the incoming ends of F with disks, taking a product with Σ,

and using the polynomial χ1χ2. This is the same as I(D2 × Σ, D2 × pt;χ1χ2). �

The most important fact concerning the Floer homology Vg,0 is that Φ is actually sur-

jective onto a half dimensional subspace. Now, the approach in [26] is to redefine the Floer

homology of the product by enlarging the gauge group so that the critical points coming

from the different copies of Mg(2, 1) are identified by a gauge transformation, giving a new

vector space V̂g. There is then a surjective map Ag,0 → V̂g. To get fully surjective map,

we instead enlarge the algebra Ag,0 to include a variable ε with ε2 = 1, that is, we define

Ãg = Ag,0[ε]/(ε2 − 1), and set

Φ(ε) = E(Φ(1)).

Define the map E : Ãg → Vg,0 via:

E = I([0, 1]× Yg, ∅, [0, 1]× S1 × pt + pt× Σ)

Lemma 2.4.3. We have E2 = 1, E has degree 4, and commutes with the multiplication

structure on Vg,0: we have

E(v) = Φ(ε) · v.

Proof. That E has degree 4 mod 8 follows from the Donaldson dimension formula for

moduli spaces. By gluing, we have:

E = I([0, 1]× Yg, ∅, [0, 1]× S1 × pt + 2pt× Σ)
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Now, the Stiefel-Whitney 2-cycle [0, 1]×S1×pt+2pt×Σ, which is the same as [0, 1]×S1×pt

with Z/2 coefficients. This implies that we have E2 = ±1. The formula §A1.4(ii) of [20],

however, implies that the sign works out to 1. That E commutes with the multiplication is

a straightforward application of our gluing theory. �

Using the map E, we can extend the homomorphism Φ to Ãg, which is surjective. Before

we prove this, however, we must recall some facts about the cohomology of the representation

variety Mg(2, 1). Recall that over Mg(2, 1) × Σ there is a universal rank 2 vector bundle

U and that the cohomology ring of Mg(2, 1) is generated as a C-algebra by the elements

c2(U)/h for h ∈ H∗(Σ). Following [14], let S denote the set of monomials in Ag,0 in α, β,

and the ψj’s of the form

αiβjψj1 · . . . · ψjs

where the ji’s are distinct and in increasing order, and for which i + s < g, j + s < g.

Sending α to c2(U)/[Σ], β to c2(U)/[pt], and ψj to c2(U)/[aj] gives an algebra map from

Ψ : Ag,0 → H∗(Mg(2, 1)), and the image of S is a basis for H∗(Mg(2, 1);C) (Remark

5.3, [14]).

Proposition 2.4.4. The map Φ : Ãg → Vg,0 is surjective, and the image of S t εS is a

basis.

Proof. To prove the proposition, we use the natural pairing 〈, 〉 on the vector space Vg,0

obtained by taking the product cobordism [0, 1]×Yg and identifying the outgoing end with Yg

in an orientation reversing way. This gives an elbow macaroni cobordism from two copies of

Yg to the empty set. Since the underlying 4-manifold here gave the identity map, this pairing

is nondegenerate. The basis S can be decomposed into subsets by cohomological degree. We

can construct an |S|-by-|S| matrix M whose entries are the pairings between the elements

Φ(χ). If χ, χ′ are two basis elements, the pairing 〈Φ(χ),Φ(χ′)〉, by gluing, is the same as

the integer Donaldson invariant associated to the closed manifold S2 ×Σ with Ω = S2 × pt,

polynomial χχ′, and metric for which the S2 is much larger than Σ. On this 4-manifold, the

ASD moduli spaces have dimension 8k+6g−6, for k a nonnegative integer. Since g ≥ 2, the
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least dimension is 6g−6 > 0, and so the pairing 〈Φ(χ),Φ(χ′)〉 is zero unless deg(χχ′) ≥ 6g−6,

which is the dimension of the space Mg(2, 1). With respect to the block decomposition of

the pairing matrix M by degree, we get a matrix which is block anti-lower-triangular (that

is, a matrix for whom the i, j [indexed by degree] block is zero unless i + j ≥ 6g − 6, and

invertible if i + j = 6g − 6 as a result. The key is that the anti-diagonal blocks where

deg(χ) +deg(χ′) = 6g−6 are the same as the blocks of the corresponding pairing matrix for

top cohomology pairings inMg(2, 1). To see this, we simply note that intersection numbers

coming from the extended Floer homology arise from a Morse homology picture which can

be arranged to be isomorphic to a Morse homology picture for Mg(2, 1). The cohomology

classes Ψ(α), Ψ(β), and Ψ(ψi)’s are exactly the cohomology classes corresponding to the

V•’s in B∗Yg , restricted to the flat locusMg(2, 1). The approximate ASD equation reduces to

approximate flatness, since the 6g − 6 dimensional moduli space corresponds to zero action

connections. By Poincaré duality, the pairing matrix in H∗(Mg(2, 1)) is nondegenerate

because S is a basis. As a result, M is also nondegenerate, so the image of S in Vg,0 is a

linearly independent set. Now, we can construct a 2 |S|-by-2 |S| matrix N corresponding to

the pairings between monomials in Φ(S) t Φ(εS), which has 4 blocks. The upper left block

corresponds to M , and the lower right block gives M as well because ε2 = 1. For the off

diagonal blocks, the pairing corresponds to a Donaldson invariant for the bundle on S2 × Σ

with w2 = PD(S2× pt + pt×Σ). Thus, in the ASD dimension formula d = 8k+ 6g− 6, k is

a half integer, so the lowest dimension is 6g− 2. Hence, these off diagonal blocks are strictly

block anti-lower-triangular (the diagonal blocks are zero). This implies that we have:

N =

M P

P M


where M is block anti-lower-triangular, and P is strictly so. Hence, det(N) = det(M)2 6= 0,

so Φ(S) t Φ(εS) is linearly independent. Since we know the rank of Vg,0 is no more than

twice the rank of H∗(Mg(2, 1)), we see that in fact these ranks are equal and Φ(S) tΦ(εS)

is a basis. �
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Definition 2.4.5. The ideal of relations in Ãg is the ideal J̃g = Φ−1(0). The map Φ

expresses the algebra Vg,0 as a quotient

Vg,0
∼= Ãg/J̃g.

2.5. Excision

Our computations of V0,n will utilize a formula for Floer homology for surgery along genus

1 surfaces known as excision, originally due to Floer. The following result is a recast and

slightly generalized version of that theorem and is the prototype for a genus 0 analogue we

will prove in the next chapter. Let (Y,K, ω) to be a 3-manifold triple and suppose that T1, T2

are 2-tori disjoint from K and for which ω · Ti is odd for each i. We can construct a new

triple (Y ′, K ′, ω′) by cutting Y along T1 and T2 and regluing in the opposite (orientation

preserving) way, choosing some identification of T1 and T2 and perhaps replacing ω with

something homologous.

Notation. For Y connected, we denote by I∗(Y,K, ω)pt,±8 the ±8 generalized eigenspace

for the operator µ(pt). In the case that Y is a disjoint union of connected components

Y = Y1 t . . .t Ys, we understand that I∗(Y,K, ω)pt,±8 refers to the tensor product of the ±8

generalized eigenspaces of µ(yi) for yi ∈ Yi.

Theorem 2.5.1. (Floer, [6]) Suppose that (Y ′, K ′, ω′) is obtained from (Y,K, ω) as above.

Then we have:

I∗(Y
′, K ′, ω′)pt,±8

∼= I∗(Y,K, ω)pt,±8.

Before proving the Theorem, we recall some basic facts about the Floer homology of the

manifold Y1 = T 3.

Proposition 2.5.2. The Floer homology I∗(T
3, ∅, S1) is rank 2, with generators in the

same Z/4 grading and for which the matrix of the operator µ(pt) is
(

0 −8
−8 0

)
.

Corollary 2.5.3. Suppose there is an embedded genus 1 surface Σ in the triple (Y,K, ω)

disjoint from K and intersecting ω in an odd number of points. Then the spectrum of µ(pt)
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on I∗(Y,K, ω) is ±8. In other words,

I∗(Y,K, ω) ∼= I∗(Y,K, ω)pt,−8 ⊕ I∗(Y,K, ω)pt,+8

Proof. Let (YΣ,K,Ω) be the 4-manifold triple obtained by taking [0, 1]× (Y,K, ω) and

deleting a tubular neighborhood of an internal copy of Σ, thought of as a cobordism with

incoming ends (Y,K, ω) and (T 3, ∅, S1). Then by gluing, the operator (µ(pt)− 8)(µ(pt) + 8)

acting on I∗(Y,K, ω) is the same as the composite of capping the T 3 end, acting via (µ(pt)−

8)(µ(pt) + 8) on that end, and applying I(YΣ,K,Ω)

I∗(Y,K, ω)⊗ C 1⊗I(D2×T 2,∅,D2×pt)−−−−−−−−−−−−→ I∗(Y,K, ω)⊗ I∗(T 3, ∅, S1)

1⊗(µ(pt)−8)(µ(pt)+8)−−−−−−−−−−−−→ I∗(Y,K, ω)⊗ I∗(T 3, ∅, S1)
I(YΣ,K,Ω)−−−−−−→ I∗(Y,K, ω)

The operator (µ(pt) − 8)(µ(pt) + 8) certainly vanishes on I∗(T
3, ∅, S1) by the Proposition,

so this composite is zero. �

We now prove Theorem 2.5.1.

Proof. We can argue almost exactly as in [6]. There is a standard cobordism triple

(W,K, ω) from (Y,K, ω) to (Y ′, K ′, ω′) which may be reflected to give a triple (W ∗, K
∗
, ω∗)

in the opposite direction. We will consider the two ways of composing W with W ∗ and

compare the results with the identity map. The key is that the µ(pt) operators commute

with all operators arising from cobordisms. We shall prove the theorem for the +8 eigenspace,

as the negative case is exactly the same.

We begin with the glued-up cobordism Z = W ∗ ◦W from (Y,K, ω) to itself. Inside of

Z there is a copy γ of T 3 along which cutting produces a 4-manifold with four boundary

pieces consisting of two copies of Y and two copies of T 3. The 2-cycle ω∗ ◦ ω in Z intersects

γ in an odd number of circles by assumption on ω ·Ti, so the 3-manifold triple correpsonding

to γ satisfies non-integrality. Since we cut along γ, we recover Z by gluing U = [0, 1] × T 3

into the two T 3 boundary components. The triple corresponding to the cylinder U has

Stiefel-Whitney class homologous to [0, 1] × S1, and the corresponding map on the Floer
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homology of (T 3, S1) is the identity. This Floer homology is well known to be rank 2 with

µ(pt) exchanging the two basis vectors and scaling by 8.

Restriction to the +8 generalized eigenspace of µ(pt) in the Floer homologies is equivalent

to acting by the operator corresponding to the polynomial

πpt,+8 =
∏
i

∏
λ 6=8

([xi]− λ)N

where λ ranges all the other eigenvalues of µ(pt) appearing in any of the 3-manifolds, N is

larger than any of the ranks, and xi is a point in the ith connected component of Z. The

operator µ(πpt,+8) annihilates the other eigenspaces, and the polynomial πpt,+2 can “slide”

between all the cobordisms, by our general gluing result. This operator projects to a one-

dimensional subspace of I∗(T
3, S1). Viewing U as a cobordism from the empty set to two

copies of T 3, the relative invariant associated to U and the polynomial πpt,+8 simply gives

v⊗ v where v ∈ I∗(T 3, S1) is a +2-eigenvector for µ(pt). Up to a nonzero constant multiple,

this relative invariant also arises from the 4-manifold with boundary U ′ given by two disjoint

copies of D2 × T 2 with Stiefel-Whitney class D2 × pt and polynomial πpt,+8. Gluing U ′ into

Z cut along M simply gives the identity cobordism, and so we see that the map I∗(Z; πpt,+8)

is just a constant multiple of the map I∗([0, 1]× Y ; πpt,+8). This itself is a constant multiple

of the identity map upon restriction to the +8 generalized eigenspace of µ(pt).

Composing the cobordisms in the opposite direction produces Z∗ = W ◦ W ∗ and the

same argument shows that the induced map on I∗(Y
′, K ′, ω′) is a constant multiple of the

identity on restriction to I∗(Y
′, K ′, ω′)pt,+8. Hence, the triple (W,K, ω) induces the desired

isomorphism. The exact same argument works for the −8 eigenspace. �

The Multiplicative Case. There is a much simpler version of the Floer homology for

a product 3-manifold Yg (with empty link), obtained by letting the 2-cycle ω be the loop

u := pt × c, where c is a simple closed curve in Σ shown in PICTURE. The vector space

I∗(Yg, u) can be computed by using a decomposition of Σ into lower genus surfaces and the

above excision result, and behaves multiplicatively in g − 1. Suppose that c1 and c2 are two
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circles in Σ intersecting c in 1 point each and such that cutting along them produces a genus

g − 2 surface and a genus 1 surface each with 2 boundary components, then Ti = S1 × ci

for i = 1, 2 is a pair of 2-tori in Yg satisfying the hypotheses of Theorem 2.5.1. Cutting and

regluing produces a copy of Y2 and Yg−1. We know the Floer homology of a disjoint union is

a tensor product and the same is true of the +8 generalized eigenspace. We see that

I∗(Yg, u)pt,+8
∼= I∗(Yg−1, u)pt,+8 ⊗ I∗(Y2, u)pt,+8

The basic case to discuss then is g = 2. As mentioned in [21] this Floer homology was

computed by Braam and Donaldson ( [6], Proposition 1.15). Since the singular set is empty

here, the Floer homology has a relative Z/8 grading. As in the case ω = S1 × pt, the Floer

homology for ω = u is equal to the homology of the representation variety, which is now just

two copies of a 2-torus. The discussion in [21] implies that the sequence of vector spaces in

each grading is:

I∗(Y2, u) ∼= 0⊕ C⊕ C2 ⊕ C⊕ 0⊕ C⊕ C2 ⊕ C

and the operator µ(pt), which has degree 4, is an isomorphism in each (mod 4) grading. The

operator µ(pt) has 4-dimensional eigenspace for the each of ±8, which nails down its matrix

with respect to a graded basis. Hence, I∗(Y2, u)pt,+8 has rank 4, and

(2.5.1) I∗(Yg, u)pt,+8
∼= (I∗(Y2, u)pt,+8)⊗(g−1) ∼= C4g−1

.

The key result for the more complicated Floer homology Vg,0F = I∗(Yg, w) considered in

§2.4.1 is that the simultaneous eigenspace for the top eigenvalue of µ(Σ) and +8 for µ(pt) is

one-dimensional. The same is true for I∗(Y2, u), except that now the proof is much quicker.

The operator µ(Σ2) on I∗(Y2, u) has 2-dimensional generalized eigenspace for each of the

values 8ir, i = 0, 1, 2, 3 and the simultaneous eigenspace for (µ(pt), µ(Σ2)) is rank 1 as shown

in [21]. By stringing together cobordisms from Yg to Yg−1tY2, one gets a cobordism W u
g from

Yg to g−1 copies of Y2, realizing the isomorphism (2.5.1). The surface Σ ⊂ Yg is homologous

in W u
g to the sum of the g− 1 copies Σ

(i)
2 , where Σ

(i)
2 is the surface in the ith copy Y

(i)
2 of Y2,

so the operators µ(Σ) on I∗(Yg, u)pt,+8 and
∑g−1

i=1 µ(Σ
(i)
2 ) on I∗(Y2, u)

⊗(g−1)
pt,+8 are intertwined



2.6. THE FLOER HOMOLOGY OF (Yg,Kn) 100

by the isomorphism (2.5.1). It follows that the eigenspace of µ(Σ) for the value 2g − 2 is

one-dimensional, spanned by the preimage of ⊗g−1
i=1 v2 under (2.5.1) where v2 is an eigenvector

with value 2. This argument is not, however, independent of the calculations in [27], as our

knowledge of the spectrum of µ(Σ2) on I∗(Y2, u) in fact comes from an understanding on

how µ(Σ2) acts on V2,0. The above discussion could have been carried out for either ±8, and

so we have proved:

Proposition 2.5.4. The isomorphism (2.5.1) intertwines µ(Σ) on I∗(Yg, u)pt,±8 and∑g−1
i=1 µ(Σ

(i)
2 ) on I∗(Y2, u)

⊗(g−1)
pt,±8 . The spectrum of µ(Σ) is the set

{−8(g − 1),−8(g − 2), . . . ,−8, 0, 8, . . . , 8(g − 2), 8(g − 1)}

with the simultaneous eigenspace of the pair (µ(pt), µ(Σ)) for the values (±8(g − 1),±8)

being 1-dimensional.

2.6. The Floer Homology of (Yg, Kn)

We now set ourselves to the task of solving the main problem of this thesis, which is a

computation of the Floer homology of a product link Kn in Y0 = S1 × S2. We first make

some remarks applicable to the general case of (Yg, Kn). To get a 3-manifold triple satisfying

non-integrality, we must impose the condition that n be odd (or zero). In this case a Σ fiber

of Yg will be a non-integral surface. There are several possibilities for the Stiefel-Whitney

class: we could choose S1 × pt, or a union of arcs ui ⊂ S2 joining several pairs of marked

points, the the empty set, or some linear combination of these. It is not difficult to see that

adding S1 × pt to the Stiefel-Whitney class does not change the Floer homology. We can

recover the classical case n = 0 as well as long as we do use ω = S1 × pt. The most difficult

and relevant case for us is the case ω = ∅, and this is the analogue of the case ω = S1×pt in

the nonsingular story. However, our calculations for this space will use the case of a nonzero

Stiefel-Whitney class. In the case ω = ∅, the Floer homology of (Yg, Kn) inherits a product

structure analogous to that of Vg,0.
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Definition 2.6.1. Let Vg,n = I∗(Yg, Kn, ∅) denote the C-algebra obtained by using the

product structure induced by applying functoriality of I∗ to the cobordism F×(Σg, {n pts}, ∅).

Our first result is that Vg,n is isomorphic as a vector space to the homology of two copies

of the corresponding representation variety of flat connections Rg,n on the punctured surface

Σg \ {x1, . . . , xn}.

To prove this, we need an analogue of the Φ-map 2.4.1. We use the free graded-

commutative algebra

Ag,n = Ag,0 ⊗ C[δ1, . . . , δn]

which is exactly the algebra appearing in Chapter 1. We proceed as before and construct

elements in the Floer homology now via the bounding 4-manifold pair (Ag, Sn) = D2 ×

(Σg, {x1, . . . , xn}). Let Φ : Ag,n → Vg,n be defined on generators via:

α 7→ − 1
4
µorb([Σ]) · I∗(Ag, Sn, ∅)

β 7→ − 1
4
µ(pt) · I∗(Ag, Sn, ∅)

ψj 7→ − 1
4
µ([aj]) · I∗(Ag, Sn, ∅)

δk 7→ 1
2
µ([xk])κkI∗(Ag, Sn, ∅).

where xk refers to a point on the singular locus component D2×{xk}, and we again use the

normalizing factors −1
4

and 1
2

to account for the fact that we have used the characteristic

class p1 of the universal bundle, rather than the second Chern class c2. Strictly speaking

in order to pin down the sign of δk, we need to specify a choice of κk. Later on, however,

we will see that changing the signs of any of the δk’s induces an automorphism of Vg,n so

that the choice of sign is immaterial, and we simply make an arbitrary choice. The map Φ

respects the relative Z/4 grading and is a homomorphism of C algebras.

Likewise, for each polynomial χ ∈ Ag,n, we obtain an element Ψ(χ) of H∗(Rg,n) via

characteristic classes of the universal bundle over Rg,n ×Σ, by Chapter 1. We would like to

show that Φ is surjective, but as before we need to enlarge the algebra Ag,n. We define a
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map E : Vg,n 	 via

E = I([0, 1]× Yg, [0, 1]×Kn, pt× Σ),

noting that E2 is either 1 or −1. We no longer can be confident about the sign, so we write

E2 = ζg,n

and define the extended algebra

Ãg,n := Ag,n[ε]/(ε2 − ζg,n).

The map Φ extends to one from Ãg,n.

Theorem 2.6.2. Let Rg,n denote the moduli space of representations from Chapter 1 for

n odd and 3g + n− 3 ≥ 0. The vector space Vg,n is isomorphic to H∗(Rg,n,C)⊕2.

Proof. Let S ⊂ Ag,n be a finite set which maps to a basis of H∗(Rg,n) under Ψ. As

before there is a pairing 〈, 〉 on Vg,n which can be checked to agree with the cohomological

pairing on H∗(Rg,n) for pairs z, z′ ∈ S of complimentary degree. We get a 2 |S|×2 |S| matrix

N of pairings in the Floer homology with 4 blocks. The diagonal blocks are invertible by

Poincaré duality and the off diagonal blocks are stricly block anti-lower-triangular, and thus

N is invertible. We see that Φ(S) t Φ(εS) is a basis for Vg,n, completing the proof. �

2.6.1. Comparing the Ring Structures. We wish to compute the ring structure of

Vg,n, using as our model the techniques in [27]. The main idea is that the relations in the ring

Vg,n are graded deformations of those in H∗(Rg,n). The task then becomes computing the

terms in the deformation. Again, our approach here differs from [27] since we do not quotient

by a larger gauge group and so the Floer homology is twice as large as the cohomology ring

of Rg,n. Instead, let us define a map Φ+ : Ag,n → Vg,n via

Φ+(z) = 1
2

[
Φ(z) +

√
ζg,n

−1Φ(εz)
]

1
2

[
Φ(z) +

√
ζg,n

−1E(Φ(z))
]
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where
√
ζg,n is a choice of square root.

Lemma 2.6.3. The map Φ+ is a homomorphism of algebras and is a surjection onto the√
ζg,n-eigenspace of E, which is half-dimensional.

Proof. Let z, z′ ∈ Ag,n. We have:

Φ+(z)Φ+(z′) = 1
4

[
Φ(z) +

√
ζg,n

−1Φ(ε)Φ(z))
] [

Φ(z′) +
√
ζg,n

−1Φ(ε)Φ(z′)
]

= 1
4

[
2Φ(z)Φ(z′) + 2

√
ζg,n

−1Φ(ε)Φ(z)Φ(z′)
]

= Φ+(zz′)

so Φ+ is a homomorphism. By basic linear algebra the image of S is a linearly independent

set. If we choose the other square root −
√
ζg,n, we obtain a map Φ− and the images of Φ+

and Φ− are orthogonal under the pairing. This can be seen by considering the dimensions of

moduli spaces on S2×(Σg, {x1, . . . , xn}) and pairings of homogeneous elements. The span of

the images of Φ+ and Φ− must then be all of Vg,n, and so the image of Φ+ is half-dimensional.

That this is exactly the
√
ζg,n-eigenspace of E is now clear. �

As a corollary, we see that the
√
ζg,n-eigenspace of E is a half-dimensional subalgebra

V+
g,n, and the map Φ+ : Ag,n → V+

g,n induces an isomorphism of vector spaces

F : H∗(Rg,n)→ V+
g,n

by extending the set map from Ψ(S) to Φ+(S) by linearity. The analogue of the statement

on deformations for us is:

Proposition 2.6.4. Under the above vector space isomorphism, the ring structure of

V+
g,n is a mod 2 graded deformation of the cup product on cohomology. More precisely if

f, f ′ ∈ H∗(Rg,n) are homogeneous of degree i, j, then we have:

((F(f) · F(f ′)) = F
(
f ^ f ′ +

∑
d<i+j

d≡(i+j) mod 2

gd

)

for a sequence of gd ∈ H∗(Rg,n) of degree d ≤ i+ j − 2.



2.6. THE FLOER HOMOLOGY OF (Yg,Kn) 104

Proof. The proof is essentially the same as for Theorem 5 of [27], with the only dif-

ference that the dimensions of moduli spaces on S2 × Σ are now dim(Rg,n) + M for M a

multiple of 2 rather than 4. �

The ring structure of V+
g,n is determined by the kernel J +

g,n of Φ+. The surjection Ag,n →

H∗(Rg,n) induces an isomorphism of the cohomology ring with a quotient Ag,n/Ig,n for an

ideal Ig,n. In the genus 0 case, Proposition 2.6.4 and our results from Chapter 1 then imply:

Corollary 2.6.5. The ideal J +
0,n contains a collection of relations QJ

0,n for each J ⊂

{1, . . . , n} of cardinality at most m = (n− 1)/2. The polynomial QJ
0,n has leading term RJ

0,n

from (1.6.2) and is a mod 2 graded deformation of this term. That is:

QJ
0,n = RJ

0,n + lower order terms.

The remaining relations in J +
0,n are deformations of the relations δ2

k − β in I0,n. We shall

study these deformations later.

2.6.2. Induction on n. As in our computations for the cohomology rings Hg,n, we

will leverage an inductive structure for the rings Vg,n, which arise as natural surjections

Vg,n+2 → Vg,n. Let (Ag, Sn, ∅) denote the 4-manifold triple, as in Theorem 2.6.2, consisting

of the cap Ag = D2 × Σ (for Σ genus g) and singular locus Sn = D2 × {x1, . . . , xn}. The

boundary of this triple is the 3-manifold triple

(Yg, Kn, ∅) = (S1 × Σ, S1 × {x1, . . . , xn})

We will find homologous copy of Σ intersecting the singular locus in n + 2 points rather

than n. Let C denote an interior copy of Σ, say {0} × Σ in Ag. Let γ be the image of an

embedding of the interval (−1, 1) into D2 sending 0 to (0, 0). Let y denote the image of

1/2, and let B be a small 3-ball around (y, xn) inside the 3-manifold γ × Σ. Then ∂B is a

small 2-sphere intersecting Sn in just two points, as it hits D2 × {xn} twice and misses the

other singular disks. We can then tube together the 2-spheres ∂B and C in a way missing

the singular locus, giving a new 2-sphere Σ′ intersecting the singular locus n + 2 times,
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x1

x2
xn

xn+1

xn+2

Σ′

Figure 2.1. The surface Σ′ intersecting Sn in n+ 2 points.

hitting D2 × {xn} 3 times (see figure 2.6.2). Let νΣ′ denote a narrow tubular neighborhood

of Σ′, and let (W g,n+2
g,n , Sg,n+2

g,n , ∅) be the cobordism triple obtained by subtracting νΣ′ from

(Ag, Sn, ∅). This cobordism triple goes from (Yg, Kn+2, ∅) to (Yg, Kn, ∅), and induces a map

πg,n+2
g,n : Vg,n+2 → Vg,n.

To be precise, we must specify an identification of the new boundary component of W g,n+2
g,n

with (Yg, Kn+2, ∅). We take a diffeomorphism which respects the natural S1-bundle structure

of ∂νΣ′, and which is the identity away from the tube and B, and which maps the portion

of Σ′ due to the tube and B to a small neighborhood of xn+1 and xn+2. Orienting the disk

D2 × {xn} such that its intersection with Σ is positive, one of the new intersections with Σ′

will be positive and one will be negative. We choose our identification so that the negative

one is mapped to xn+1 and the positive one to xn+2. In addition, we pin down the sign

for this cobordism by choosing the restriction of the product complex structure on D2 × Σ,

which agrees with the product complex structure on the cylinder over (Y0, Kn, ∅).
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Remark 2.6.6. These maps are the exact analogue of the genus-increasing maps used

by Muñoz in [27] (see Lemma 9). Indeed, there are also natural maps

πg,n+2
g,n : Vg,n+2 → Vg,n

πg+1,n
g,n : Vg+1,n → Vg,n

arising from cobordism triples (W g+1,n
g,n , Sg+1,n

g,n , ∅).

The major fact that we need about these maps is that they behave well with respect to

the maps Φ : Ag,n → Vg,n.

Lemma 2.6.7. Let τ g,n+2
g,n : Ag,n+2 → Ag,n denote the map sending α to α, β to β, ψj to

ψj, and δk to δk for k 6= n− 1, and δn+1 to −δn. The following diagram commutes:

Ag,n+2

Φ
��

τg,n+2
g,n

// Ag,n

Φ
��

Vg,n+2

πg,n+2
g,n

// Vg,n

Proof. The point is that if we compose the capping cobordism (Ag, Sn+2, ∅) with the

cobordism (W g,n+2
g,n , Sg,n+2

g,n , ∅) from Remark 2.6.6 then the result is isomorphic to (Ag, Sn, ∅).

Moreover, the surface Σ in the copy of (Ag, Sn+2, ∅) is homologous - isotopic, in fact -

to the copy of Σ in (Ag, Sn, ∅) under this identification. This show that the diagram is

commutative for the generators α and β, and in fact also for the ψj’s. As for the δk’s, under

this identification the piece D2 × {xk} of singular locus in (Ag, Sn+2, ∅) is a subset of the

locus D2 × {xk} in (Ag, Sn, ∅) for k ≤ n. The locus D2 × {xn+i} for i = 1, 2 is a (small)

subset of D2×{xn} in (Ag, Sn, ∅) as well, but the orientation on the D2 factor is flipped for

i = 1. This accounts for the sign on δn+1. �

Now, since we do not have an isomorphism Vg,n
∼= H∗(Rg,n;C) as vector spaces but rather

an isomorphism V+
g,n
∼= H∗(Rg,n;C), where the plus sign indicates the

√
ζg,n-eigenspace for

the degree 2 map E, we need to amplify the above result for this subspace of Vg,n. The

result will clearly hold with V+
g,n replacing Vg,n as long as E commutes with the map πg,n+2

g,n .
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That this is the case is clear, since the 2-cycle representing the Stiefel-Whitney class in

the cobordism (which is just the cylinder) defining E is a copy of the surface Σ, and the

“incoming” Σ is isotopic to the “outgoing” Σ, with all the almost complex structures agreeing

up to isotopy in the gluings. Recall that V+
g,n
∼= Ag,n/J +

g,n for an ideal J +
g,n = (Φ+)−1(0).

Corollary 2.6.8. Under the map τ g,n+2
g,n : Ag,n+2 → Ag,n, we have the following inclusion

of ideals:

(2.6.1) J +
g,n+2 ⊂

(
τ g,n+2
g,n

)−1
(J +

g,n)

Proof. Suppose that f ∈ Ag,n+2 is a polynomial which is a relation in V+
g,n+2. Then by

Lemma 2.6.7, the polynomial τ g,n+2
g,n (f) is a relation in V+

g,n. �

Lastly, there are also natural injections ιg,ng,n+2 and ιg,ng+1,n obtained by reversing the di-

rection of the cobordisms defining the maps π••. We will want to leverage these later, but

note now that these injections do not fit into obvious commutative diagrams with injections

Ag,n ↪→ Ag,n,Ag,n+2.

The Flips on Vg,n. While the flip construction has been described and used for moduli

spaces on 4-manifolds, we can use it to generate automorphisms of the 3-manifold Floer

homology Vg,n.

Lemma 2.6.9. Let J ⊂ {1, . . . , n} be an even cardinality subset. The automorphism m̃J

of Ag,n sending δk to δk for k /∈ J and −δk for k ∈ J preserves the ideal J +
g,n. This induces

an automorphism mJ of V+
g,n.

Proof. The lemma is equivalent to the following statement: Iforf χ ∈ Ag,n, we have an

equality of Donaldson invariants

I(S2 × Σ, S2 × {x1, . . . , xn}, ∅;χ) = I(S2 × Σ, S2 × {x1, . . . , xn}, ∅; m̃J(χ)),

where the metric chamber we use on each is the one for which the area of S2 is much larger

than that of Σ. This second statement is an immediate consequence of Lemma 2.3.3. Indeed
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the Donaldson invariants are simple pairings of cohomology classes with moduli spaces of

connections, and the flip carries the moduli space on the left to that on the right, and by

construction the cohomology class µ(χ) to µ(m̃j(χ)). �

From now on, the maps m̃J and mJ will also be called the “flips” on J .

Lemma 2.6.10. Suppose that f ∈ J +
g,n is a polynomial relation. Break f into different δk

terms:

f =
∑

I⊂{1,...,n}

δIfI(α, β, ψ1, . . . , ψ2g)

for polynomials fI not involving any δk’s. Then for any individual I, the polynomial δIfI is

itself a relation.

Proof. We prove this by induction on the number of nonzero terms in the sum. Suppose

that I ′ 6= I and fI and fI′ are nonzero. Then we can find some pair k, l such that the

cardinalities of {k, l}∩I and {k, l}∩I ′ are of different parities. By Lemma 2.6.9, the flipping

automorphism m̃{k,l} of Ag,n preserves J +
g,n. Hence, if {k, l} ∩ I is even, then we have:

1
2
(1 + m̃{k,l}) · f =

∑
J :|J∩{k,l}|=even

δJfJ

and this polynomial is also a relation. This sum contains the same term δIfI , but the term

for I ′ goes away. If {k, l} ∩ I were odd, we could look at 1
2
(1 − m̃{k,l}) · f and again get a

new relation with fewer terms and in which the I term remains. By induction, we find that

δIfI is itself a relation. �

2.7. The Case g = 0 and n = 3

Our calculations for the ring structure on I∗(Yg, Kn, ∅) will leverage calculations per-

formed for the simplest nontrivial case g = 0 and n = 3. There are essentially two different

flavors of the Floer homology of (Y0, K3) to consider. In general, we have already defined

Vg,n, the Floer homology I∗(Yg, Kn, ∅). For any g and n ≥ 1 (not necessarily odd) we define:
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Definition 2.7.1. The twisted Floer homology of a product (Yg, Kn) is the vector space

Ug,n := I∗(Yg, Kn, u)

where u is an arc in Σg between x1 and x2.

Here, n need not be odd since for a loop d1 around x1, the 2-torus S1×d1 is a non-integral

surface. While Ug,n is not naturally a ring, it is a module over Vg,n. We now will study the

case n = 3 and g = 0 in depth.

2.7.1. The Ring V0,3. When n = 3, both V0,3 and U0,3 are 2 dimensional. This is

clear for V0,3, since the representation variety R0,3 is point. We can also see this directly as

follows. Let di be a loop going around xi and t the loop S1 × pt. A flat connection gives a

representation into SU(2) modulo conjugation, where xi maps to the trace zero conjugacy

class Ci. The only triple (T1, T2, T3) satisfying this is, up to ocnjugation, (i, j,k), and t must

map then to ±1. We get exactly 2 flat connections ρi for i = 0, 1 with S1 holonomy (−1)i

and it is not hard to see that the Chern-Simons functional is of Morse type, so that we

need not perturb. It remains to check that the differential vanishes, which follows from the

following.

Lemma 2.7.2. The two flat connections on (Y0, K3) differ in grading by 2 mod 4.

Proof. Consider the 4-manifold with boundary A0 = D2×S2, with singular locus S3 =

D2×{x1, x2, x3}. The relative invariant I∗(A0, S3, ∅) in V0,3 is found by looking at instantons

on A0. We are searching for 0-dimensional moduli spaces. The connection ρ0 extends to one

on the trivial bundle on (A0, S3, ∅) and by inspection this is the unique flat connection. The

nondegenerateness of CS on flat connections implies this single flat connection is the full

transverse 0-dimensional moduli space; all others are higher dimensional. We see that up to

sign I∗(A0, S3, ∅) is the vector [ρ0]. Similarly, if we change the Stiefel-Whitney class, there is a

flat connection for the triple (A0, S3, D
2×pt) extending ρ1 and up to sign I∗(A0, S3, D

2×pt) =

[ρ1].
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To see that the ρi lie in degrees differing by 2, consider the elbow macaroni cobordism

diffeomorphic to [0, 1] × Y0 going from two copies of Y0 to the empty set. Plugging in two

copies of (A0, S3, ∅), we get a 4-manifold diffeomorphic to S2 × S2, with 0 Steifel-Whitney

class for the bundle. The dimension formula for the ASD moduli spaces from [18] gives

8k + 4l where k is the instanton number and l is the monopole number. Since the class

w2 is 0, l and k are integers and so the moduli space has dimension a multiple of 4. Using

what we know about the relative invariant for (A0, S3, ∅), by stretching the metric near the

ends of [0, 1] × Y0 we see that the moduli spaces on the cylinder going between ρ0 to ρ0

have dimension a multiple of 4. On the other hand if we replace one of the (A0, S3, ∅) with

(A0, S3, D
2×pt), we see that the in the dimension formula 8k+4l, because the singular locus

intersects w2 in an odd number (three) of points, l will now be a half-inetger, and 8k + 4l

will be 2 mod 4. Thus, the moduli spaces going from ρ0 to ρ1 will have dimension 2 mod 4,

allowing us to conclude ρ0 and ρ1 are off by 2 in grading. �

Remark 2.7.3. So far, the signs of the generator [ρi] has been determined by letting it

be the image of the flat connection ρi under the quotient map upon passing to homology

(of course, the differential in this case is 0). It will be convenient to instead choose [ρ0]

to be generator obtained as the relative invariant associated to (A0, S3, ∅), and [ρ1] to be

I∗(A0, S3, D
2 × pt). The signs are fixed by using the product almost complex structure on

the underlying 4-manifold A0 = D2 × S2. From now this is what we will mean by [ρi].

While this essentially determines the ring V0,3, the important information we need from

V0,3 are the matrices for the operators µorb(Σ) and µ(pt). The operator µ(pt) can be deter-

mined by comparing with the corresponding operator for the nonsingular case of Y1 = T 3.

However, we first want to understand the operator µ(Σ), namely its eigenvalues. Despite a

full answer for the corresponding question for the nonsingular case Vg,0, the author is unable

to devise an argument leveraging that computation in this situation. Instead, we proceed by

performing the computation by directly understanding a 2-dimensional moduli space. We

shall prove:
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Theorem 2.7.4. The operator µ(Σ) on V0,3 sends the generator [ρi] to ±4[ρ1−i], where

the sign is the same in each case.

In order to effect this computation, we will need to delve into the world of parabolic

stable bundles.

2.7.2. Stable Parabolic Bundles. We will need a result relating singular anti-self dual

connections on a Kähler surface to stable parabolic holomorphic bundles. The analogous

result in 2 real dimensions was used in Chapter 1 to understand the moduli space of flat

connections on a punctured Riemann surface. The 4 dimensional case was treated in [20],

and it is this treatment we model our approach after. We first review the notion of a rank

2 parabolic bundle and the stability condition in 4 dimensions, and refer the reader to more

detailed accounts [30] and [24] for more general notions and more complete discussion.

Suppose that (X, κ) is a closed Kähler 4-manifold, and S is a smooth holomorphic curve

with connected components S(1), . . . , S(n). A rank 2 holomorphic bundle on X with parabolic

structure S is holomorphic vector bundle E along with a line subbundle F of E|S and pair

of weights λ0 > λ1 ∈ [0, 1). For us, we will have a fixed smooth rank 2 bundle on X in mind

with structure group U(2), and since our holomorphic bundles will be required to have a

fixed determinant bundle we will have λ0 + λ1 = 1 in our correspondence, so we set λ = λ1

and force λ0 = 1− λ (soon, λ will just be 1/4). The parabolic degree of E is defined to the

pairing with the Kähler class [κ] of the parabolic first Chern class ( [30], Definition 3.6):

cpar
1 (E) = c1(E) +

n∑
i=1

PD[S(i)].

In order to define the stability condition in rank 2, we only need to consider the possible

line subbundles of E . If L → E is a map of a line bundle into E , it acquires weights λ(i) at

each S(i) depending on whether the image of L|S(i) is contained in Fi and is nonzero. We

set λ(i) = 1− λ if it is, and λ(i) = λ otherwise, and define the parabolic first Chern class of

L via

cpar
1 (L) = c1(L) +

n∑
i=1

λ(i)PD[S(i)].
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We then define the parabolic slope µpar of E or L to be the parabolic degree divided by the

rank:

µpar(E) = 1
2
〈cpar

1 (E) ^ [κ], X〉(2.7.1)

µpar(L) = 〈cpar
1 (L) ^ [κ], X〉(2.7.2)

with the understanding that the notion for a line bundle L depends on a particular map into

E .

Definition 2.7.5. The parabolic rank 2 bundle (E ,F) is said to be stable if for any

nonzero map L → E for a line bundle L we have µpar(L) < µpar(E).

Definition 2.7.6. The monopole number of a parabolic rank 2 bundle (E ,F) on the

component S(i) of S is the number

li(E ,F) := 1
2
(c1(F⊥)− c1(F)) = 1

2
c1(E|S(i))− c1(F)

Two parabolic bundles (E ,F , λ) and (E ′,F ′, λ′) are declared to be isomorphic if λ = λ′

and there is a holomorphic isomorphism E → E ′ under which F is carried to F ′. General

theory of parabolic bundles implies that the set of isomorphism classes of stable parabolic

bundles with fixed generic weight λ and characteristic classes is naturally an algebraic variety

and in nice cases is smooth and compact.

Now, we suppose that (X, κ) is an orbifold Kähler surface singular with cone angle π

along a holomorphic curve S ⊂ X, and suppose Ω is a Stiefel-Whitney 2-cycle with no

boundary components, so that any singular orbifold bundle P̌ for the triple (X,SΩ) extends

to a non-orbifold SO(3)-bundle P on all of X. Let k and l be the instanton and monopole

numbers for p̌. Fix a smooth C2 bundle E on X with c1(E) ≡ PD(Ω) mod 2 and c2(E) = k.

Then we have:

Theorem 2.7.7. There is a one-to-one correspondence between elements of the mod-

uli space Mκ(P̌ ) of singular anti-self dual connections (with respect to the metric κ) with

monopole invariants (k, l) and the moduli spaceMpar(E) of isomorphism class of stable (with
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respect to κ) parabolic bundles structures on E with the same monopole invariants and the

weight λ = 1/4. In the case that the moduli spaceMκ(P̌ ) is a smooth compact manifold, this

bijection gives a smooth diffeomorphism between the moduli spaces. Over Mκ(P̌ ) there is a

universal family of bundles P with family of singular connections A, and suppose that over

M(E) there is a universal family of parabolic stable bundles E. Then there is an isomorphism

between the associated SO(3)-bundle adE to E and the bundle P .

Proof. This is essentially a restatement of the results of [20], specialized to the weight

1/4. The first statement follows from the bijection in Theorem 8.21 and the statement about

universal bundles follows from the discussion on deformations in Proposiiton 8.23. �

We will prove Theorem 2.7.4 by computing a singular Donaldson invariant, in turn done

transferring the question to a problem of computing a moduli space of parabolic stable

bundles on an algebraic curve. From the proof of Lemma 2.7.2, using the notation there, the

4-manifold triple (A0, S3, ∅) gives relative invariant [ρ0], and the triple (A0, S3, pt× Σ) with

opposite orientation gives the linear functional sending [ρ1] to ±1. Our gluing theory then

implies that the coefficient of [ρ1] of µ(Σ) · [ρ0] is the same as the integer invariant associated

to the 4-manifold triple

(X0, S3, pt× Σ)

where X0 = S2 × Σ ∼= CP 1 × CP 1 and S3 = S2 × {x1, x2, x3} with the degree 2 class

[Σ] ∈ A0,3. Since this is a closed 4-manifold with b+
2 = 1, we use a metric coming from a very

long neck in the gluing of A0 to A0. We will want to use an orbifold Kähler metric in order

to apply the previous discussion, and so define κ to be such a 2-form in the cohomology class

[κ] = PD[S2 × pt] +MPD[pt× Σ],

where M � 1 so as to be in the same chamber as metrics with long neck. Admissible orbifold

bundles P̌ on this space are classified by the instanton number k and monopole numbers li,

where li is the monopole number on the component S
(i)
3 = S2×{xi}. Writing l = l1 + l2 + l3
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and l = (l1, l2, l3), the expected dimension of the moduli space is

d = 8k + 4l.

All such bundles have preferred extensions to non-orbifold bundles on X, and arise as the

adjoint SO(3) bundle of a smooth U(2)-bundle E with c1(E) ≡ PD(pt × Σ) mod 2. Each

connection in our moduli space determines a line subbundle Li ⊂ E|
S

(i)
3

via its asymptotic

holonomy around linking circles, and the monopole number is given by

li = −1
2

[
c1(Li)− c1(L⊥i )

]
.

Wwrite Mk,l for the moduli space Mκ(P̌ ) with P̌ the orbifold bundle with invariants k

and l and Stiefel-Whitney class PD(pt × Σ). The number we wish to compute is the sum

of the evaluations of µorb(Σ) on all the 2-dimensional moduli spaces Mk,l, i.e. for which

8k + 4l = 2. By Theorem 2.7.7, this number is the same as the evaluation of the analogue

of µorb(Σ) on the collection of 2-dimensional moduli spaces of stable parabolic bundles on

CP 1 × CP 1 for the metric κ and singular along the 3-component curve S3.

We will need the following classification of rank 2 holomorphic bundles on a ruled surface.

Let π : X → C be an algebraic P1 bundle over a smooth curve C, and fix a section C0 and

fiber F0.

Theorem 2.7.8. (Br̂ınzǎnescu, [7]) Let E → X be a rank 2 holomorphic bundle. Then

there are integers a, b, r, s, a codimension 2 subscheme Y ⊂ X, and line bundles L1,L2 ∈

Pic0(C) such there is an exact sequence

0→ OX(aC0 + rF0)⊗ L1 → E → OX(bC0 + sF0)⊗ L2 ⊗ IY → 0

where IY is the ideal sheaf for the subscheme Y , and a ≥ b.

We now proceed to prove Theorem 2.7.4

Proof. We think of X0 = S2 × Σ as fibering over the S2 factor with Σ as fiber, and

write C = S2 and X0 = C × Σ. The theorem implies that for any holomorphic bundle E ,
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there is an exact sequence

0→ OC(a) �OΣ(r)→ E → OC(b) �OΣ(s)⊗ IY → 0

for some locally complete intersection Y and integers a, b, r, s with a ≥ b. This implies that

c1(E) = (a+ b)PD[pt× Σ] + (r + s)PD[C × pt](2.7.3)

c2(E) = 1
2
(b− a)(s− r) + |Y |(2.7.4)

where |Y | counts points in the subscheme with multiplicity. Thus, we must have r + s = 0,

a+ b = 1, and the instanton number k is given by 1
2
(b− a)(s− r) + |Y |. We therefore write

E as an extension

(2.7.5) 0→ OX0(1 + a,−r)→ E → OX0(−a, r)⊗ IY → 0

where OX0(x, y) is the line bundle OC(x) � OΣ(y), and a ≥ 0. The value of a determines

the generic splitting type of the bundle E upon restriction to sections C × pt: we have

E|π−1(x)
∼= OC(1+a+t)⊕OC(−a−t) and t ≥ 0 is generically 0 and jumps only if C×{xi}∩Y

is non-empty.

We now consider the parabolic structure. This amounts to choosing, for each i = 1, 2, 3,

a line bundle Fi ⊂ EC×{xi}. For a fixed vector l = (l1, l2, l3), the degree of Fi is determined;

we have c1(F⊥i ) = c1(E|c×{xi})− c1(Fi) and so li = 1
2
− c1(Fi). Because we know how E splits

upon restriction to C slices, we see that c1(Fi) must be 1 + a+ t or −a− t.

Finally, we introduce the stability condition. By (2.7.2) and our choice of κ, we have:

µpar(E) = 1
2

+ 3
2
M.

Any line bundle L on X0 is of the form OX0(x, y). Suppose that L → E is a nonzero map, and

define ei to be 0 if the image of L ∈ E|C×{xi} is 0, and 1 otherwise. Letting e = e1 + e2 + e3,

by (2.7.2) the slope is given by:

µpar(L) = x+ yM + (3
4

+ e
2
)M.
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Stability of E then requires that for any map L → E , we must have

x+ yM + (3
4

+ e
2
)M < 1

2
+ 3

2
M

For M � 1, this inequality is equivalent to:

(2.7.6) c1(L|pt×Σ) + e
2
< 3

4
.

Claim. We must have r = 0 or r = 1 in (2.7.5).

Suppose first that r ≤ −1. Then the map OX0(1 + a,−r) → E in the splitting of E is

destabilizing, since even if e = 0, the line bundle OX0(1 + a,−r) does not satisfy (2.7.6).

Hence, r must be greater than or equal to 0. To show that r < 2, we will argue that there

are no bundles having r ≥ 2 lying in 2-dimensional moduli spaces, that is with 8k + 4l = 2.

If r ≥ 2, then by (2.7.4), 8k = 8(2a+ 1)r+ 8 |Y | ≥ 32a+ 16 + 8 |Y |. Now, the minimal value

for 4l is achieved when c1(Fi) is maximal for each i. If the splitting type of E on C ×{xi} is

(2.7.7) OC(1 + a+ ti)⊕OC(−a− ti)

(where ti ≥ 0), then the lowest li can be is −1
2
−a− ti. The value of ti is zero if C×{xi}∩Y

is empty, and the maximum value of t1 + t2 + t3 is |Y |, by elementary algebraic geometry.

Hence:

(2.7.8) 4l ≥ −6− 12a− 4 |Y | .

Thus, 8k + 4l ≥ 10 + 20a+ 4 |Y |, which is always at least 10. We see that no moduli space

of dimension 2 contains a bundle with r ≥ 0, proving the claim. Note that this argument

obviously fails for r = 1.

We therefore have two cases: r = 0, and r = 1. The inequality (2.7.8) gives a general

lower bound on 4l. For convenience, we establish an analogous upper bound. The largest

possible value for l is realized when c1(Fi) is minimal for each i, which the value −a− ti and
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this gives l1 = 1
2

+ a+ ti. We therefore have the inequality:

(2.7.9) 4l ≤ 6 + 12a+ 4 |Y | .

Case r = 0: Suppose we have an extension OX0(1 + a, 0)→ E → OX0(−a, 0)⊗ IY , so that

8k = 8 |Y |. In this case, in order for the map of the line bundle OX0(1 + a, 0) to not be

destabilizing, (2.7.6) implies that we need e ≤ 1. The restriction of E to C × {xi} splits as

(2.7.7), and the map OX0(1 + a, 0)→ E restricts to

ιC : OC(1 + a)→ OC(1 + a+ ti)⊕OC(−a− ti).

By degree considerations, we have ιC = (f, 0) where f is a nonzero map OC(1 + a) →

OC(1 + a+ ti) (which must have ti zeroes counted with multiplicity). Thus, to ensure e ≤ 1,

we must have that Fi = OC(−a− ti) for at least two values of i, which we assume without

loss of generality are i = 1, 2 and possibly i = 3. This means that

4l = 6− 4
∑
i

c1(Fi) ≥ 6 + 8a+ 4t1 + 4t2 − 4− 4a− 4t3

= 2 + 4a− 4 |Y |

and so 8k + 4l ≥ 2 + 4a+ 4 |Y |. We conclude that a = 0 and |Y | = 0.

The set of isomorphism classes of non-split extensions OX0(1, 0) → E → OX0(0, 0) is,

by well know techniques in bundle theory, in bijection with the projectivization of the first

cohomology H1(Hom(OX0(0, 0),OX0(1, 0))). This is just H1(OX0(1, 0)), which vanishes by

the Künneth theorem. We see that E ∼= OX0(1, 0)⊕OX0(0, 0). In order to have 8k+ 4l = 2,

we must have l = 1
2

and so Fi must be a degree 0 for two values of i and the third Fi

should be degree 1. Let us assume Fi are degree 0 for i = 1, 2. Then F3 is rigid; there is a

unique degree 1 line bundle in E|C×{x3}
∼= OC(1) ⊕ OC(0). The bundles Fi for i = 1, 2 are

each determined by a section (fi, ci) of OC(1)⊕OC(0) where the constant ci is not zero and

not both of f1 and f2 are zero. We must now consider automorphisms τ of E . It is easy

to see that any automorphism is constant in Σ directions, and upon restriction to Σ must
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take the form τ =
(
c f
0 d

)
for nonzero constants c, d and section f of OC(1). Hence, we can

always use an automorphism to bring (c1, f1) to (0, 1), and then (f2, c2) into (f2, 1). There

is H0(OC(1)) ∼= C2 worth of f2, and since the line bundle Fi is insensitive to scaling these

sections, we see that we get a CP 1’s worth of isomorphism types of parabolic bundles. It

remains to check that these are all stable, but a quick glance at (2.7.6) shows that the only

case that needs to be consider is the case of map from OX0(1, 0) into E , and the discussion

here works to eliminate the possibility of a destabilizing bundle in this case. Since we made

the choice l3 = −1
2
, we actually get 3 distinct copies of CP 1.

Case r = 1: If r = 1, then 8k = 16a+ 8 + 8 |Y | and (2.7.8) implies 8k+ 4l ≥ 2 + 4a+ 4 |Y |,

and so a = 0 and |Y | = 0. Hence, E sits in an extension

(2.7.10) 0→ OX0(1,−1)→ E → OX0(0, 1)→ 0

and 8k = 8, so l = −3
2

and li = −1
2

for each i. Again we have E|C×{x3}
∼= OΣ(1) ⊕

OΣ(0) and we have no choice but to let Fi be the OΣ(1) factor for each i. Now, suppose

that the extension is split. Then OX0(0, 1) maps in and this violates (2.7.6). Hence, we

can classify the possible extensions via a cohomology group again, which in this case be-

comes H1(OΣ(1,−2)). By the Künneth theorem and Riemann-Roch, this is isomorphic to

H0(OC(1)) ⊗ H1(OΣ(−2)) ∼= C2 ⊗ C, whose projectivation is CP 1. For a non-split exten-

sion arising this way, it is clear that there will be no non-scalar automorphisms, and so by

uniqueness of the Fi’s we get a CP 1’s worth of isomorphism classes of parabolic bundles.

The map of OX0(1,−1) into E certainly obeys (2.7.6) even though e = 3. There will be no

other maps of OX0(a, b) into E with b > 1, so these bundles are all stable.

We must now calculate how the operator µ(Σ) acts, and for this we must study universal

bundles overN×X0 for our 2-dimensional moduli spaceN , which consists of 4 copies of CP 1.

We will do this for the copy arising from the case r = 1, and appeal to a “flip” symmetry

to handle the other 3. Let π : (C2 \ 0)×X0 → X0 denote the projection. Topologically, all

the bundles E from the extension (2.7.10) are isomorphic to the direct sum of OX0(1,−1)
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and OX0(0, 1). The extension is specified by an element in a cohomology group, which we

may take to be a Hodge cohomology group H = H0,1(OX0(1,−2)) ∼= C2. We can choose

a splitting H ↪→ Ω0,1 of the de Rham quotient map, and this allows us to write down a

“tautological” extension

0→ π∗OX0(1,−1)→ Ẽ→ π∗OX0(0, 1)→ 0

which when restricted to {ξ}×X0 for ξ ∈ H\ 0 is the non-split extension on X0 correspond-

ing to ξ in the isomorphism H ∼= H1(OΣ(1,−2)). Modding out by scalar isomorphisms

corresponds to the simultaneous action of C× on (C2 \ 0) and scalar multiplication on one

of the two factors in the bundle direct sum, which we may as well take to be the first. The

quotient of the analogous action on the trivial bundle C → C2 by C× is the tautological

bundle τCP 1 → CP 1, and so the quotient of Ẽ is a bundle E→ CP 1 ×X0 given by:

E ∼= [τCP 1 �OX0(1,−1)]⊕OX0(0, 1)

Now, there are also line bundles Fi ⊂ E|CP 1×C×{xi} corresponding to the parabolic structure.

For the case r = 1, these are clearly each just given by

Fi = τCP 1 �OC(1)

In order to determine µorb([Σ]), we must use the adjoint bundle AdE, which has first Pon-

tryagin class equal to −4c2(E). The point class for the component C × {xi} of the singular

loci is given by c1(E|CP 1×pt)− 2c1(Fi|CP 1×pt), and so µorb([Σ]) is equal to

−4c2(E)/[Σ]− 3c1(E|CP 1×pt) + 2
∑
i

c1(Fi|CP 1×pt)

Since c1(τCP 1) = −hCP 1 , which is minus the hyperplane class, we have:

c2(E) = (−hCP 1 + hC − hΣ) · hΣ = −hCP 1hΣ + hChΣ
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and so 〈c2(E)/[Σ],CP 1〉 = −1. We also have

c1(Fi|CP 1×pt) = hCP 1 + hC ,

which evaluates to −1 on CP 1. Lastly c1(E|CP 1×pt) = hCP 1 , which again gives −1 on CP 1.

Hence: 〈
µorb([Σ]),CP 1

〉
= 4 + 3− 6 = 1.

This is the contribution coming from the component of the moduli space corresponding

to l = (−1/2,−1/2,−1/2) and k = 1. We now utilize the flip construction. Since we are in

the case that the Stiefel-Whitney 2-cycle intersects the singular locus S3 transversely and has

no boundary components, we can define monopole and instanton numbers l and k for each

component of this moduli space. For J ⊂ {1, 2, 3}, since the components S
(j)
3 of the singular

locus have zero self-intersection, the partial flip τJ sends the component corresponding to l

and k the component with numbers

k′ = k +
∑
j∈J

lj

and l′j = −lj for j ∈ J . In our case, flipping on a single component C × {xi} changes

the Stiefel-Whitney class, but flipping twice preserves it. Thus, for each pair of indices,

say {1, 2} ∈⊂ {1, 2, 3}, the flip τ{1,2} sends the component with l = (−1/2,−1/2,−1/2)

and k = 1 to the one with l1 = l2 = 1/2, l3 = −1/2, and k = 0. By Lemma 2.3.3, the

class µorb(Σ) is preserved under the flip, and so we need to determine whether it preserves

orientation. For this, we use the formula (A1.5) and the preceding discussion from [20],

which in our zero self-intersection case implies that whether the flip is orientation preserving

or not depends only on the genus of the singular set. Everything is oriented by the presence

of the obvious complex structure on X0 = C × Σ. The formula implies that a single flip on

C × {x1} is orientation reversing, though this moves us into a moduli space for the triple

with 2-cycle pt × Σ + C × {x1}. If we flip again on a new index, the result is orientation

preserving, but now our 2-cycle is really pt×Σ + 2C × {x1}. Even though this is equivlant
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mod 2 to the original 2-cycle, the equivalence requires us to compare orientations between

isomorphic moduli spaces, which are oriented by choices of U(2) lifts. From [20] we see

that this identification is actually orientation preserving, because the difference has square

0. Another way to see that orientation is preserved is to simply note that we can take

two different paths from the k = 1 component and a given k = 0 component: we can flip

on a single pair of indices, or the other two pairs in sequence. Whether the flip preserves

orientation should be the same for all the flips by symmetry, and so either they are all

reversing or all preserving. We immediately see by the parity that they are all preserving.

As a result, the contributions from the other 3 components of the moduli space are also 1,

so we obtain a total of 4. �

This result is the core computation of the entire paper. It will eventually allow us

to compute the deformation of the cup product on H∗(R0,n) giving ring structure on the

Floer homology. For convenience, we redefine the generator [ρ1] of V0,3 to be the image of

[ρ0] under −1
4
µorb(Σ). Thus, the matrix for µorb(Σ) in the basis {[ρ0], [ρ1]} is ( 0 4

4 0 ), and

[ρ1] = 1
4
I∗(A0, S3, ∅; [Σ]).

2.7.3. The Vector Space U0,2. If we allow the 1-cycle ω to have ends on the link Kn

in Yg, it is no longer necessary for n to be odd. In the case n = 2, we have the vector

space U0,2 = I∗(Y0, K2, u), where u is an arc between x1 and x2. It is straightforward to

check that the space of flat connections is a single point, and that U0,2
∼= C. Denoting the

generating flat connection by ρ0,2, the operator µorb(Σ), which has degree −2, must vanish

by degree considerationgs. However, the operator µ(pt) does not, as we shall see. This is a

general phenomenon which occurs for any 3-manifold triple with a non-integral embedded

2-torus missing the singular locus. To show this, we will leverage the known computation of

µ(pt) on the Floer homology of T3, specifically for the triple (Y1, ∅, β), where β is a curve in

Σ1 = T 2. Recall that V1,0 = I∗(Y1, ∅, β) is two dimensional, generated by two flat connections

τi, i = 0, 1, with SU(2) holonomy equal to (−1)i around the S1 factor, off by grading 4 mod

8 from each other (the absense of K means the Floer homology has a relative Z/8 grading).
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The operator µ(pt) interchanges these generators and multiplies by 2. In particular, µ(pt)

has eigenvalues ±8.

Lemma 2.7.9. Suppose that (Y,K, ω) ∈ wink is connected and that there is a 2-torus

T ⊂ Y \K on which ω is odd. Then µ(pt) has only eigenvalues ±8 on I∗(Y,K, ω).

Proof. Let N be the rank of I∗(Y,K, ω), so that the span of the ±8 generalized

eigenspace of µ(pt) in V = I∗(Y,K, ω) is given by the kernel of µ(π±8) where π±8 =

(pt − 8)N(pt + 8)N for a point Y \ K. We claim that µ(π±8) is zero on V . In the pres-

ence of T , there is a natural cobordism (W1, S,Ω) from (Y,K, ω) to a disjoint union of

(Y,K, ω) and (Y1, ∅, β). This can be viewed as performing an excision operation along two

paralell copies of T . Another viewpoint is to take the product cobordism [0, 1]×(Y,Kω), and

to remove a small tubular neighborhood (A1, ∅, D) {1/2}×T from this 4-manifold, where D

is the disk intersection of the neighborhood of T with [0, 1]× ω. By our gluing theorem, the

operator µ(π±8) is equal to the composite of the map induced by (W1, S,Ω) followed by the

linear functional induced by (A1, ∅, D) on V1,0 along with the polynomial π±8, tensored with

the identity on V . By what we know about µ(pt) on V1,0, this linear functional vanishes.

We conclude that µ(π±8) = 0 on V . �

Corollary 2.7.10. The operator µ(pt) on U0,2 is multiplication by either 2 or −2.

Proof. If d1 denotes a circle separating x1 and x2, then S1×d1 is odd for u in (Y0, K2, u).

The conclusion follows because U0,2 is one-dimensional. �

We define the number Π in what follows by −4Π = ±8, using whatever sign on the right

as appears in the Corollary.

2.7.4. The Vector Space U0,3. Essentially the same argument as for the vector space

V0,3 shows that there are two generators for U0,3 and each are off in grading by 2. Unlike

for V0,3, these generators [σ0] and [σ1] are interchanged by the orientation reversing diffeo-

morphism of Y0 coming from reflecting the S1 factor. There is a map on U0,3 analogous to

E on Vg,n, which has degree 2 and square ±1, and which we shall also call E. There is
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Figure 2.2. The cobordism defining ∆u
3 .

also a natural map from (U0,3)⊗2 to V0,3, obtained from the cobordism which is a product of

(Σ, 3 pts, u) with (F, F, γ), where F is a pair of pants viewed as having two incoming ends

and one outgoing end, and γ is an arc going between the two incoming ends. Denote this

product cobordism by (W u
3 , F3,Γ). There is a natural product almost complex structure on

W u
3 and thus we get a well-defined sign for the map it induces, ∆u

3 .

Lemma 2.7.11. The map ∆u
3 : (U0,3)⊗2 → V0,3 sends [σi] ⊗ [σj] to ±[ρ0] if i 6= j for a

fixed sign, and ±[ρ1] if i = j for a possibly different fixed sign.

Proof. We can view the triple (W u
3 , F3,Γ) as arising from an elbow macaroni cobordism

[0, 1] × (Y0, K3, u) by deleting a tubular neighborhood of a copy of Σ0 in the interior. The

restriction of a product flat connection on [0, 1] × Y0 gives a flat connection on W u
3 , whose

restriction to the outgoing end has trivial holonomy around the S1 factor and thus is ρ0. The

two incoming flat connections are interchanged by the orientation-reversing diffeomorphism

on Y0 coming from flipping the S1 factor, and so are σ0 and σ1 in some order. With a fixed

incoming pair, it is not hard to see that this flat connection on W u
3 is unique and gives the

actual ASD moduli space. The automorphism of F which interchanges the incoming ends via

rotation by 180◦ gives an orientation-preserving automorphism of the space of connections

on W u
3 and thus [σi]⊗ [σ1−i] maps to ±[ρ0], each for the same sign.

On both V0,3 and U0,3 spaces, it is easy to see that the E maps interchange the two gen-

erators, possibly with a sign defect. In addition, the two versions of E are clearly intertwined
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(perhaps with sign) by ∆u
3 . This shows that [σi] ⊗ ε[σi] maps to ±[ρ1] for each i, and the

sign is the same for each on account of the 180◦ rotation as before. �

Lemma 2.7.12. Just as for V0,3, the operator µorb(Σ) on U0,3 exchanges the generators

(and multiplies by −4). The operator µ(pt) is equal to −4Π (the eigenvalue ±8 on U0,2)

times the identity on U0,3 and V0,3.

Proof. To prove the first assertion, we use utilize the cobordism of Lemma 2.7.11 and

corresponding map ∆u
3 . Let µorb(Σ) · [σ0] = C[σ1]. Since µorb(Σ) × 1 is intertwined with

µ(pt) by ∆u
3 , we have:

−4[ρ1] = µorb(Σ) · [ρ0] = µorb(Σ) · ±∆u
3([σ0]⊗ [σ1]) = ±∆u

3(µorb(Σ) · [σ0])⊗ [σ1])

= ±∆3(C[σ1])⊗ [σ1])

= C[ρ1].

Hence, C = −4 (the plus or minus sign throughout is the same and matches the sign

appearing in Lemma 2.7.11). The same argument shows that µorb(Σ) · [σ1] = −4[σ0]. Now,

since µorb([Σ]), which is nonzero on both vector spaces, commutes with µ(pt), it is clear in

each case that the matrix of µ(pt), which is diagonal by degree considerations, has equal

diagonal entries. As in the case of n = 2, if d1 is a small loop around x1, then the torus

S1 × d1 is odd for u in (Y0, K3, u). Thus, by Lemma 2.7.9 µ(pt) must be either −4ΠId or

4ΠId on U0,3. As for V0,3, we again utilize the cobordism of Lemma 2.7.11. Since µ(pt)× 1

is intertwined with µ(pt) by ∆u
3 , we have:

µ(pt) · ρ0 = ∆u
3(µ(pt) · [σ0]⊗ [σ1]) = ±4Π∆u

3([σ0]⊗ [σ1]) = ±4Πρ0.

Hence, the diagonal entries are both either ±4Π, with same value occuring for U0,3 and V0,3.

To nail down the sign, we study a cobordism from (Y0, K3, u) to a disjoint union of

(Y0, K3, u) and (Y0, K2, u). This cobordism is given by excision along the tori S1 × d1 and

S1 × d2 in Y0. Let U be the 3-manifold with boundary given by the complement of small

2-balls B1, B2 inside a third 3-ball B. Let γ1, γ2 be 2 simple line segments going from ∂B
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Figure 2.3. The cobordism from (Y0, K3, u) to (Y0, K3, u) t (Y0, K2, u).

to ∂B1, let γ3 be a line segment from ∂B1 to ∂B2, and γ4 be an arc going from ∂B2 to ∂B.

Finally, let ω be a disk whose boundary is the union of an arc on the boundary of each

3-ball, and the segments γ1, γ3, and γ4 (see Figure 2.7.4). Then the excision cobordism is

diffeomorphic to the product triple (S1, S1, pt) × (U,∪iγi, ω). By studying flat connections

on this 4-manifold triple, it is easy to see that the map is nonzero. Every incoming vector

is an eigenvector for µ(pt) with value ±4Π and every outgoing vector is an eigenvector for

1⊗ µ(pt) on U0,3 ⊗U0,2 with value −4Π. This is enough to conclude that the eigenvalue on

U0,3 is equal to −4Π. �

It remains to discuss the action of the degree 2 operators µ([xi]) (arising from the ith

singular S1 in K3). It turns out that they each vanish, not only on U0,3 but also on V0,3. Of

course, this operator is not defined unless we choose a local extension

Lemma 2.7.13. The operator µ([xi])κ (for either choice of κ) is identically zero on U0,3

and V0,3.

Proof. The key idea is that the cohomology class µ([xi])κ in the space of connections

for (Y0, K3, u) is zero modulo torsion for i = 1, 2. To see this, we imagine moving the point

{1}× {xi} around the loop S1×{x1}. The presence of the Stiefel-Whitney 2-cycle u, which

terminates on the circle S1 × {xi} for i = 1, 2, means that there is no global trivialization

of P̌ on a the complement of S1 × {xi} in a small neighborhood of this circle. Following
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the trivialization around the loop, the choice κ is brought into the oppositive trivialization.

Thus, we conclude that µ([xi])κ = −µ([xi])κ, and so the corresponding operator vanishes for

i = 1, 2.

Now, there is also an operator µ([xi])κ′ on V0,3 = I∗(Y0, K3, ∅), and for one of the possible

choices of κ′, the operators µ([xi])κ⊗ 1 and µ([xi])κ′ are intertwined by the map ∆u
3 , by the

gluing theorem. Since ∆u
3 is surjective, we conclude that µ([xi])κ′ vanishes on V0,3 for i = 1, 2.

However, by symmetry, it must also be the case that it vanishes for i = 3, from which we

conclude that µ([x3])κ vanishes as well on U0,3. �

In fact, it is now possible for us to use known computations for Donaldson invariants in

order to compute the exact sign of Π. We use a result from the paper [16].

Lemma 2.7.14. The value of Π is 2.

Proof. �

On V0,3, we now know that µ(pt) is the map −8Id and µorb(Σ) exchanges the two gener-

ators and multiplies by −4. The map E exchanges the two generators [ρi], i = 0, 1, possibly

with signs. However, we do know that E commutes with µorb(Σ) exactly, and this implies

that E2 = 1 on V0,3, and then by the discussion preceding Corollary 2.6.8 we must have

E2 = 1 on V0,n and can choose
√
ζ0,n = 1. We then have Φ+(1) = [ρ0] + [ρ1], and this vector

generates V0,3. We have:

Φ+(β) = 2Φ+(1)

Φ+(α) = Φ+(1)

And we have already shown that µ([xk]) vanishes on V0,3 so that Φ+(δk) = 0. We conclude:

(2.7.11) J +
0,3 = (α− 1, β − 2, δ1, δ2, δ3).

We can now prove:

Lemma 2.7.15. The relation δ2
k = β − 2 always holds for k = 1, . . . , n in V0,n.
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Proof. Induction. The claim hold for n = 3, so suppose that the Lemma holds for

n and there are relations δ2
k − β + 2 inside J +

0,n. By Proposition 2.6.4 and the discussion

following it, since the relation δ2
k = β holds in H∗(R0,n+2;C), we know that there is a mod

2 deformed relation

δ2
k + Aα +

∑
i

Diδi − β +B

in J +
0,n+2. By Lemma 2.6.9, it is easy to see that

δ2
k + Aα− β +B

will also be a relation. The image of this relation in A0,n for k ≤ n will be itself, and for

k = n + 1, n + 2 will be δ2
n + Aα − β + B. By hypothesis δ2

k − β + 2 is also a relation and

so if A 6= 0, subtracting will yield a relation α− C for some C. Such a relation cannot hold

in J +
0,n for n > 3 because it is not a graded deformation of a relation in H∗(R0,n;C). From

this we can conclude that A = 0, and further that B = 2, proving the claim. �

2.7.5. The Case g 6= 0, n = 1. What is remarkable about our computations for n = 3

is that it allows us to gain information about the higher genus case, as we shall now explain.

There is a way to obtain a higher genus surface Σ′ from a given surface Σ by taking 2

nullhomotopic circles c1 and c2 bounding disjoint disks, cutting along them and regluing in

the opposite way. In a product 3-manifold S1×Σ, we can cut along S1×ci and relguing along

these 2-tori. This is exactly the kind of operation treated by the excision result Theorem

2.5.1. However, these two 2-tori are not suitable as yet because the Stiefel-Whitney 2-cycle

has zero intersection with them. However, if our circles ci enclose singular points xi in Kn

and there is an arc u ⊂ ω connected the circles S1 × {xi}, then these 2-tori become non-

integral surfaces. The result of excision produces an additional copy of S1×S2 with 2 marked

points and an arc between them. In the case of a sphere with 3 marked points, this excision

operation gives a cobordism map from

U0,3 → U0,2 ⊗ U1,1
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where Ug,1 := I∗(Yg, K1, pt × d) with d a simple loop in Σ. By Theorem 2.5.1, this map

induces an isomorphism U0,3 → (U1,1)pt,−8, since µ(pt) is −8Id on U0,3 and U0,2, and the

later is one-dimensional. Now, it is straightforward to verify that the representation variety

for the triple (Y1, K1, pt× d) consists of two isolated points, and thus the Floer homology is

at most 2-dimensional. By everything we have said up to now, we can conclude that U1,1

is rank 2 with generators off in grading by 2, with µ(pt) = −8Id, and µorb[Σ] has matrix(
0 −4
−4 0

)
. Lastly, this implies that U0,3 and U1,1 are isomorphic via a map intertwining α and

β. Now, we recall the vector space I∗(Yg, u) ∼= C4(g − 1). By performing an excision along

S1 times a circle in Σg ⊂ Yg intersecting u in a point and a similar 2-torus in Y1, we get an

excision isomorphism

(Ug,1)pt,−8
∼= I∗(Yg, u)pt,−8 ⊗ U1,1.

Since the +8-eigenspace for µ(pt) on U1,1 is zero, we obtain:

(2.7.12) Ug,1
∼= I∗(Yg, u)pt,−8 ⊗ U1,1.

Moreover, this isomorphism intertwines µorb(Σ) on Ug,1 and the sum µ(Σg)⊗ 1 + 1⊗µorb(Σ)

on I∗(Yg, u)pt,−8 ⊗ U1,1. From Proposition 2.5.4, we conclude:

Proposition 2.7.16. The spectrum of the operator µorb(Σ) on Ug,1 is the set

(2.7.13) {−4(2g − 1),−4(2g − 3), . . . ,−4, 4, . . . , 4(2g − 3), 4(2g − 1)}

and the generalized eigenspaces for the values ±4(2g − 1) are 1-dimensional.

2.8. The Vector Space U0,n and Eigenvectors

We can use our calculations for U0,3 to build up a description of U0,n for arbitrary n ≥ 2.

We utilize the excision theorem to do this. Let Y
(1)

0 and Y
(2)

0 be two copies of S1×Σ0. There

are 2-tori T1 and T2 coming from S1×d1 for a loop d1 around x1 ∈ Σ0 in each. Performing an

excision along these gives a cobordism U3,3
4,2 from Y

(1)
0 tY (2)

0 to a disjoint union of (Y0, K4, u)

and (Y0, K2, u). We call this kind of excision cobordism a point transfer cobordism, as it

“transfers” one point on Σ0 to the other copy of Σ0 (see Figure 2.8). By excision, this
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Figure 2.4. A schematic for the point transfer cobordism.

produces an isomorphism between the tensor products of the −8-generalized eigenspaces of

µ(pt) on each vector space appearing. We need a quick result on the representation variety

for (Yg, Kn, u).

Proposition 2.8.1. The representation variety for the triple (Yg, Kn, u) is a disjoint

union of 2n−2 copies of the torus T 2g. The rank of the Floer homology is less than or equal

to 22g+n−2.

Proof. Recall our standard generators a1, . . . , a2g for the fundamental group of Σ, and

for each i let di be a small loop in Σ passing only around the point xi. Letting Si denote the

holonomy around ai, Ti around di, and Q around the S1 factor, the representation variety is

isomorphic to the quotient

R ∼=

{
S1, . . . , S2g, T1, . . . , Tn, Q ∈ SU(2)

∣∣∣∣∣
g∏
j=1

[S2j−1, S2j]
n∏
k=1

Tk = 1, ∀k Tr(Tk) = 0

[Sj, Q] = 1, [Tk, Q] = 1 for k ≥ 3, [T1, Q] = [T2, Q] = −1

}/
SU(2)

The condition [T1, Q] = −1 implies that up to unique conjugation, T1 = i and Q = j. The

value of T2 must then be in the coset iS1
j , where S1

j is the circle subgroup through j, and Sj

must lie in the subgroup S1
j . In addition, Tk must be ±j for k ≥ 3 in order to have trace 0.

The product of T3T4 · · ·Tn will be ±jn−2, and the commutators [S2j−1, S2j] are all 1. Thus,
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T2 is fixed to be either ±j or ±k depending on the other Tk’s, which offer 2n−2 choices. The

space of possible Sj’s will give a torus (S1)2g = T 2g, which verifies the statement about the

representation variety. By general considerations this representation is smoothly cut out and

the Floer homology will be a subquotient of its homology, which has rank 22g+n−2. �

We see that the rank of U0,4 is at most 22 = 4. Since every vector in U0,3 and U0,2

is a −8-eigenvector for µ(pt), we know U0,4 contains a generalized −8-eigenspace for µ(pt)

isomorphic to the tensor product of 2 copies of U0,3. The cobordism U3,3
4,2 thus induces an

isomorphism from (U0,3)⊗2 to U0,4, obtained by post-composing with the tensor product of

Id on U0,4 with the linear functional `2 : U0,3 sending [ρ0,2] to 1. Since it is surjective, every

vector in U0,4 is actually an eigenvector with value −8 for µ(pt).

We can perform this operation more generally. There is an analogous point transfer

cobordism Un,3
n+1,2 inducing a map ∆n,3

n+1 : U0,n ⊗ U0,3 → U0,n+1, again after post-composing

with 1 ⊗ `2. By counting dimensions and using the bound from Proposition 2.8.1, we see

that ∆n,3
n+1 is an isomorphism. Stringing together maps of this kind, we get a cobordism U3

n

from n−2 copies of (Y0, K3, u) to (Y0, Kn, u) and n−3 copies of (Y0, K2, u). Post-composing

with 1⊗ `⊗(n−3)
2 , we get an isomorphism

(2.8.1) ∆3
n : U0,3 ⊗ · · · ⊗ U0,3︸ ︷︷ ︸

n−2

∼=−−−−→ U0,n

In particular, dimC(U0,n) = 2n−2, and µ(pt) is equal to −8 times the identity on U0,n.

Conveniently, we can also pin down the operator µorb(Σ) on U0,n. The key insight is that

the copy of the 2-sphere Σ in the outgoing end (Y0, Kn, u) is homologous in the cobordism

U3
n to the sum of the 2-spheres in all the other ends (including copies of (Y0, K2, u)). Since

µorb(Σ) vanishes on U0,2, we see that µ(Σ) on U0,n and the map

n−2∑
i=1

1⊗ · · · ⊗ 1⊗ µorb(Σ)︸ ︷︷ ︸
i

⊗1⊗ · · · ⊗ 1

on (U0,3)⊗(n−2) are intertwined by ∆3
n. Denote by σ± the ∓4 eigenvector of U0,3 obtained

by taking a sum or difference of the two generators. We see that µorb(Σ) has a basis of
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2n−2 eigenvectors {∆3
n(σe1 ⊗ · · · ⊗ σen−2)}, where ei is choice of sign ±. The eigenvalue of

∆3
n(σe1 ⊗ · · · ⊗ σen−2) is equal to −4

(∑n−2
i=1 ei · 1

)
, and so the spectrum of µ(Σ) is the set

{−4(n− 2),−4(n− 4), . . . , 4(n− 4), 4(n− 2)}.

We will see that for n odd, this information allows us to say the same thing about the

operator µorb(Σ) on V0,n. As it stands, we can at least show that the spectrum of µ(Σ)

contains this set.

Lemma 2.8.2. For each λ ∈ {−4(n − 2),−4(n − 4), . . . , 4(n − 4), 4(n − 2)}, there is a

nonzero simultaneous eigenvector of (µorb(Σ), µ(pt)) in the kernel of the operators µ([xk])κk

with value (λ,−8) in V0,n.

Proof. The pair of pants cobordism map (W u
3 , F3,Γ) from the discussion preceding

Lemma 2.7.11 has an obvious analogue (W u
n , Fn,Γ) for general n ≥ 2. It induces a map

∆u
n : U0,n⊗U0,n → V0,n. Post-composing with the product cap (A0, Sn, ∅) on (Y0, Kn, ∅) gives

back the elbow macaroni cobordism inducing a bilinear form Bu
n on U0,n. Since the elbow

macaroni cobordism is diffeomorphic to the identity cobordism, we conclude that this form is

nondegenerate. Moreover, since the identity map preserves the various µorb(Σ) eigenspaces,

the bilinear form is non-degenerate when restricted to the λ eigenspace. Thus, there are a

pair of vectors vλ, wλ ∈ U0,n for which Bu
n(vλ, wλ) 6= 0. By our gluing theorem, this means

that ∆u
n(vλ, wλ) is a nonzero vector in V0,n which is a λ-eigenvector. Since µ(pt) = −8Id

and µ([xk])κk vanishes on U0,n, this vector is a −8-eigenvector for µ(pt) and is in the kernel

of the operator µ([xk])κk for each k as well. �

Because we actually wish to have a description of the subalgebra V+
0,n ⊂ V0,n, we need

to understand when the eigenvectors from Lemma 2.8.2 are in the image of Φ+. The map E

on U0,n is given by the product cobordism with additional Stiefel-Whitney 2-cycle given by

a copy of Σ. This copy of Σ is homologous to the sum of the different copies of Σ in n− 2
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the incoming ends of the cobordism U3
n. We conclude that E on U0,n and

n∑
i=1

1⊗ · · · ⊗ 1⊗ E ⊗ 1⊗ · · · ⊗ 1,

are intertwined by ∆3
n, at least up to sign. It is this sign which will cause some issue for us,

and so we denote it by e3
n. On U0,3, we have ±4 eigenvectors σ∓ = [ρ0]∓ [ρ1], and we have:

E(σ+) = σ+, E(σ−) = −σ−

Thus, an eigenvector ∆3
n(σe1 ⊗ · · · ⊗ σen−2) in U0,n is E-invariant only if

∏
i(ei1) = e3

n. Now,

the operator E on V0,n is intertwined with E ⊗ 1 by ∆u
n, also perhaps up to a sign eun. Now,

by the discussion following Lemma 2.7.14, V+
0,n is the E-invariant subspace. In the proof of

Lemma 2.8.2, we may take one of the eigenvectors, say vλ, to be an elementary one

∆3
n(σ+ ⊗ · · · ⊗ σ+ ⊗ · · · ⊗ σ− ⊗ · · · ⊗ σ−)

with -4 times the difference in the number P of positives and number N of negatives equal

to λ. Then the resulting eigenvector in V0,n will be E invariant only if (−1)N = eune
3
n. Let En

denote this overall sign. Rather than carefully keeping track of orientation conventions and

nailing this sign down precisely, we will eventually proceed by noticing that the inductive

structure of the rings Vg,n actually force this sign to be alternating in n. What our discussion

does show is the following result.

Proposition 2.8.3. For each λ in {-(n-2),-(n-4),. . . ,n-4,n-2}, there is a simultanous

eigenvector either with value (λ, 2) or (−λ, 2) for multiplication by the pair Φ+(α) and Φ+(β)

and in the kernel of multiplication by Φ+(δk).

Proof. If the vector

∆3
n(σ+ ⊗ · · · ⊗ σ+ ⊗ · · · ⊗ σ− ⊗ · · · ⊗ σ−)

has N minus signs appearing, then reversing + and − gives a vector with opposite Φ+(α)

eigenvalue. Exactly one out of this pair is E-invariant, since n is odd. �



2.9. THE CASE g = 0 AND n > 3 133

2.9. The Case g = 0 and n > 3

We now move on to the general case. We have already shown that the relation δ2
k−β+ 2

is in J +
0,n for each k and n. It will be convenient to use an intermediate ring Bg,n obtained

by taking the quotient by the relations δ2
k − β + 2.

Notation. Let Bg,n denote the quotient algebra Ag,n/(δ
2
1 − β + 2, . . . , δ2

n − β + 2). We

denote the passage of an element from Ag,n to Bg,n by a bar, so that we write, for example,

δ
2

k = β − 2 in Bg,n. We denote the projection map from Bg,n to V+
g,n by Φ

+
.

The ring Bg,n is no longer graded, but there is still a notion of degree defined by taking

the lowest degree representative in Ag,n for an element in Bg,n. There also remains a mod

2 grading. Let J +
g,n denote the image of the relation ideal J +

g,n in Bg,n. Then it is an easy

corollary of Proposition 2.6.4 that J +
0,n is generated by mod 2 graded deformations Q

J

0,n of

R
J

0,n. Moreover, there are induced maps τ g,n+2
g,n : Bg,n → Bg,n and it is clear that there is an

inclusion of ideals:

(2.9.1) J +
g,n+2 ⊂

(
τ g,n+2
g,n

)−1 (J +
g,n

)
Moreover, the flips mJ are well defined on Bg,n and are intertwined by the possible projec-

tions.

It is easy to use the flip symmetry to determine Q
J

0,n for |J | = m.

Lemma 2.9.1. For all |J | = m, we can assume Q
J

0,n = R
J

0,n = δJ .

Proof. We invoke Lemma 2.6.10 to conclude that, for any J , without a loss of generality

we may always take Q
J

0,n = δJ · p(α, β) for some polynomial p. When |J | = m, we must have

deg(p) = 0, and so are free to set Q
J

0,n = δJ . �

As a corollary, we see that (β − 2)m ∈ J +
g,n, and with a bit of thought it is easy to see

that m is the smallest such power.
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The surjections πg,n+2
g,n : Vg,n+2 → Vg,n will be fundamental to our calculations of these

rings, as they establish inclusions of the ideals of relations. These maps are easy to under-

stand, as they fit into commutative diagrams with the natural surjections Ag,n+2 → Ag,n.

We shall also need the injective maps ιg,ng,n+2 : Vg,n → Vg,n+2 arising from oppositely directed

cobordisms. These maps do not fit into the obvious commutative diagrams, and so we shall

need to work out exactly what these maps are. At the level of flat connections, it is easy to

see that the cobordisms defining the ι•• maps induce the natural injections Rg,n ↪→ Rg,n+2

and Rg,n ↪→ Rg+1,n. We shall focus on the former type, as the latter was essentially studied

by Muñoz [27]. Unfortunately, this injection of representation varieties is not “flip invari-

ant”, in that the particular injection is not preserved under flips on the target space. To

remedy this, we shall take a sum over the 4 possible natural injections. We achieve this by

composing ιg,ng,n+2 with the four possible flips on 2 or 0 indices in the set {n, n+ 1, n+ 2} on

the space Vg,n+2. We set:

(2.9.2) ι̃g,ng,n+2 =
1

4

(
ιg,ng,n+2 + ιg,ng,n+2 ◦ F{n,n+1} + ιg,ng,n+2 ◦ F{n,n+2} + ιg,ng,n+2 ◦ F{n+1,n+2}

)
The map ι̃g,ng,n+2, at the level of flat connections, is then clearly given by the map 1 7→ Ψ(β).

Proposition 2.9.2. The map ι̃g,ng,n+2 : Vg,n → Vg,n+2 is injective and given by

ι̃g,ng,n+2(Φg,n(z)) = Φg,n+2((β − C)z)

for some constant C, z ∈ Ag,n, and where we have implicitly used the natural injection

Ag,n ↪→ Ag,n+2. When g = 0, we must have C = 2.

Proof. We shall use the notation of ι̃ and Φ undecorated, with the superscripts and

subscripts to be understood from context. We first show that ι̃ is injective. Let z ∈ Ãg,n,

and suppose that

〈ι̃(Φ(z)),Φ(z′)〉g,n+2 = 0
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for all z′ ∈ Ãg,n+2. Then since capping the cobordism on the right and left produces the

4-manifold triple (S2 × S2, {n pts} × S2, ∅), we see that

〈
Φ(z),Φ(πg,n+2

g,n (z′))
〉
g,n

= 0

Hence, since πg,n+2
g,n is surjective, we must have Φ(z) = 0.

It is an easy application of our gluing theory and the fact that E commutes with ι̃ that

ι̃(Φ(z)) = Φ(z)ι̃(Φ(1)),

so it is enough to prove that ι̃(Φ(1)) = Φ(β − 2). Recall that we have a set Sg,n ⊂ Ag,n

consisting of monomials of degree at most the dimension 6g + 2n − 6 of the moduli space

Rg,n+2 such that Φ(Sg,n) t Φ(εSg,n) is a basis of Vg,n. Let x ∈ Ag,n be in the span of

Sg,n+2) t εSg,n+2 such that ι̃(Φ(1)) = Φ(x). We require that

〈
1,Φ(πg,n+2

g,n (z))
〉
g,n

= 〈Φ(x),Φ(z)〉

for all z ∈ Ãg,n+2. Note that the left hand side is zero unless deg(z) is at least 6g + 2n − 6

and congruent to it mod 4 (counting ε as degree 2), as this is the lowest dimension of

moduli space on (S2 × S2, {n pts} × S2, ∅). Since the lowest dimension of moduli space on

(S2 × S2, {n+ 2 pts} × S2, ∅) is 4 higher than this, it is easy to see by nondegenerateness of

the pairings matrix for the basis vectors that we must have deg(x) ≤ 4 and that x has only

terms of degree 4 and 0. Let m denote the unique top degree element of Sg,n+2, which we

may assume pairs to 1 with the element 1. It is unique in Sg,n+2 in having degree strictly

greater than 6g + 2n− 6 and congruent to it mod 4. Now, we compare the pairings

〈Φ(x),Φ(z)〉 and 〈Φ(β),Φ(z)〉

By construction of the ι̃ maps, these pairings are equal when deg(z) = 6g + 2n − 6, as the

pairings correspond to cohomology pairings on moduli spaces of flat connections. There

is only one other potentially nonzero pairing with Φ(x), which is with m. Thus, for some
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constant C, we have

x = β − C.

It remains to determine C in the case g = 0. But we know that (Φ(β)− 2)m = 0 in V0,n and

no lower power of (Φ(β)− 2) vanishes. By induction, we see that C = 2 for all n. �

An immediate consequence is the following, which should be compared to Corollary 15

of [27].

Corollary 2.9.3. There is an inclusion of ideals

(2.9.3) (β − 2)(πg,n+2
g,n )−1(J +

g,n) ⊂ J +
g,n+2 ⊂ (πg,n+2

g,n )−1(J +
g,n)

We can now finish the puzzle. We shall prove:

Proposition 2.9.4. Let n = 2m+ 1. Then the image J 0,n of J0,n under the projection

to B0,n is generated by mod 2 graded deformations

(2.9.4) QJ
0,n(α, β, δ1, . . . , δn) = q0,n−2s(α, β) · δJ

of the polynomials RJ
0,n in B0,n for |J | = s ≤ m, and where q0,n(α, β) a polynomial defined

recursively by

(2.9.5) q0,n+2 = (α− (−1)mn) q0,n −m2(β − 2)q0,n−2.

and q0,1 = 1, q0,−1 = 0.

Before doing this, we shall first need to study a natural subring of V+
0,n, denoted Vinv

0,n,

which is invariant under the group of flips. That it is a subring is clear. Less obvious is its

connection to the correpsonding subring Hinv
0,n of H0,n = H∗(R0,n). It is easy to see that Hinv

0,n

is given as the quotient of C[α, β]/(r0,n, βr0,n+2). The map Φ+ establishes Vinv
0,n as a quotient

of C[α, β] by some ideal J inv
0,n . It is an easy adaptation of our previous arguments to prove:
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Lemma 2.9.5. The ideal J inv
0,n is generated by polynomials q1

0,n(α, β) and q2
0,n(α, β) which

are mod 2 graded deformations of r0,n and βr0,n+2. These polynomials are of degree 2m and

2m+ 2 respectively.

The culmination of discussion with Floer theory and eigenvectors is the following result.

Proposition 2.9.6. Let q0,n(α, β) be the polynomial defined by the recursion (2.9.5).

Then for the polynomials qi0,n from Lemma 2.9.5 we may take q1
0,n = q0,n and q2

0,n = (β −

2)q0,n−2.

Proof. We argue by induction on n, assuming the Proposition has been proved for

n′ ≤ n. We will leverage the inclusion of ideals (2.9.3), which certainly holds for the invariant

ideals J inv
0,n . Under the inductive hypothesis this implies that q1

0,n+2 and q2
0,n+2 are linear

combinations of q0,n and (β− 2)q0,n−2. By degree considerations, we conclude that there are

polynomials

q1
0,n+2 = a(α, β)q0,n + b(α, β)(β − 2)q0,n−2

q2
0,n+2 = c(α, β)q0,n + d(α, β)(β − 2)q0,n−2

where deg(a) = deg(d) = 2, deg(b) = 0, and deg(c) = 4. By comparing leading terms with

the corresponding recursions for the r0,n’s, we conclude that there are constants λ, µ, τ and

C such that:

q1
0,n+2 = (α− λ)q0,n −m2(β − 2)q0,n−2

q2
0,n+2 = (β + µα− τ)q0,n + C(β − 2)q0,n−2.

The constant λ should be interpreted as a new eigenvalue for multiplication by Φ+(α).

Now, from Proposition 2.8.3, we know that there is a nonzero simultaneous eigenvector vn+2

in V+
0,n+2 for multipication by (α, β) with value either (n, 2) or (−n, 2). This eigenvector

is the image of (the tensor square of) a basis eigenvector b+ ⊗ · · · ⊗ b+ or b− ⊗ · · · ⊗ b−

in U0,n+2. Let us impose the inductive hypothesis that the spectrum of Φ+(α) on Vinv
0,n is



2.9. THE CASE g = 0 AND n > 3 138

{1,−3, 5, . . . , (−1)m(n− 2)}. The question of whether the new value is n or −n is answered

by determining which of the images of bε1⊗· · ·⊗bεn are E-invariant, which depends only the

parity of the number of minus signs. We conclude that, since the inclusion of ideals forces

(−1)m(n− 2) to be an eigenvalue, the correct signed new eigenvalue is (−1)m+1n.

Now applying the two relations to vn+2 gives D(α− λ)vn+2 = 0 for some nonzero D. We

conclude that λ = (−1)m+1n. Now, we are free to subtract µ times the first equation from

the second, and we obtain:

q2
0,n+2 = (β − τ)q0,n + C ′(β − 2)q0,n−2.

Now, by the inductive hypothesis and (2.9.3), we know that (β−2)q0,n ∈ J inv
0,n+2. Subtracting

this from the above relation gives a relation of strictly lower degree, which upon comparing

leading terms is not a graded deformation of r0,n+2 or βr0,n. This is a contradiction unless

this difference is the zero polynomial. We conclude that

q2
0,n+2 = (β − 2)q0,n

This completes the inductive step. The base case of n = 3 is just equation (2.7.11). �

We can now finish the proof of Proposition 2.9.4

Proof. We know that J 0,n is generated by certain relations QJ
0,n(α, β, δ1, . . . , δn) which

are mod 2 graded deformations of RJ
0,n. Applying flips, we may assume that QJ

0,n takes the

form δJ · qJ0,n(α, β). It remains to show that qJ0,n is just q0,n−2|J |, where q0,n′ is the sequence

defined by (2.9.5). We proceed by induction, both on n, assuming the proposition has been

proved for all n′ < n, and on |J |, assuming qJ
′

0,n = q0,n−2|J ′| for all |J ′| < |J |. Proposition

2.9.6 essentially verifies this in the base case J = ∅, so we assume |j| = s ≥ 1 and without

loss of generality 1 ∈ J , and set J ′ = J \{1}. We may assume that qJ0,n is monic in the top α

power (because this is true of q0,n−2s and these polynomials are mod 2 deformations of each

other), and suppose that it is not equal to q0,n−2s. By 2.9.3 and the inductive hypothesis,
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we know that

(β − 2)δΦJ ′ · q0,n−2s(α, β)

is in J 0,n. By multiplying QJ
0,n by δ1, we also have the relation

(β − 2)δΦJ ′ · qJ0,n(α, β).

Now, the difference dJ0,n = qJ0,n− q0,n−2s has degree at most 2m− 2s− 2, since the top degree

terms must agree, and thus we obtain a relation

(β − 2)δΦJ ′ · dJ0,n(α, β)

of degree 2m, and thus it must be a C-linear combination of the QJ
0,n’s. This can only be the

case if (β − 2)dJ0,n is a scale multiple of qJ
′
0, n, which by induction is equal to q0,n−2s−2. On

the other hand, it is easy to see from (2.9.5) that the top degree part of q0,n−2s−2 is equal to

αm−s−1 +β ·p(α, β) for some degree 2m−2s−6 polynomial p, which is not true of (β−2)dJ0,n.

This is a contradiction, and thus we have established that qJ0,n = q0,n−2s. �

We now wish the study the spectrum of multiplication by Φ+(α) on V+
0,n. In what follows,

we set λn = (−1)m+1(n− 2).

Lemma 2.9.7. The polynomial

(2.9.6) P0,n(α) = (α− λn)(α− λn−2)2 · · · (α− λ3)m

is a linear combination of q0,n and (β − 2)q0,n−2.

Proof. From the recursion (2.9.5), it is easy to see that the polynomials (β − 2)sq0,n−2s

always lie in J inv
0,n for all n (that is, they are linear combinations of q0,n and (β − 2)q0,n−2),

and so we are done if we can show that there are polynomials asn in α and β such that

(2.9.7) P0,n = a0
nq0,n + a1

n(β − 2)q0,n−2 + . . .+ am−1
n (β − 2)m−1q0,3 + amn (β − 2)m
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We argue by induction on n, and suppose that the polynomials asn exist. We then desire

asn+2 for which

(2.9.8) P0,n+2 = a0
n+2q0,n+2 + . . .+ amn+2(β − 2)mq0,3 + am+1

n+2 (β − 2)m+1.

The left hand side of (2.9.8) is
∏m+1

i=1 (α− λ2i+1) times that of (2.9.8). We will solve for the

asn+2 by comparing terms on the two right hand sides. Expand each q0,n−2s appearing in

(2.9.8) via the recursion relation. We then equate coefficient polynomials for the q0,n−2s’s,

to obtain:

a0
n+2 = (α− λn) · . . . · (α− λ3)a0

n

(α− λn)a1
n+2 −m2a0

n+2 = (α− λn) · . . . · (α− λ3)a1
n

(α− λn−2)a2
n+2 + (m− 1)2a1

n+2 = (α− λn) · . . . · (α− λ3)a2
n

...

(α− λ3)amn+2 + 12am−1
n+2 = (α− λn) · . . . · (α− λ3)a2

n

am+1
n+2 = 0

It is not difficult to see that these equations for the asn+2’s can be solved in sequence in terms

of the asn’s. We omit the full details of this calculation. �

Corollary 2.9.8. The spectrum of multiplication by Φ+(α) on V+
0,n is

{λ3, λ5, . . . , λn}

where λk = (−1)(k+1)/2(k − 2) and the only eigenvalue for Φ+(β) is 2. The generalized

eigenspace for Φ+(α) for the top value λn is 1-dimensional and a spanning vector is an

eigenvector for Φ+(β) with value 2.

Proof. The previous lemma establishes the claim about the spectrum of Φ+(α). We see

that the minimal polynomial for α divides P0,n(α) and since (α−λn) appears with exponent

1, the generalized eigenspace for this value is the same as the true eigenspace. The eigenspace
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is exactly the the kernel of Φ+(α)− λn. By rank-nullity, we have

dim
(
ker(Φ+(α)− λn)

)
= dim

(
V+

0,n

/
Im(Φ+(α)− λn)

)
.

The vector space V+
0,n/ Im(Φ+(α) − λn) is isomorphic to A0,n modulo the relations in J +

0,n

into which λn has been plugged in for α. From Lemma 2.9.7 and (2.9.3), we know that

(β − 2)P0,n−2(α) is in J +
0,n. Plugging in α = λn, we get a nonzero scale multiple of (β − 2),

which shows that this vector space is at most 1-dimensional. It is at least this big because

we know there is a nonzero eigenvector for Φ+(α), and so we conclude that it is indeed

1-dimensional. Any spanning vector is an eigenvector and must then be a scale multiple of

the one guaranteed by Proposition 2.8.3, which is also an eigenvector for Φ+(β) with value

2. �

The final loose end to tie up in this story is the fact that V+
0,n is only half of the total

Floer homology V0,n. The algebra V0,n projects onto V+
0,n via the map 1

2
(1 + E), and so if

f ∈ J +
0,n is a relation in A0,n, then (1 + ε)f is a relation in J̃0,n ⊂ Ã0,n, the full ideal of

relations holding in V0,n. On the other hand, we could have repeated the entire discussion,

focusing on the −1-eigenspace of E, calling it V−0,n. We would have obtained the exact same

relations as in Proposition 2.9.4, except that each eigenvalue λn should be negated. Call this

ideal J −0,n. We see that

(1 + ε)J +
0,n + (1− ε)J −0,n ⊂ J̃0,n.

In the case n = 3, for example, we get J̃0,3 = (α− ε, β − 2, δ2
k − β + 2). Let q+

0,n be the same

as the polynomial q0,n of (2.9.5), and define q−0,n by

(2.9.9) q−0,n+2 = (α + λn+2)q−0,n −m2(β − 2)q−0,n−2.

and q−0,1 = 1, q−0,−1 = 0, so that q−0,n ∈ J −0,n. Finally, define q̃0,n via

(2.9.10) q̃0,n+2 = (α− λn+2ε)q̃0,n −m2(β − 2)q̃0,n−2.

and q̃0,1 = 1, q̃0,−1 = 0.
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Lemma 2.9.9. For all n, we have (1 + ε)q+
0,n + (1− ε)q−0,n = 2q̃0,n.

Proof. By induction. The cases n = 3 and n = 1 are trivial, so suppose the lemma holds

for n and n− 2. Then expanding (1 + ε)q+
0,n + (1− ε)q−0,n via (2.9.5) and (2.9.9) immediately

yields twice (2.9.10). �

We can now prove:

Theorem 2.9.10. The ring V0,n has a presentation as a quotient of Ã0,n = A0,n[ε]/(ε2−1)

by an ideal of relations wtJ0,n generated by the degree 4 relations δ2
k − β + 2, and relations

Q̃J
0,n where J ⊂ {1, . . . , n} has cardinality s ≤ m, defined by

(2.9.11) Q̃J
0,n = q̃0,n−2sδ

J

Proof. We already know, via Lemma 2.9.9 and Proposition 2.9.4 that the relations

Q̃J
0,n are in J̃0,n, so we must show this is a complete set (along with the degree 4 relations).

They are graded deformations of the relations RJ
0,n in I0,n, and, like them, all have different

leading terms (in the lexicographic ordering of monomials, say). Hence, the quotient of Ã0,n

by these relations has a basis given by the images of the monomials S0,n (from Lemma 1.6.3)

and εS0,n. The dimension of V0,n is twice that of the cardinality of S0,n, so this establishes

that these are all the relations. �

Essentially the same argument as before shows that:

Corollary 2.9.11. The spectrum of multiplication by Φ(α) on V0,n is

{−(n− 2),−(n− 4), . . . ,−1, 1, . . . , n− 4, n− 2}

and the only eigenvalue for Φ(β) is 2. The generalized eigenspace for Φ(α) for the top values

±(n− 2) are 1-dimensional and a spanning vector is an eigenvector for Φ(β) with value 2.

Proof. One shows that the polynomial

(2.9.12) P̃0,n(α) = (α2 − (n− 2)2)(α2 − (n− 4)2)2 · · · (α2 − 1)m
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is in J̃0,n, and argues as before. �



CHAPTER 3

Excision and Tangles

3.1. Introduction

A sutured 3-manifold (M,γ) is called balanced if the two surfaces R± into which γ cuts

∂M have equal Euler characteristics: χ(R+) = χ(R−) (see [13]). Given a blanced (M,γ),

Kronheimer and Mrowka have defined an instanton invariant SHI(M,γ). In this section we

will define an invariant for tangles in sutured manifolds:

Definition 3.1.1. Let (M,γ) be a balanced sutured 3-manifold with positive and neg-

ative boundary pieces R+ and R−. An odd (even) balanced tangle T in (M,γ) is a properly

embedded 1-manifold such that |T ∩R+| and |T ∩R−| are equal odd (even) numbers, and

T has no endpoints on the sutures.

We briefly recall the construction of SHI. This invariant is defined by first closing up

(M,γ) in a particular way to give a closed manifold Y along with an embedded surface R,

and applying standard instanton Floer homology to Y . The key to the definition is in dealing

with the complication that the closure Y is not uniquely defined, as it depeneds on a choice

of diffeomorphism of the positive and negative boundary components as well as a choice

of auxillary surface. In order to give a theory which is independent of these choices, the

vector space SHI(M,γ) is defined to be a natural subspace of the instanton Floer homology

of Y . More specifically, the closure Y comes with a surface R (coming from the glued up

boundary), as well as a line bundle w, and we take the simultaneous (−(8g(R) − 8),−8)-

eigenspace of Iw∗ (Y ) for the pair of operators (µ(R), µ(pt)) where g(R) is the genus of R -

the so-called “top”-eigenspace. One then shows that this subspace has isomorphism type

invariant under the choices made in constructing the closure Y .

144
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There are two operations on the set of closures one must study in order to prove this

invariance. The first is changing the identification of top and bottom boundary components.

This amounts to taking a particular closure Y , cutting along R, and regluing via a different

diffeomorphism. In the case that R is a torus, invariance comes for free because we may

simply apply Floer’s classical excision formula, which is described in [6]. One approaches

the case g(R) > 1 by generalizing that excision theorem for splittings of 3-manifolds along

surfaces of higher genus. In genus 1, the theorem goes through because the Floer homology of

the three torus S1×T 2 is one dimensional (after passing to the −8-eigenspace for µ(pt)). In

higher genus, the Floer homology of S1×Σ is much more complicated, but the simultaneous

(−(8g(Σ) − 8),−8)-eigenspace for the pair (µ(Σ), µ(pt)) is 1-dimensional. Essentially the

same proof as Floer’s then gives the desired result. The second operation on the set of

closures comes from increasing or descreasing the genus of R. This is handled with the genus

1 excision theorem.

This story serves as a model for our case of interest, that when there is a balanced tangle

T in (M,γ) and thus a link in the closed up manifold Y intersecting the surface R. Our

knowledge gained in Chapter 2 of the Floer homology of a product link in S1 × Σ for Σ a

sphere means that we can prove an analogous of the excision formula which applies to the

case when R is genus 0. This allows us to define an invariant THI(M,T, γ) for a specific class

of links in a certain class of sutured 3-manifolds. We then prove several properties enjoyed

by THI(M,T, γ), or rather a variant THI](M,T, γ), including a nontriviality result which

shows that it characterizes the product tangle in a product sutured manifold.

3.2. Excision in Genus 0

In this section we prove an analogue of Theorem 2.5.1 for genus 0 surgeries in a 3-manifold

Y with link L, where the embedded spheres intersect L in an equal odd number of points.

The genus 1 theorem relied on the fact that the Floer homology of S1 × T 2 is only rank 2,

and rank 1 upon restricting to the -8-eigenspace of µ(pt). This is very far from the case

of the Floer homology of (Y0, Kn). To proceed, we must restrict to a subspace of the Floer
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homology. Recall that the top eigenvalues of the operator µorb(Σ) on I∗(Y0, Kn, ∅) are

±4(n− 2) = ±4χ(Σ \ {n pts}),

where χ denotes Euler characteristic. Likewise, we know that the top eigenvalues for µ(Σ)

on I∗(Yg, ∅, S1) (for g ≥ 1) are

±4(2g − 2) = ±4χ(Σg),

and that in all cases the top generalized eigenspaces are 1-dimensional. We are motivated

then to make the following definition.

Definition 3.2.1. Let (Y,K, ω) be a triple in wink, and let R be an embedded surface

intersecting K transversely. Define the restricted Floer homology of the triple with respect

to R, denoted

I∗(Y,K, ω|R)

to be the subspace of I∗(Y,K, ω) given by the simultaneous generalized eigenspace of the

operator µorb(R) for the value −4χ(Σ \K) and the operator µ(pt) for the value −8.

Remark 3.2.2. For example, the content of Corollary 2.9.11 and the culmination of

everything we have done in Chapters 1 and 2 is that for n odd:

I∗(Y0, Kn, ∅|pt× Σ0) ∼= C.

Now, for an arbitrary triple (Y,K, ω) and a sphere R intersecting K in an odd number

of points, our first result is that the eigenvalues of µorb(R) are a subset of (4 times) those in

Corollary 2.9.11 (Compare to Corollary 7.2 of [22]).

Lemma 3.2.3. For a sphere R as above, if λ is an eigenvalue for µorb(R) then λ is 4

times an odd number between ±χ(R \K), where χ is the Euler characteristic.

Proof. Let (WR, S,Ω) denote the cobordism triple obtained by removing a tubular

neighborhood of an interior copy of R from the tube [0, 1] × (Y,K, ω), viewed as having
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incoming ends (Y,K, ω) and (Y0, Kn, ω
′) (where ω′ is either empty or S1 × pt). Let P̃0,n

be the polynomial (2.9.12). Then P̃0,n(−1/4µorb(R)) vanishes on I∗(Y,K, ω). Indeed, this

operator can be viewed, using our gluing theory, as a composite of Φ(P̃0,n(α)) ⊗ Id from

I∗(Y,K, ω) with I(WR, S,Ω), and Φ(P̃0,n(α)) is just the zero element. The statement of the

lemma follows immediately. �

We have the following analogue of the excision result (Theorem 7.7) of [22].

Theorem 3.2.4. Let (Y,K, ω) be a connected 3-manifold triple in wink, and let R1

and R2 be homologous embedded spheres each intersecting K transversely in the same odd

number n of points. Suppose also that ω ·R1 and ω ·R2 are both zero or one. Let (Y ′i , K
′
i, ω
′
i)

be the two triples obtained by cutting Y along R1 and R2 and regluing according to some

diffeomorphism carrying (K,ω) ∩ R1 onto (K,ω) ∩ R2. Within Y ′i there is a surface R′i

coming from R1 and R2. Then there is a natural cobordism from (Y,K, ω) to ∪i(Y ′i , K ′i, ω′i)

inducing an isomorphism

(3.2.1) I∗(Y,K, ω|R1) = I∗(Y,K, ω|R2) −→ I∗(Y
′

1 , K
′
1, ω

′
1|R′1)⊗ I∗(Y ′2 , K ′2, ω′2|R′2)

Proof. The proof is essentially identical to that of Theorem 2.5.1, so content ourselves

with a sketch, advising the reader to compare with that proof. We can form a cobordism

in the following way, starting with the cylinder [0, 1]× (Y,K, ω). Without loss of generality,

assume ω · Ri = 0. Let νRi be a small tubular neighborhood of Ri. To {1} × (νR1 t νR2)

glue the pair [1, 2] × [−ε, ε] × (S2, n pts) such that {i} × [−ε, ε] × S2 is identified with

νRi in a way carrying the n segments [−ε, ε] × {n pts} to νRi ∩ L. We ensure that the

induced diffeomorphism fromR1 toR2 agrees with the surgery identification. The resulting 4-

manifold triple with corners can be canonically smoothed to a cobordism triple (W,S,Ω) and

has boundary components naturally identified with (Y,K, ω) and (Y ′1 tY ′2 , K ′1tK ′2, ω′1tω′2).

One may repeat the construction “in reverse”, gluing instead onto {0}×Y , to get a cobordism

(W ∗, S∗,Ω∗) in the opposite direction. We can see that this cobordism induces the desired

isomorphism by composing W and W ∗ in the two different orders. The only difference with
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the proof of Theorem 2.5.1 is that we further compose with the operator associated not to

the polynomial ([pt]± 8)N , but to the polynomial

P̃0,n(−1/4[R1])/(−1/4[R1]− (n− 2)).

This annihilates the generalized eigenspaces for all eigenvalues of µorb(R1) not equal to

−4(n− 2) and projects onto the remaining desired generalized eigenspace. �

Later on we shall need a modification of Theorem 2.5.1 for restricted Floer homology.

Specifically, we need to analyze the effect of a genus 1 surgery along tori T1, T2 on restricted

floer homology with respect to surfaces R1 and R2, where Ti and Ri intersect transversally.

Theorem 3.2.5. Suppose that (Yi, Ki, ωi) is a 3-manifold triple with embedded surface

Ri intersecting Ki transversally, for i = 1, 2. Further, let Ti be an embedded torus in Yi

intersecting Ri transversely and which is odd for ωi. Let (Ỹ , K̃, ω̃) denote the triple obtained

by a genus 1 excision surgery along the Ti performed in such a way that the Ri are cut and

reglued to form a closed embedded surface R̃. Then there is an isomorphism

(3.2.2) I∗(Ỹ , K̃, ω̃|R̃) ∼=
⊗
i=1,2

I∗(Yi, Ki, ωi|Ri).

Proof. Let us assume that Ỹ is also connected, and that the curves Ti ∩ Ri are non-

separating in Ri so that R̃ is connected as well. The general case is a simple modification

of the following argument. In the standard cobordism from the union of the (Yi, Ki, ωi) to

(Ỹ , K̃, ω̃), the surface R̃ is homologous to the union of the Ri. Thus, the cobordism map

intertwines the operators µorb(R1)⊗ 1 + 1⊗ µorb(R2) and µorb(R̃). Moreover, we have

χ(R̃) = χ(R1) + χ(R2).

Thus, the cobordism map, which is an isomorphism on the generalized eigenspaces for µ(pt)

for the value −8, carries ⊗i=1,2I∗(Yi, Ki, ωi|Ri) to I∗(Ỹ , K̃, ω̃|R̃). This establishes (3.2.2). �
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3.3. Tangles

Given a balanced sutured 3-manifold (M,γ), the regular sutured instanton Floer homol-

ogy SHI(M,γ) is defined by taking a closure Y of M and using the top eigenspace for µ(R)

on I∗(Y ), where R is the closed up image of its boundary pieces R± (see Definition 7.10

of [22]). We can make an analogue this construction for the the case that there is an odd

balanced tangle T in M and the closure of M involves gluing along spheres. This will require

us to include an additional hypothesis on our sutured manifold (M,γ):

Definition 3.3.1. The balanced sutured manifold (M,γ) is said to have type 0 if the

surfaces R± which the sutures of γ break ∂M into are connected and homeomorphic to

punctured spheres.

From now on, we will fix a balanced sutured manifold (M,γ) of type zero, and suppose

that there is a balanced tangle T in it. The balanced condition on (M,γ) ensures that if

it has type 0 then the surfaces R± are homeomorphic. Suppose they each have s boundary

components and let F be a disjoint union of s disks. We shall call F the auxilliary surface

for the closure, noting that we differ from [22] in that our auxilliary surface is disconnected.

We attach the cylinder [−ε, ε]×F to M by gluing [−ε, ε]× ∂F to the union of the thickened

sutures A(γ) in an orientation preserving way. The resulting 3-manifold M̃ with boundary

will have two 2-sphere components R̃+ and R̃−, each containing the same odd number n of

points of ∂T . Now, choose an identification

h : R̃+ → R̃−

which carries R̃+∩∂T to R̃−∩∂T , bijectively (these sets are of equal size due to the balanced

condition on T ) and which restricts to the identity on F . Finally, close M̃ up by gluing the

boundary components together according to h. Let M̂ be the resulting 3-manifold, T̂ the

resulting link in it, and R the embedded 2-sphere arising from gluing R̃±.
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Definition 3.3.2. The odd sutured tangle instanton Floer homology of the odd tangle

T in (M,γ) is the instanton Floer homology space

(3.3.1) THIodd(M,T, γ) := I∗(M̂, T̂ , ∅|R).

This Floer homology is defined because of the assumption that T is an odd tangle; the

surface R is non-integral. As in the original sutured instanton Floer homology, the fact that

this is an invariant of (M,T, γ) not depending on the identification h is a straightforward

application of an excision theorem.

Proposition 3.3.3. The isomorphism type of the vector space THIodd(M,T, γ) is inde-

pendent of the identification h.

Proof. Any other choice of h leads to a a closure triple (M̂ ′, T̂ ′, ∅) which can be obtained

from (M̂, T̂ , ∅) by cutting along R and regluing in a different way. We can view this as an

excision operation between (M̂, T̂ , ∅) and (M̂ ′, T̂ ′, ∅)t (Y0, Kn, ∅). Since the Floer homology

I∗(Y0, Kn, ∅|pt× Σ0) is rank 1, the result follows immediately from Theorem 3.2.4. �

While the definition above of THIodd(M,T, γ) is completely natural in light of the def-

inition of SHI(M,γ) by Kronheimer and Mrowka [23], it will be convenient to use slightly

different notion to obtain an invariant with useful properties, namely with respect to concate-

nation and juxtaposition of tangles. Let T be an n-stranded balanced tangle, not necessarily

odd, in (M,γ).

Definition 3.3.4. The stabilized tangle, denoted T ], of T in (M,γ) is given by appending

to T two “product” strands for each suture, which are push-offs into the interior of M of

arcs traversing the annular components of γ (see Figure 3.3).

Form the closure M̂ as usual, and the closure T̂ ] in such a way by ensuring the added

strands form pairs of product loops. This is equivalent to closing up T to T̂ and appending

two product loops which are glued up circles arising from arcs [−ε, ε]×{2 pts} in each of the

s components of [−ε, ε] × F . Let ui be an arc in the glued-up surface R lying in the piece
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T

R+

u1 u2

Figure 3.1. A schematic for the stablized tangle T ]. The dashed components
are the added product strands.

coming from F passing between the ith pair of added product components, and define:

u] := u1 + . . .+ us.

Definition 3.3.5. The “unreduced” instanton Floer homology of (M,T, γ) is the Floer

homology

(3.3.2) THI](M,T, γ) := I∗(M̂, T̂ ], u]|R)

Essentially the same proof as for THIodd shows the isomorphism type of this vectors space

is independent of the identification of the top and bottom ends. The only hiccup is the case

that T has an even number of strands, in which case we cannot use genus 0 excision to cut

along S2. To remedy this, we need to utilize our version of the genus 1 excision theorem for

restricted Floer homology, Theorem 3.2.5.

Proposition 3.3.6. The isomorphism type of THI](M,T, γ) is independent of the choices

made in forming the closures T̂ ] and M̂ .

Proof. Let n be the number of strands of T . If n is odd, we are done by using genus

0 excision as before (since T ] has the same parity as T ). Hence, we assume n is even, so

that the 2-sphere R no longer intersects T̂ ] in an odd number of points. Let S1 be the torus
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boundary of a small tubular neighborhood of one of the added product components in T̂ ].

Let x1, x2, x3 be three points in S2, S2 a torus containing S1 × {x1} in Y0 = S1 × S2, and u′

an arc between x1 and x2 in S2. Then we may perform a genus 1 excision surgery along S1

and S2 in the triples (M̂, T̂ ], u) and (Y0, S
1 × {x1, x2, x3}, u′) to obtain the disjoint union

(M̂, T̂ ] ∪ S1 × pt, u]) t (Y0, S
1 × {2 pts}, u′′)

where u′′ here denotes an arc between the two points. This surgery is entirely analogous

to the point transfer construction used in §2.8; its effect is to add an additional product

component T0 to T̂ ]. Recall that we previously studied the Floer homogy of the triples

(Y0, S
1 × {x1, x2, x3}, u′) and (Y0, S

1 × {2 pts}, u′′), which we called U0,3 and U0,2 and have

restricted Floer homologies (with respect to the natural 2-spheres within them) are each of

rank 1. Theorem 3.2.5 then guarantees an isomorphism

(3.3.3) I∗(M̂, T̂ ] ∪ T0, u
]|R)⊗ C ∼= I∗(M̂, T̂ ], u]|R)⊗ C.

Now, since T̂ ] ∪ T0 intersects R in an odd number of points, Theorem 3.2.4 applies as

before. �

We can make one another special definition for the case of an even tangle whose properties

we analyze in the next section. Let T be an even tangle in (M,γ) with n = 2m strands,

and let T̂ ] be as before, obtained by adding two product loops for each suture. Group the

strands of T̂ into pairs, and write

u = v1 + v2 + . . .+ vm + u]

where vi is a strand connecting the ith pair of strands of T̂ .

Definition 3.3.7. The unreduced even instanton Floer homology of (M,T, γ) is the

vector space

THI]even(M,T, γ) := I∗(M̂, T̂ ], u|R)
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One may carry out an argument very similar to the proof of Proposition 3.3.6 to show that

this invariant is independent of the gluing identification to form T̂ ], using a point transfer

cobordism to add a strand in order to have an odd-stranded link. It is also easy to see that

it does not matter how we join the strands of T by the arcs vi, as the resulting class in

H1(R, ∂(R \ νT );Z/2) (for νT a tubular neighborhood of T ) is independent of that choice.

In fact, it turns out that in the even case we have really just redefined the unreduced Floer

homology of the tangle T .

Proposition 3.3.8. There is an isomorphism

(3.3.4) THI]even(M,T, γ) ∼= THI](M,T, γ).

Proof. Let n = 2m be the number of strands of T and s the number of boundary

components of R+, so that T ] has n+ 2s strands. We will utilize both genus 1 and genus 0

excision theorems. Using a point transfer cobordism (via genus 1 excision) as in the proof

of Proposition 3.3.6, we know that

I∗(M̂, T̂ ] ∪ T0, u|R) ∼= I∗(M̂, T̂ ], u|R)

where T0 is an extra product component. Now, we consider the Floer homology

W0,n+2s+1 := I∗(S
1 × S2, S1 × {n+ 2s+ 1 pts}, u(n))

where u(n) denotes a sum of arcs connecting n of the components of the product link of

n + 2s + 1 components in S1 × S2 pairwise. It is easy to see, via genus 0 excision, that

W0,n+2s+1 is isomorphic to the vector space U0,n+2s+1 defined in Chapter 2:

W0,n+2s+1
∼= U0,n+2s+1

via an isomorphism intertwining the operators µorb(pt × S2) on each side. Critically, the

top eigenvalues of µorb(pt×S2) on W0,n+2s+1 are ±4(n+ 2s− 1), each with one-dimensional

generalized eigenspace. Hence, we may perform a genus 0 excision on the disjoint union of
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(S1×S2, S1×{n+ 2s+ 1 pts}, u(n2m)) and (M̂, T̂ ] ∪ T0, u), to recover the pair (M̂, T̂ ] ∪ T0).

The new Stiefel-Whitney 1-cycle can be arranged, by choosing the regluing maps properly,

to consist of now two arcs connecting each pair of original link components of T̂ previously

connected by u before, and a single arc connecting the added product components. The

doubled-up arcs “cancel” in the sense that the corresponding bundle has zero Stiefel-Whitney

class. Hence, genus 0 excision provides an isomorphism

I∗(M̂, T̂ ] ∪ T0, u|R) ∼= I∗(M̂, T̂ ] ∪ T0, u
]|R)

We may now do a point transfer to “subtract” the component T0 to obtain:

I∗(M̂, T̂ ], u|R) ∼= I∗(M̂, T̂ ], u]|R).

This is exactly the desired isomorphism (3.3.4). �

We will reuse this “stacking” argument again later on. The utility of defining the even

version THI]even will become apparent in the next section. Before moving on, we make one

last note on the choices of the Stiefel-Whitney class used to define the various versions of

THI. In the definition of THIodd, we were able to use an empty Stiefel-Whitney 1-cycle to

compute the restricted Floer homology of the closed-up tangle. However, we could have

chosen to use a cycle w which is the closure of a product arc [−ε, ε]× pt in [−ε, ε]× F . We

could have done the same for THI], defining THI],w.

Lemma 3.3.9. There is an isomorphism

(3.3.5) THI],w(M,T, γ) ∼= THI](M,T, γ).

Proof. We use the stacking technique of the proof of Proposition 3.3.8 to introduce the

1-cycle arc u between two strands by doing genus 0 excision and by leveraging our knowledge

of the vector space U0,n. We then perform a genus 1 excision, with one torus S1 the boundary

of a small tubular neighborhood of one of the added product components which intersects

u and the other torus S2 a boundary of a small tubular neighborhood of the component
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S1 × {x1} in the triple

(S1 × S2, S1 × {x1, x2}, u+ w)

where u is an arc between x1 and x2 and w is S1×pt. If we arrange this w to lie close to S1×pt

so that it is within S2, then doing an excision which glues the “inside” of S2 to the inside of

S1 introduces a second copy of w in (M̂, T̂ ]). Now, the triple (S1× S2, S1×{x1, x2}, u+w)

is easily seen to give a vector space isomorphic to U0,2 and so µorb(pt × S2) vanishes on it.

This implies the desired isomorphism. �

3.4. Properties and Applications

We now record some properties the various versions of instanton Floer homology for

tangles enjoy. Again we assume our sutured manifolds are balanced and of type 0.

Concatentation. The first obvious consequence of the definition is multiplicativity with

respect to vertical concatenation.

Proposition 3.4.1. For i = 1, 2, let Ti be an n-stranded balanced tangle in the sutured

manifold (Mi, γi), and suppose that for the top and bottom boundary pieces R±i of ∂Mi for

i = 1 have the same number of boundary components as for i = 2. Denote by (M1 ◦M2, T1 ◦

T2, γ1◦γ2) the sutured manifold with n-stranded tangle obtained by vertically stacking (Mi, Ti),

using any identification of the bottom part of (M1, T1) and the top part of (M2, T2). Then we

have

(3.4.1) THI](M1 ◦M2, T1 ◦ T2, γ1 ◦ γ2) ∼= THI](M1, T1, γ1)⊗ THI](M2, T2, γ2)

Proof. It is clear that if T̂i
] is the closed link in M̂i obtained by adding product strands

to and closing up Ti, and likewise for T̂1 ◦ T2
] from T1 ◦ T2 in M̂1 ◦M2, then the triple

(3.4.2) (M̂1 ◦M2, T̂1 ◦ T2
], ∅).
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can be obtained by an excision surgery along copies of Σ = pt× S2 in the disjoint union

(M̂1, T̂1
], u]) t (M̂2, T̂1

], u]).

The Stiefel-Whitney class vanishes because the two versions of u] cancel. In the case that n

is odd, this establishes

I∗(Y0, T̂1 ◦ T2
], ∅|Σ) ∼= I∗(Y0, T̂1

], u|Σ)⊗ I∗(Y0, T̂2
], u|Σ).

Now, the vector space THI](M1 ◦M2, T1 ◦ T2, γ1 ◦ γ2) arises from the slightly different triple

(3.4.3) (M̂1 ◦M2, T̂1 ◦ T2
], u).

However, the triples (3.4.2) and (3.4.3) give identical restricted Floer homologies by the

stacking argument from the proof of Proposition 3.3.8. Now, in the case that n is even,

we may argue as in the proof of Proposition 3.3.6 to add a product strand. From here the

argument goes exactly as in the odd case. �

The purpose of the added product strands in T] is two-fold. First, they allow us to carry

out the operation of adding a strand, and so make the proof of invariance and the above

result go through. Secondly, however, they allow us to prove a horizontal concatenation

result for tangle in the cylinder [−1, 1] × D2. In what follows, whenever T is a balanced

tangle in [−1, 1]×D2 thought of as a sutured manifold with a single suture [−1, 1]× S1, we

will simply write:

THI](T ) := THI]([−1, 1]×D2, T, [−1, 1]× S1).

Proposition 3.4.2. Suppose Ti is an ni-stranded balanced tangle in [−1, 1] × D2 for

i = 1, 2, and denote by T1|T2 the tangle obtained by horizontal juxtaposition of T1 and T2,

which is a balanced tangle in [−1, 1] × D2 with N = n1 + n2 strands. Then there is an

isomorphism

(3.4.4) THI](T1|T2) ∼= THI](T1)⊗ THI](T2)
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Proof. Let T̂i
], T̂1|T2

] denote the closed up and appended versions of the tangles Ti and

T1|T2. Let the added product components in T̂i
] be si and ti, ui an arc between them, and Si

the boundary torus of a small tubular neighborhood of si. Then Si is a non-integral surface

and we may apply Theorem 2.5.1 to the excision surgery along these tori. The result is:

(3.4.5) I∗(Y0, T̂1
], u1)pt,−8 ⊗ I∗(Y0, T̂2

], u2)pt,−8
∼= I∗(Y0, T̂1|T2

], u12)pt,−8 ⊗ U0,2

where u12 is an arc between the product strands in T̂1|T2
] PICTURE. Denote by Σ the 2-

sphere pt × S2 in Y0. As in the point transfer argument in the proof of Proposition 3.3.6,

this isomorphism intertwines the operators

µorb(Σ)⊗ 1 + 1⊗ µorb(Σ)

on each side, and since the top eigenvalue of interest on the right hand side is the sum of those

on the left, we obtain the desired isomorphism (3.4.4) of restricted Floer homologies. �

A Non-triviality Result. So far, we have no evidence to suggest that either of our versions

of THI give anything other than a rank 1 vector space as it does in the product case. We

desire a result similar to the non-triviality results in [22], specifically Theorem 7.18. In

other words, we would like to know whether THI detects the product tangle. However, as an

analogue to the taut condition used in [22], we will need our tangles to satisfy an additional,

easy checked hypothesis.

Definition 3.4.3. The balanced tangle T in (M,γ) is said to be vertical if

(i) T has no closed components, and

(ii) each endpoint of T in R+ is connected by a component of T to an endpoint of T in R−.

For a balanced vertical tangle T , there are natural bijections between endpoint sets

fT : R+ ∩ T → R− ∩ T

f ]T : R+ ∩ T ] → R− ∩ T ]
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defined by following the strands of the tangle.

Remark. Perhaps a better definition than our notion of vertical is that of an oriented

tangle. Such a tangle should be an oriented, properly embedded 1-manifold with boundary

in (M,γ) such that the positive endpoints (using the orientation) lie on R+ and the negative

lie on R−. This ensures the bijection fT above exists. However, this does not preclude closed

components. Hence, a vertical tangle is just an oriented tangle without closed components.

The author suspects that neither hypothesis is necessary in the following result, but is unable

to find an argument to this effect.

Theorem 3.4.4. Let T be a balanced, vertical tangle with n strands in the connected

sutured manifold (M,γ) of type 0. Suppose that (M,γ) is taut (as defined in [22]. Then

THI](M,T, γ) ∼= C if and only if (M,T, γ) is the product tangle in the product sutured

manifold [−1, 1]×D2.

Certainly if T is the product tangle and (M,γ) is the standard product sutured manifold

[−1, 1]×D2 then THI](M,T, γ) ∼= C. The difficult direction is the converse. We will attack

this by leveraging the analogous result in [22] and by using the even version THI]even. The

idea is that THI]even can be compared to the sutured instanton Floer homology of a derived

3-manifold with no singular locus, as we now explain. Suppose T is vertical with n = 2m

strands and γ has s loops. Number the strands of T ], denoting the ith original strand by

Ti and letting Tn+2i−1 and Tn+2i be the pair of added strands coming from the ith suture

of γ. Let Si be the boundary annulus of a small tubular neighborhood of Ti. If we pair up

the Si’s in some way and cut and reglue M along them, we obtain a 3-manifold M̃T with

boundary with the natural structure of a sutured manifold with positive and negative pieces

R̃+
T and R̃−T surfaces of genus m + s + 1 with the same number s as before of boundary

components (see Figure 3.4. Closing this manifold up by using a disjoint collection of disks

F as auxilliary surface as before is equivalent to removing [−1, 1]×D2-neighborhoods of the

tangle strands from T ] and placing a single, properly oriented suture on each new annular

piece of ∂M , to arrive at a derived sutured manifold (MT , γT ), and constructing a closure
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S1
S2

S5 S6

S3 S4

S7 S8

R+
R̃+

Figure 3.2. Cutting and regluing M to obtain M̃T . The example shown here
begins with a tangle T wit 4 strands to which 4 strands are added to obtain
T ], and the surface R+ becomes a twice punctured genus 4 surface.

of this sutured manifold by using a different auxilliary surface which is a union of m + s

annuli and s disks. This process plays well with genus 1 excision, as we see in the proof of

the following result.

Proposition 3.4.5. For an even, balanced, vertical tangle T with n = 2m strands in

(M,γ), we have an isomorphism:

(3.4.6) THI]even(M,T, γ) ∼= SHI(MT , γT )

Proof. Form the closures M̂ and T̂ ] in such a way that the tangle T ] is closed up via

the bijection f ]T . We assume the annuli Si are glued up to tori Si, each of which are odd for

the Stiefel-Whitney class u. Let w denote a product loop in both of M̂ and M̂T as in Lemma

3.3.9, which tells us that we can compute THIeven(M,T, γ) by using the Stiefel-Whitney class

u + w. We can perform m + s excision operations on (M̂, T̂ ], u + w) by taking the Si’s in

pairs, making sure to pair up Sn+2i−1 with Sn+2i. The result is a sequence of 3-manifold

triples

(M̂, T̂ ], u+ w) = (M̂0, T̂
]
0, u0 + w), (M̂1, T̂

]
1, u1 + w), . . . , (M̂m+1, T̂

]
m+s, um+s + w)

as well as a sequence of versions Ri of the surface R. Theorem 3.2.5 then guarantees isomor-

phisms

(3.4.7) I∗(M̂i, T̂i, ui + w|Ri) ∼= I∗(M̂i+1, T̂i+1, ui+1 + wRi+1).
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In reality, each time we perform a genus 1 excision, we introduce a new component of the

3-manifold isomorphic to the triple (S1 × S2, S1 × {2 pts}, u) for u an arc between the two

points. However, the operator µ(pt × S2) vanishes on its instanton Floer homology so this

does not affect the argument. We conclude that there is an isomorphism

(3.4.8) I∗(M̂, T̂ , u+ w|R) ∼= I∗(M̂m+s, ∅, um+s + w|Rm+s)

Now, as it stands the final manifold M̂m+s is isomorphic to a sutured manifold closure of

(MT , γT ) obtained using an auxilliary surface G with m annulus components and s singly-

punctured torus components PICTURE. The definition of SHI requires that we use a con-

nected surface, so we need to go a bit further. We want to “join” up the components of

G via genus 1 excision, but first we need to increase the genus of each annular component.

Along each of the m new handles (corresponding to annular components of G) of the final

surface Rm+s runs a loop component of um+s. Fixing one such, there is a perpendicular loop

c and a torus S1 × c which is odd for um+s. We will use the genus-increasing construction

from [22], which leverages genus 1 excision. We take the triple (S1×Σ2, ∅, u) with u a small

loop in the genus 2 surface Σ2, and let d be a complementary loop to u. Performing excision

between (M̂m+s, ∅, um+s +w) and this triple along S1× c and S1× d effectively increases the

genus of the annular component of G running between the two joined pieces of boundary to

a punctured torus. We repeat this for each of the s annular handles, obtaining a sequence

of triples

(3.4.9) (M̂m+s, ∅, um+s + w), (M̂1
m+s, ∅, u1

m+s + w), . . . , (M̂ s
m+s, ∅, usm+s + w).

The final triple is equivalent to closing up the sutured manifold (MT , γT ) using an auxilliary

surface G′ with s singly-punctured tori and m doubly-punctured tori. Each of these m + s

pieces have natural non-separating complementary loops di which yield tori S1 × di odd for

usm+s + w. By performing excision surgeries along these in sequence it is possible to join

up the components of G′ to form an auxilliary surface G′′ which is an 2m + s-punctured

torus PICTURE. Each time we perform one of these “vertical” excision operations, it is
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easy to check as for (3.4.8) that the isomorphism type of the restricted Floer homology with

respect to the relevant version of the surface R is unchanged. The final 3-manifold triple is

isomorphic to a closure of (MT , γT ) using a connected, punctured genus 1 auxilliary surface

G′′, with a Stiefel-Whitney 1-cycle given by w plus a collection of loops u′′ in the closed up

surface R′′, the result of R after performing all the excisions surgeries. To complete the proof,

we need to demonstrate an isomorphism for the restricted Floer homologies with different

Stiefel-Whitney 1-cycles:

I∗(M̂T , ∅, u′′ + w|R′′) ∼= I∗(M̂T , ∅, w|R′′).

this isomorphism essentially appears in the discussion immediately preceding §7.5 of [22] and

follows from a stacking argument similar to the proof of Proposition 3.3.8. Upon invoking

Lemma 3.3.9 in order to remove the class w, we obtain the isomorphism desired in the

Proposition. �

It is now a simple matter to prove Theorem 3.4.4.

Proof. One direction is clear so we assume that THI](M,T, γ) is rank 1. Then by

Proposition 3.4.5

THI](MT , γT ) ∼= THI]even(MT , γT ) ∼= C,

(here we use equality of the even and and regular unreduced versions of THI). Now, it is

clear that if M,γ) is taut then so is (MT , γT ) and thus by Theorem 7.18 of [22] the sutured

manifold (MT , γT ) is a product. But this clearly implies that (M,T, γ) is a product. �
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Euler Numbers, Orthogonal Polynomials, and Continued Fractions

We owe the reader a discussion of how to arrive at the recursive relation (1.6.1) for the

relations in the cohomology ring, given that the top pairings of the generators α and β are

the Euler numbers En. This requires a brief digression on orthogonal polynomials, and an

analysis of the ordinary generating function for the numbers En.

Orthogonal Polynomials. We begin by supposing we have a measure µ on the interval

[a, b] ⊂ R, which we suppose for simplicity is given by integrating against a continuous,

nonnegative weighting function w(x):∫ b

a

f(x)dµ =

∫ b

a

f(x)w(x)dx.

This measure provides a linear functional Lµ, as well as an inner product and norm on the

set of µ-integrable functions on [a, b]:

Lµ(f) :=

∫ b

a

f(x)dµ

〈f, g〉µ :=

∫ b

a

f(x)g(x)dµ

‖f‖µ :=
(
〈f, f〉µ

)1
2

Definition A.1. The sequence of numbers

cn = L(xn) =

∫ b

a

xndµ

is called the sequence of moments for the measure µ.

Given µ, a useful collection of data is its sequence of orthogonal polynomials, which

provide a convenient basis for the set of integrable functions on [a, b].

162
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Definition A.2. A sequence of monic orthogonal polynomials for the measure µ is a

sequence of polynomials {pn(x)} satisfying

(i) pn is monic and deg(pn) = n

(ii) 〈pn, pm〉µ = 0 for n 6= m and ‖pn‖µ > 0 for all n.

It is very easy to prove:

Lemma A.3. Given a weighting function w(x) and associated measure µ, a sequence of

monic orthogonal polynomials {pn(x)} exists and is unique.

We will thus refer to the sequence of monic orthogonal polynomials for a given measure

µ. The theory of orthogonal polynomials is old and well-understood. One has the following

famous result, known as the three-term recurrence:

Theorem A.4. ( [2], Theorem 5) For the measure µ, the monic orthogonal polynomials

pn(x) satisfy the following recurrence relation:

(A.1) pn+1(x) = (x− αn)pn(x)− βnpn−1(x)

where we initialize p0(x) = 1, p−1(x) = 0, and where αn and βn are constants depending on

µ.

In fact, the numbers αn and βn can be computed as follows:

αn =
〈xpn(x), pn(x)〉µ
‖pn(x)‖µ

, βn =
‖pn(x)‖µ
‖pn−1(x)‖µ

There is a fascinating relationship between the collection of moments {cn} and the coef-

ficients αn and βn.

Theorem A.5. Let Fµ(x) be the ordinary generating function for the moments cn =

Lµ(xn):

Fµ(x) =
∞∑
n=0

cnx
n
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Then the coefficients αn and βn from (A.1) and Fµ(x) satisfy the continued fraction identity:

(A.2) Fµ(x) =
c0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

The Euler Numbers. The numbers En are defined via:

(A.3) sech(z) =
1

cosh(z)
=
∞∑
n=0

En
n!
zn.

Since sech(z) is an even function, we have En = 0 for n odd. The sequence has first few

terms (beginning with the 0th term):

{En} = 1, 0,−1, 0, 5, 0,−61, 0, 1385, . . .

where the nonzero entries are alternatively positive and negative. It is shown in [10] that

the ordinary generating function for the sequence {|E2n|} of absolute values of nonzero Euler

numbers has the following remarkable continued fraction expansion:

(A.4) E(z) =
∞∑
n=0

|E2n| z2n =
1

1−
12z2

1−
22z2

1−
32z2

1− . . .

Here we must use the absolute value sign on the Euler numbers to agree with the conventions

of [10].

We now tackle our main problem, which is understanding the relations in the cohomology

ring of the moduli space R0,2m+1 from Chapter 1. There, we showed that there is a relation

r0,2m+1(α, β) in the generators α and β which is of degree m in α and bm/2c in β. Set



A. APPENDIX 165

e = m− 2 bm/2c, the remainder 0,1 of m when divided by 2. As in the proof of Proposition

1.6.1, if we write

r0,2m+1(α, β) = Amα
m + Am−2α

m−2β + . . .+ Aeα
eβbm/2c

then the (bm/2c + 1)-vector (Am, Am−2, . . . , Ae) is in the kernel of the matrix Eij for i =

0, . . . , bm/2c − 1 and j = 0, . . . , bm/2c with

(A.5) Eij = |E2e+2i+2j| .

Let us take this as a definition of r0,2m+1(α, β), under the additional constraint that we take

r0,2m+1(α, β) to be monic in α.

Theorem A.6. The polynomials r0,2m+1(α, β) satisfy the recurrence (1.6.1).

Proof. Suppose that µ is a measure on an interval [a, b] whose moments are given by

Lµ(xn) = |En| .

Define the de-homogenized single-variable polynomial:

sm(x) := r0,2m+1(x, 1).

Evaluating the matrix Eij on the (bm/2c + 1)-vector (Am, Am−2, . . . , Ae) gives the bm/2c-

vector (
〈xe, sm(x)〉µ ,

〈
xe+2, sm(x)

〉
µ
, . . . ,

〈
xm−2, sm(x)

〉
µ

)
,

which we assume vanishes. Hence, the pairing of sm(x) (which is degree m in x) with any

polynomial in x of lower degree having only terms with the same degree parity is zero. Of

course, pairing with monomials with the opposite parity gives 0 as well. This implies sm(x)

is orthogonal to sk(x) for k < m, and so by induction the polynomial sequence {sm(x)} is

monic orthogonal for µ. By Theorem A.5, we see that sm(x) satisfies the recurrence

sm+1(x) = (x− αm)sm(x)− βmsm−1(x)
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where αm and βm are the coeffiecients in the continued fraction A.2. But by definition, the

generating function to use is given by E(z) as in (A.4), and so we see that αm = 0 and

βm = −m2. Hence:

sm+1(x) = xsm(x)−m2sm−1(x),

and since r0,2m+1(α, β) is homogeneous in α and β (with these variables assigned degrees 2

and 4, respectively), we obtain the recursion (1.6.1). �
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