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Abstract  24 

Physiological tolerance of environmental conditions can influence species-level responses to 25 

climatic change. Here, we used species-specific thermal tolerances to predict the community 26 

responses of ant species to experimental forest-floor warming at the northern and southern 27 

boundaries of temperate hardwood forests in eastern North America. We then compared the 28 

predictive ability of thermal tolerance versus correlative species distribution models (SDMs) 29 

which are popular forecasting tools for modeling the effects of climatic change. Thermal 30 

tolerances predicted the responses of 19 ant species to experimental climatic warming at the 31 

southern site, where environmental conditions are relatively close to the ants’ upper thermal 32 

limits. In contrast, thermal tolerances did not predict the responses of the 6 species in the 33 

northern site, where environmental conditions are relatively far from the ants’ upper thermal 34 

limits. Correlative SDMs were not predictive at either site. Our results suggest that, in 35 

environments close to a species’ physiological limits, physiological trait-based measurements 36 

can successfully forecast the responses of species to future conditions. Although correlative 37 

SDMs may predict large-scale responses, such models may not be accurate for predicting site-38 

level responses.  39 

Keywords: critical thermal maximum, global change, Formicidae, physiology, species 40 

distribution model, thermal tolerance  41 

 42 

Introduction  43 

Predicting biological responses to climatic change is critical (Araújo et al. 2005), but a number 44 

of researchers have begun to emphasize the potential unpredictability of species’ responses to 45 

climatic change (e.g., Hill et al. 2002, McGeoch et al. 2006, Pelini et al. 2009, Doak and Morris 46 
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2010). If species-specific traits covary with their responses to climatic change, such traits can be 47 

used to predict community change (Diamond et al. 2011, Angert et al. 2011). Physiological traits 48 

have been especially successful in predicting responses of individual species to climatic change 49 

(Chown et al. 2004, Helmuth et al. 2005, Buckley 2008, Deutsch et al. 2008, Pörtner and Farrell 50 

2008, Huey et al. 2009, Kearney and Porter 2009, Sinervo et al. 2010, Diamond et al. 2012). 51 

However, these predictions have only been evaluated through simple correlations with historical, 52 

current, or projected future conditions (reviewed in Rowland et al. 2011). Experimental 53 

manipulations provide a unique, but relatively under-used approach for evaluating the degree to 54 

which physiological traits may inform the responses of species to climatic change. 55 

Here, we used results from a pair of large-scale experimental climatic warming arrays, 56 

positioned near the northern (Harvard Forest; Petersham, Massachusetts; ≈42° N lat.) and 57 

southern (Duke Forest; Hillsborough, North Carolina, USA; ≈36° N lat.) boundaries of temperate 58 

hardwood forests in eastern North America to test the ability of physiological thermal tolerance 59 

to predict responses of ant species to warming. In the extensive literature on ecological effects of 60 

global climate change, such experiments are rare because they are expensive and time-61 

consuming. Temperature-induced changes in community composition (Walker et al. 2006), 62 

nutrient cycling (Rustad et al. 2001), and phenology (Wolkovich et al. 2012) have been 63 

previously documented in such experimental warming arrays, although ours is the first study to 64 

incorporate independent measures of physiological tolerance. We manipulated temperatures 65 

among experimental open-top chambers in a regression design that boosted air temperature in 66 

each chamber from 1.5 to 5.5 °C above ambient. This range of temperatures encompasses a 67 

variety of future warming scenarios (IPCC 2007), and induced a wide range of species-specific 68 

responses in ant activity density. The key question we address here is what is the best predictor 69 
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of changes in ant activity density in the experimental chambers: measured physiological 70 

tolerances of individual species or the species-specific predictions of MaxEnt, a popular species 71 

distribution model (SDM; reviewed in Elith and Leathwick 2009)? 72 

Although SDMs are typically used to predict distributions at large spatial scales, effects 73 

of the changing climate on species geographic ranges ultimately reflects population dynamics 74 

and the activity of individuals at local scales. By comparing 3 independent sources of data 75 

(activity responses to warming in a climatic change field experiment, measurements of 76 

physiological tolerance of individual species, and MaxEnt predictions) at two locations (Harvard 77 

Forest and Duke Forest), we have a unique chance to evaluate MaxEnt predictions. 78 

Ants are a good choice for this kind of comparison because they are ecologically 79 

important thermophiles in eastern deciduous forests (Ellison et al. 2012), appear commonly in 80 

the warming chambers at both sites, and their geographic ranges are relatively well known 81 

(Fitzpatrick et al. 2011). For each of the ant species recorded in the experimental chambers, we 82 

independently measured their thermal tolerance (critical thermal maximum, CTmax) and 83 

quantified their projected changes in probability of occurrence under several climatic change 84 

scenarios using correlative SDMs based on thermal indices of the environment.  85 

We predicted that: (1) species with higher thermal tolerances would increase in 86 

abundance with experimental warming, owing to the widespread pattern among ectotherms of 87 

positive correlations between CTmax and the temperature at which optimal performance is 88 

reached (Topt) (Huey and Kingsolver 1993), (2) species with greater probabilities of occurrence 89 

under projected climatic warming according to correlative SDMs would become more abundant 90 

as experimental temperatures increased, and (3) CTmax would be a better predictor of responses 91 

to warming for ants at the southern forest boundary (Duke Forest) than at the northern forest 92 
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boundary (Harvard Forest). This final prediction is based on recent studies suggesting that 93 

ectothermic species at lower latitudes are relatively more sensitive to changes in temperature 94 

because of their narrow thermal performance curves, and because environmental temperatures 95 

are relatively closer to their upper thermal limits. By comparison, species at higher latitudes tend 96 

to be more tolerant of changes in temperature because of their broader thermal performance 97 

curves and because environmental temperatures at high latitudes are relatively far below their 98 

upper thermal limits (Appendix A; see especially Fig. 1 in Tewksbury et al. 2008; see also 99 

Deutsch et al. 2008, Dillon et al. 2010). In general, performance begins to decline sharply when 100 

Topt is exceeded, which imposes strong limitations on occupying thermal environments that 101 

overlap the range of temperatures between Topt and CTmax.  102 

 103 

Materials and Methods  104 

Warming chambers and Ant collections. Both the Harvard Forest and Duke Forest sites 105 

include 12 open-top experimental plots (5 m in diameter, and raised approximately 5 cm off of 106 

the ground to allow ants to move unrestricted) in the forest understory (details in Pelini et al. 107 

2011). Nine chambers are heated (by the addition of warmed air) according to a regression 108 

design of 0.5 °C increasing intervals from 1.5 to 5.5 °C above ambient air temperature (hereafter 109 

referred to as Δc), and three chambers are unheated controls (Δc = 0). We used pitfall sampling to 110 

estimate ant activity density (Appendix B): monthly pitfall samples were conducted at Duke and 111 

Harvard Forest (April 2010 - September 2011).   112 

 Thermal tolerance and Species distribution models. We defined the critical thermal 113 

maximum (CTmax) as the temperature at which muscle coordination was lost (Lutterschmidt and 114 

Hutchison 1997), an ecologically relevant measure of CTmax as the temperature at which an 115 
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individual could not escape to a non-lethal thermal environment (Lighton and Turner 2004). Ant 116 

workers of different species were collected in the forest adjacent to the chambers, and their 117 

thermal tolerances were tested individually (minimum 8 individuals per species at each site) in a 118 

heat block that generated a 2 °C temperature increase every 10 minutes starting at 36 °C. At the 119 

end of every 10 minute interval, individual ants were checked for the loss of muscular 120 

coordination (Appendix B). 121 

For species distribution models (SDMs), current climatic data were obtained from 122 

WorldClim (Hijmans et al. 2005), and projected future climatic data (for the year 2080 based on 123 

the CCCMA-CGCM2 model) from the International Centre for Tropical Agriculture (CIAT) 124 

(Ramirez and Jarvis 2008; Appendix B,C,D,E). North American occurrence data (presence-only) 125 

for each of the ant species present in the pitfall traps at Duke and Harvard Forests were obtained 126 

from the primary literature and museum records (Fitzpatrick et al. 2011).  127 

Analyses. We collected 24 and 11 species in pitfall traps at Duke and Harvard Forest 128 

respectively (excluding the non-ground foraging ant species N. texanus and C. obliquus; 129 

Appendix B). Of these species, we were able to obtain corresponding physiological and 130 

distribution data for 19 and 6 species, respectively. Average CTmax values were calculated for 131 

each species and used as a predictor variable in regression models of ant activity density 132 

responses in the experimental chambers. All analyses were performed in R (version 2.13.1; R 133 

Development Core Team 2011). 134 

Physiological models. We used ANOVA to test whether physiological tolerance to high 135 

temperatures influences ant abundance (effectively, worker activity density, given comparable 136 

sampling areas in our study; Longino and Colwell 2011) in response to experimentally simulated 137 

climatic warming. Cumulative worker density across sampling events was considered the 138 
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response variable, and CTmax, Δc, and the interaction of CTmax with Δc, were considered as 139 

continuous fixed-effect predictor variables. All assumptions of ANOVA were met (see below). 140 

MaxEnt models. We fit maximum entropy (MaxEnt) correlative species distribution 141 

models (SDMs) for each species with standard settings for the maxent function from the dismo 142 

package in R (Hijmans et al. 2011). Three sets of MaxEnt models were developed based on 143 

current and future (2080) environmental variables most relevant to manipulated aspects of the 144 

experimental arrays (i.e., thermal indices): 1) mean annual temperature, 2) mean temperature 145 

during the warmest annual quarter, and 3) maximum temperature during the warmest annual 146 

quarter. We used these thermal indices to develop models to predict the probability of occurrence 147 

within North America, and then extracted the probability of occurrence values for each species at 148 

each site under current and future climates. Typically, projected changes in probability of 149 

occurrence across a species’ entire range are used to infer species’ responses to climatic change 150 

(Fitzpatrick et al. 2008). Here, we restricted our consideration of MaxEnt-derived changes in 151 

probability of occurrence to the approximately 1 km2 areas containing the Duke and Harvard 152 

Forest experimental warming sites. In this way, the spatial scales were comparable for 153 

comparisons of thermal tolerances, MaxEnt predictions, and responses to experimental warming. 154 

MaxEnt usually performs more poorly when it is underparameterized than it does when it is 155 

overparameterized (Warren and Seifert 2011); to address this issue, we used expanded sets of 156 

MaxEnt models fit with all 19 bioclim variables (Appendix B,C). These results were 157 

qualitatively similar to the thermal index-only models. Therefore, we present the MaxEnt models 158 

based on just the thermal indices (Hijmans and Graham 2006).  159 

Model Comparisons. We used ANOVA to test the ability of physiological thermal 160 

tolerance and correlative SDMs to predict the responses of ants to experimentally simulated 161 
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climatic warming. The slope of the linear relationship between ln(cumulative worker density 162 

across all sampling events) and Δc was considered the response (Appendix B,F), and CTmax and 163 

the difference in the probability of occurrence of a particular ant species based on current and 164 

future (2080) climate derived from MaxEnt models (future – current, such that positive values 165 

indicate increased probability of occurrence under climatic warming) were considered 166 

continuous fixed effects. The calculation of the thermal accumulation slope was not possible for 167 

a small fraction (< 1%) of ant species which only occurred within a single chamber across all 168 

sampling events (Appendix B). Therefore, we also examined a complementary response variable, 169 

the maximal accumulation temperature (positively correlated with thermal accumulation slope; r 170 

= 0.78), which allowed us to include these species in our analyses. The maximal accumulation 171 

temperature was defined as the mean of the chamber deltas (Δc) in which a given species 172 

occurred, where the contribution of each Δc was weighted by cumulative worker density (across 173 

all sampling events) for that given species in that given chamber. Cumulative worker densities 174 

were normalized to sum to one (for a given species among all the chambers in which it occurred) 175 

prior to this calculation.  176 

For simplicity, hereafter we explicitly use “CTmax” to refer to the critical thermal 177 

maximum, “Δc” to refer to the degrees Celsius above ambient for each experimental warming 178 

chamber, and “MaxEnt prediction” to refer to the change in probability of occurrence between 179 

current and future climates; similarly, we refer to the response variables as “thermal 180 

accumulation slope” (slope of the linear relationship between ln(cumulative worker density) and 181 

Δc) and “maximal accumulation temperature” (mean Δc weighted by cumulative worker density). 182 

In all of these analyses, it is the different species, not the experimental chamber or the site, that 183 

represent the replicate observations. 184 
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Phylogenetic autocorrelation. To account for the potential influence of phylogenetic 185 

autocorrelation on our results, we re-ran our models of ant responses to warming using 186 

phylogenetic generalized least squares (PGLS from the CAIC package; Orme et al. 2009) under 187 

an assumption of trait evolution by Brownian motion. For each model, the maximum likelihood 188 

estimate of λ was used to scale the model covariance (Appendix B,G).  189 

 190 

Results and Discussion  191 

Predictive ability of thermal tolerance. At the low-latitude site (Duke Forest), responses 192 

of ant species to experimental warming (1.5 to 5.5 °C above ambient temperature) were well-193 

predicted by physiological tolerance of the ants to high temperatures (critical thermal maximum, 194 

CTmax). ANOVA revealed a significant interaction effect between CTmax and Δc on post-195 

treatment cumulative worker density (F1,174 = 6.33, P = 0.0128; the main effects of CTmax: F1,174 196 

= 0.491, P = 0.485, and Δc: F1,174 = 0.290, P = 0.591, were not significant), indicating the 197 

relationship between worker density and the degree of experimental warming was contingent 198 

upon the ants’ thermal tolerance. Specifically, species with higher thermal tolerance had greater 199 

worker densities under warmer conditions (Fig. 1A). In contrast, at the high latitude site 200 

(Harvard Forest), responses of ants to experimental warming were poorly predicted by individual 201 

CTmax (Fig. 1C). ANOVA revealed non-significant effects of CTmax (F1,43 = 0.127, P = 0.723, Δc: 202 

F1,43 = 1.51, P = 0.226, and their interaction: F1,43 = 1.40, P = 0.243). Instead, worker densities 203 

were greatest in the warmest experimental treatments: regardless of CTmax, all 6 species achieved 204 

their maximum densities in warming treatments of 3.5 °C above ambient or greater (Appendix 205 

H). At the high latitude site, maximum daily temperatures never exceeded 38 °C (the lowest 206 

CTmax of species at Harvard Forest) in any of the warming chambers. As a consequence, there 207 
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was little risk of any species exceeding its CTmax, and ant performance may improve under the 208 

warmest treatments as ants approach their Topt. However, at the low-latitude site, maximum daily 209 

temperatures exceeded 37 °C (the lowest CTmax of species at Duke Forest) during 9% of the year 210 

(based on mean hourly temperatures) among all of the warming chambers. As a consequence, 211 

some species are likely to have experienced temperatures in excess of their CTmax in the warmest 212 

treatments, resulting in the differential representation of worker densities among species in the 213 

warming treatments.  214 

Collectively, these results suggest that CTmax may be a useful predictor of species’ 215 

responses to climatic warming in regions with relatively warm baseline temperatures where 216 

species are close to their upper thermal limits. CTmax may not be a good predictor in regions with 217 

relatively cool baseline temperatures where species are far from their upper thermal limits 218 

(Deutsch et al. 2008, Tewksbury et al. 2008, Huey et al. 2009). 219 

Predictive ability of correlative species distribution models. The MaxEnt models based 220 

on mean annual temperature, mean temperature during the warmest quarter, and maximum 221 

temperature during the warmest quarter for current and future (2080) climates were themselves 222 

statistically well supported: species occurrences were significantly correlated with these thermal 223 

variables, and AUCtest values (based on current climatic conditions) were > 0.8 in all cases (to 224 

obtain AUCtest values, 20% of the data were withheld for testing using k-fold partitioning). We 225 

emphasize, however, that our primary interest was in relative differences among species in the 226 

change in probability of occurrence from current to future conditions, and how these differences 227 

potentially relate to species’ responses to experimental warming, rather than in the precision of 228 

individual SDMs.  229 
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In this respect, correlative SDMs were poor predictors compared with CTmax at the 230 

southern site, and equally poor predictors as CTmax at the northern site (Fig. 1B,D; Appendix 231 

C,D,E). ANOVAs of thermal accumulation slopes revealed significant effects of CTmax, but non-232 

significant effects of MaxEnt predictions (calibrated with mean temperature during the warmest 233 

quarter) at the southern site: CTmax: F1,14 = 10.3, P = 0.00639, MaxEnt: F1,14 = 0.560, P = 0.467.  234 

ANOVAs of thermal accumulation slopes revealed non-significant effects of both CTmax and 235 

MaxEnt predictions (calibrated with mean temperature during the warmest quarter) at the 236 

northern site: CTmax (F1,3 = 0.159, P = 0.717, MaxEnt: F1,3 = 1.84, P = 0.268). Results for 237 

ANOVAs of maximal accumulation temperature were qualitatively similar (Appendix I). These 238 

results do not reflect our particular choices of thermal index or future climate models, and were 239 

robust to many alternative calibrations of the MaxEnt models (Appendix C,E). 240 

Correlative SDMs offer many advantages for ecologists: they are easy to develop and can 241 

successfully predict range shifts in some species (Kearney et al. 2010). The relative ease of 242 

developing correlative SDMs results in part from the simplification of the biological world 243 

inherent in their use (Fitzpatrick et al. 2007). The application of correlative SDMs in climatic 244 

change impact assessment has been criticized (Dormann 2007, Fitzpatrick and Hargrove 2009), 245 

largely on the basis that correlative SDMs ignore evolution and complex interactions between 246 

species, which may themselves change as the climate changes (Schmitz et al. 2003). We are 247 

careful here to note that our correlative SDMs based on environmental thermal indices are 248 

relatively simplistic, and that more sophisticated methods for generating species distribution 249 

models can be applied when more detailed data are available. For example, SDMs have 250 

incorporated additional variables such as land use (Heikkinen et al. 2006), and mechanistic 251 

versions of SDMs are capable of incorporating effects of physiology and demography (Buckley 252 
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2008, Kearney and Porter 2009). However, such methods trade off predictive power with greater 253 

investment in data collection and analysis. Although more sophisticated modeling techniques are 254 

always possible, the results of our study suggest physiological traits alone can be important 255 

predictors of responses of individual species to climatic warming in regions where species are 256 

close to their physiological limits. In such cases, physiological-based models outperform 257 

relatively simple forms of correlative SDMs, at least with respect to experimental climatic 258 

warming at the site level. Perhaps SDMs perform better only at the large spatial scales at which 259 

they are typically used (Heikkinen et al. 2006). On the other hand, if they are to be of practical 260 

use, they should have some relevance to changes at individual sites. The fact that simple 261 

laboratory measures of thermal tolerance (CTmax) are good predictors of activity density 262 

responses in experimental warming arrays suggests that additional measurements of behavioral 263 

and physiological responses to warming may be more productive than continued refinements of 264 

correlative SDMs. 265 

What else is needed for improved predictive ability? Depending on the metric used to 266 

quantify responses to warming, thermal tolerance (CTmax) alone explained a sizable fraction of 267 

the variation (38 to 42%) among species at the warm site. Although indirect responses (including 268 

indirect species effects and interactions mediated by temperature) may play an important role, 269 

direct effects of temperature on performance are critical for understanding the responses of ants, 270 

and probably many other ectotherms, to global warming. The unexplained variation in our 271 

analyses can be partly understood by focusing on the biology of the outlier species. For example, 272 

at warm site, Camponotus americanus and C. pennsylvanicus tended to occupy relatively cool 273 

chambers despite their intermediate CTmax values; at a global scale, such forest specialist species 274 

tend to be relatively intolerant of warming (Diamond et al. 2012). In addition, two other 275 
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Camponotus species (C. chromaiodes and C. castaneus), tended to occupy moderately heated 276 

chambers—chambers below or at the level predicted by the regression of ant responses to 277 

warming against CTmax. Such phylogenetic clustering suggests the possible presence of shared 278 

developmental or genetic constraints on thermal tolerance. We did indeed detect non-zero levels 279 

of phylogenetic signal in the model, but CTmax was still a significant predictor of responses to 280 

warming at the low latitude site (Appendix G).  281 

Our results suggest that the subset of the species in the regional species pool in the 282 

southeastern United States that will become more abundant with climatic warming will be those 283 

with high thermal tolerances. Although our study focused on those species already present at the 284 

study sites the same trends might also hold more generally within the larger regional species 285 

pool. We speculate that species with high thermal tolerances from distant southern sites might be 286 

among the first to colonize the new climatic environments generated by regional warming. 287 

Similarly, if one considers the global species pool of ants being transported introduced around 288 

the world (e.g, Suarez et al. 2005), those with high thermal tolerances are good candidates for 289 

successful establishment in novel environments that have experienced warming. 290 
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 460 

 461 

Figure legends  462 

Figure 1. The predictive ability of thermal tolerance versus species distribution models in ant 463 

responses to warming at high and low latitudes: thermal accumulation slope (the slope, β, of the 464 

linear relationship between ln(cumulative worker density) and chamber delta (Δc, °C)) as a 465 

function of (A,C) the critical thermal maximum (CTmax, °C), and (B,D) MaxEnt prediction (the 466 

change in probability of occurrence across MaxEnt models based on current and future (2080) 467 

climate as defined by mean annual temperature) at (A,B) the low latitude site (Duke Forest), and 468 

(C,D) the high latitude site (Harvard Forest). Each point represents a single species; solid orange 469 

lines represent simple linear regressions (p-values indicate whether the slope is significantly 470 

different from zero), and dashed blue lines represent 95% confidence intervals.  471 

 472 
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APPENDIX A. Relationships between environmental temperature, warming chamber temperature manipulations and hypothesized ant 
thermal performance curves at the high latitude (Harvard Forest) and low latitude (Duke Forest) sites. 



 

FIG. A1. Relationships between environmental temperature, warming chamber temperature manipulations and hypothesized ant 
thermal performance curves at the high latitude (Harvard Forest) and low latitude (Duke Forest) sites. The left panel depicts the 



current temperature of the warmest annual quarter (°C) derived from WorldClim. The two rightmost panels depict hypothesized 
thermal performance curves (blue lines), with relative performance as a function of temperature at the high latitude (top panel) and 
low latitude (bottom panel) sites. The color gradients correspond with the current temperature of the warmest annual quarter (ambient 
temperature) at each site, and temperatures of the warmest annual quarter after applying the warming chamber treatments (1.5 to 5.5 
°C above ambient temperature). Note that environmental temperatures in the warming chambers are much closer to the thermal 
optimum (Topt) and critical thermal maximum (CTmax) at the low latitude site compared with the high latitude site. 
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APPENDIX B. Methodological and analytical details on the construction and evaluation of models 
of ant responses to climate warming. 
 
Methodological details 
 
Pitfall collections 
 To sample ants, we placed four pitfall traps (90 mL volume) containing propylene glycol 
(30 mL; Prestone, LowTox) flush with the soil surface in each chamber. During each sampling 
event, traps were left out for a 48-hour sampling period (performed monthly; see below). At the 
end of the 48-hour sampling period, individual ants recovered in the pitfall traps were removed 
from the propylene glycol and preserved in 95% ethanol. All ants were identified to the species 
level; pinned voucher specimens are retained at North Carolina State University, and at Harvard 
Forest.  

Monthly pitfall samples were conducted at Duke and Harvard Forest (April 2010 - 
September 2011). Pitfall data also were collected for each chamber following chamber 
construction, but prior to the setting of experimental temperature treatments (September - 
November 2009). We examined such ‘pre-treatment’ data for potential preexisting biases in 
species abundance across chambers. A gap exists between the pre- and post-treatment data 
because we restrict our analyses of post-treatment data to those data collected after the 
stabilization of Δcs in experimental chambers which required approximately 4 months.  We 
restricted our analyses to those ground-foraging ant species which were sampled in the pitfall 
traps at Duke and Harvard Forests, and excluded data on a primarily subterranean, exceptionally 
rare species that does not nest in the chambers (Neivamyrmex texanus), and a canopy specialist 
species (Camponotus obliquus). 
 
Thermal tolerance 

Colony fragments of ants (workers only) were collected from open and forested areas 
adjacent to the Duke and Harvard Forest warming sites, and comparable habitats within Wake 
Co. (North Carolina, USA) and Worcester Co. (Massachusetts, USA). Colony fragments were 
maintained with continuous access to food and water at a non-stressful temperature of 25 °C, 
ensuring ants were in good condition prior to thermal testing (testing occurred within 24 hours of 
collection). Ants were placed individually into 1.5mL Eppendorf tubes which contained cotton in 
the lid cap to eliminate a potential thermal refuge. The tubes were transferred to a heating dry 
block (Thermal Lok USA Scientific), and the temperature was increased by 2 °C every 10 
minutes starting at 36 °C until the loss of ant muscular coordination which indicated CTmax was 
reached. 

 
Species distribution models 



Current climatic data were obtained from WorldClim at a 30 arc-second (1 km) 
resolution (Hijmans et al. 2005). Statistically downscaled global climate change models (GCM) 
based on the third IPCC Assessment Report were obtained from the International Centre for 
Tropical Agriculture (CIAT) (Ramirez and Jarvis 2008), and used to derive predicted future 
climate data for 2080. We examined a range of different GCMs (CCCMA-CGCM2, CSIRO-
MK2, and HCCPR-HADCM3 at a 30 arc-second resolution); because results were similar across 
different climate models, we focus on results from the CCCMA-CGCM2 model (Appendix 
C,D). This model predicts a 4.6 °C increase in temperature at Duke Forest, and 4.8 °C increase at 
Harvard Forest by the year 2080.  

North American occurrence data (presence-only) for each of the ant species present in the 
pitfall traps at Duke and Harvard Forests were obtained from the primary literature and museum 
records (Fitzpatrick et al. 2011). The median number of records was 111 species-1 and ranged 
from 13 to 471 for the Duke and Harvard Forest species examined in our study. 
 
Phylogenetic autocorrelation 

We fit phylogenetic generalized least squares (PGLS) models where the degree of 
phylogenetic autocorrelation (Pagel’s λ) was simultaneously co-estimated. Lambda is a measure 
of phylogenetic inertia, or how closely the structure in the model residuals resembles the 
structure of the phylogeny, with greater values indicating greater phylogenetic structure. 
Phylogenetic associations among ant genera were based on the phylogeny of Moreau et al. 
(2006). Unknown relationships among species were interpolated as polytomies.  
 
Supporting analyses and results 
 
Potential for pre-existing patterns in ant activity density  

Prior to chamber deltas being set at Duke and Harvard Forest, we found little evidence of 
systematic variation in the worker density of ants among different chambers (ANOVA revealed a 
non-significant effect of chamber on pre-treatment cumulative worker density at Duke Forest: 
F11,74 = 0.317, P = 0.980, and at Harvard Forest: F11,8 = 0.581, P = 0.802), indicating our post-
treatment results of CTmax being predictive of ant activity density do not simply reflect pre-
existing patterns of warming chamber colonization. 
 
ANOVA models based on thermal accumulation slope  

For ANOVA models in which the slope of the linear relationship between ln(cumulative 
worker density) and Δc was considered the response, and CTmax and the difference in MaxEnt 
probability of occurrence between current and future climate were considered continuous fixed 
effects, two species (Amblyopone pallipes and Temnothorax pergandei) from Duke Forest were 
excluded from this analysis owing to their occurrence in only a single temperature treatment 
(slopes relating ln(cumulative worker density) and Δc could not be estimated). 

We additionally performed ANOVAs of thermal accumulation slope as functions of 
CTmax and MaxEnt predictions with the residuals weighted by 1/(SE of the thermal accumulation 
slope). The results were qualitatively similar to our unweighted analyses. We focus on the 
unweighted analyses, as weighted analyses introduce some degree of systematic bias in which 
species that naturally occur at low frequency, but nonetheless respond to warming treatments, are 
necessarily weighted less than more frequently occurring species with comparable responses to 
the warming treatments (Appendix J). 
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APPENDIX C. Model summaries of ant responses to climate warming based on thermal tolerance 
and MaxEnt predictions developed with alternative GCMs. 
 
TABLE C1. Model summaries of ant responses to climate warming based on thermal tolerance 
and MaxEnt predictions developed with alternative GCMs. 
 
GCM* Site Response Predictor F† P 
CCCMA-CGCM2 Duke Forest maximal accumulation temperature CTmax 9.80 0.00646 
   MaxEnt 0.166 0.689 
  thermal accumulation slope CTmax 11.4 0.00450 
   MaxEnt 0.993 0.336 
 Harvard Forest maximal accumulation temperature CTmax 0.0884 0.786 
   MaxEnt 0.0739 0.803 
  thermal accumulation slope CTmax 0.577 0.503 
   MaxEnt 0.0899 0.784 
CSIRO-MK2 Duke Forest maximal accumulation temperature CTmax 9.87 0.00630 
      MaxEnt 0.0196 0.890 
    thermal accumulation slope CTmax 10.5 0.00589 
      MaxEnt 3.04 0.103 
  Harvard Forest maximal accumulation temperature CTmax 0.0843 0.790 
      MaxEnt 0.342 0.600 
    thermal accumulation slope CTmax 1.43 0.318 
      MaxEnt 0.0367 0.860 
HCCPR-HADCM3 Duke Forest maximal accumulation temperature CTmax 12.0 0.00316 
      MaxEnt 1.69 0.212 
    thermal accumulation slope CTmax 12.0 0.00385 
      MaxEnt 1.18 0.296 
  Harvard Forest maximal accumulation temperature CTmax 2.09 0.244 
      MaxEnt 0.0002 0.990 
    thermal accumulation slope CTmax 0.0206 0.895 
      MaxEnt 0.462 0.546 
 



*MaxEnt models are constructed using all 19 bioclim variables (L-1 regularization using the 
default settings was employed) to facilitate overall comparisons among different climate models; 
similar results were obtained using thermal indices (mean annual temperature, mean temperature 
during the warmest quarter, and maximum temperature during the warmest quarter) as individual 
predictors. 

†(Numerator degrees of freedom, denominator degrees of freedom) for predictors: Duke Forest 
maximal accumulation temperature = (1, 16); Duke Forest thermal accumulation slope = (1, 14); 
Harvard Forest maximal accumulation temperature and thermal accumulation slope = (1, 3). 
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APPENDIX D. Thermal indices of current and future climates at Duke and Harvard Forests. 
 
TABLE D1. Thermal indices of current and projected future climates based on three climate 
change models at Duke and Harvard Forests. 
 
Site Thermal index Temperature (°C; current 

WorldClim, 2080 CCCMA-
CGCM2, CSIRO-MK2, HCCPR-
HADCM3) 

Duke Forest Mean annual temperature 14.5, 19.1, 19.6, 19.4 
 Mean temperature warmest quarter 24.1, 29.3, 29.2, 30.8 
 Maximum temperature warmest quarter 31.4, 38.8, 36.4, 39.3 
Harvard Forest Mean annual temperature 7.3, 12.1, 14.2, 12.1 
 Mean temperature warmest quarter 18.9, 23.7, 24.8, 25.1 
 Maximum temperature warmest quarter 27.1, 31.7, 33.0, 34.1 
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APPENDIX E. Model summaries of ant responses to climate warming based on thermal tolerance 
and MaxEnt predictions developed with alternative thermal indices. 
 
TABLE E1. Model summaries of ant responses to climate warming based on thermal tolerance 
and MaxEnt predictions developed with alternative thermal indices. 
 

MaxEnt calibrating 
variable* 

Site Response Predictor F† P 

Tan Duke Forest maximal accumulation temperature CTmax 8.65 0.00960 
   MaxEnt 1.46 0.244 
  thermal accumulation slope CTmax 8.91 0.00983 
   MaxEnt 0.460 0.509 
 Harvard Forest maximal accumulation temperature CTmax 0.0188 0.900 
   MaxEnt 0.0005 0.983 
  thermal accumulation slope CTmax 1.23 0.348 
   MaxEnt 0.507 0.528 
Tqt Duke Forest maximal accumulation temperature CTmax 9.51 0.00712 
      MaxEnt 0.287 0.599 
    thermal accumulation slope CTmax 10.3 0.00639 
      MaxEnt 0.560 0.467 
  Harvard Forest maximal accumulation temperature CTmax 0.228 0.666 
      MaxEnt 0.290 0.628 
    thermal accumulation slope CTmax 0.159 0.717 
      MaxEnt 1.84 0.268 
Tmax Duke Forest maximal accumulation temperature CTmax 10.7 0.00481 
      MaxEnt 1.89 0.188 
    thermal accumulation slope CTmax 12.2 0.00357 
      MaxEnt 2.00 0.179 
  Harvard Forest maximal accumulation temperature CTmax 0.398 0.573 
      MaxEnt 0.881 0.417 
    thermal accumulation slope CTmax 0.570 0.505 
      MaxEnt 0.0407 0.853 

 



*MaxEnt calibrating variable abbreviations: Tan = mean annual temperature; Tqt = mean 
temperature during the warmest annual quarter; Tmax = maximum annual temperature. Projected 
future distributions were developed using the CCCMA-CGCM2 climate model. 

†(Numerator degrees of freedom, denominator degrees of freedom) for predictors: Duke Forest 
maximal accumulation temperature = (1, 16); Duke Forest thermal accumulation slope = (1, 14); 
Harvard Forest maximal accumulation temperature and thermal accumulation slope = (1, 3). 
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APPENDIX F. Sample calculations of thermal accumulation slope. 

 

FIG. F1. Sample calculations of thermal accumulation slope. The top left panel presents the 
thermal accumulation slope (± 1 SE) as a function of CTmax for the 19 species at Duke Forest; the 
solid grey line indicates the slope of this regression, and the dashed grey lines indicate the 



standard errors of the predicted values. The remaining panels present examples of the calculation 
of the thermal accumulation slope (the natural log of worker density as a function of the °C 
above ambient among the different warming chambers). Three species with different functional 
responses to warming are presented: a heat tolerant species (Crematogaster lineolata; red lines), 
a heat intolerant species (Prenolepis impairs; blue lines), and a heat insensitive species 
(Aphaenogaster lamellidens; green lines). The solid line is the thermal accumulation slope for 
each of these species, and the dashed lines indicate the standard errors of predicted values; these 
lines correspond with the point estimates (slope ± 1 SE) presented in the top left panel.  
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APPENDIX G. Phylogenetic model summaries of ant responses to climate warming based on 
thermal tolerance and MaxEnt predictions. 
 
TABLE G1. Phylogenetic model summaries of ant responses to climate warming based on thermal 
tolerance and MaxEnt predictions. 
 
Site Response Predictor* F P λ 

Duke Forest maximal accumulation 
temperature 

CTmax 9.29 0.00869 0.348 

    MaxEnt (Tan) 0.893 0.361  

  thermal accumulation slope CTmax 11.2 0.00485 0.136 
    MaxEnt (Tan) 0.297 0.594  

  maximal accumulation 
temperature 

CTmax 9.28 0.00871 0.359 

    MaxEnt (Tqt) 0.878 0.365  

  thermal accumulation slope CTmax 11.2 0.00482 0.282 
    MaxEnt (Tqt) 0.767 0.396  

  maximal accumulation 
temperature 

CTmax 10.6 0.00583 0.358 

   MaxEnt (Tmax) 2.91 0.110  

  thermal accumulation slope  CTmax 12.2 0.00362 0.274 
    MaxEnt (Tmax) 2.04 0.175  
Harvard Forest maximal accumulation 

temperature 
CTmax 0.00718 0.940 <0.0001 

    MaxEnt (Tan) 0.0002 0.990  
  thermal accumulation slope CTmax 8.47 0.101 <0.0001 
    MaxEnt (Tan) 0.348 0.615  
  maximal accumulation 

temperature 
CTmax 0.00776 0.938 <0.0001 

    MaxEnt (Tqt) 0.162 0.726  
  thermal accumulation slope CTmax 11.7 0.0758 <0.0001 
    MaxEnt (Tqt) 1.25 0.380  



  maximal accumulation 
temperature 

CTmax 0.305 0.636 <0.0001 

    MaxEnt (Tmax) 4.07 0.181  
  thermal accumulation slope  CTmax 5.73 0.139 <0.0001 
    MaxEnt (Tmax) 0.865 0.450  
 
*MaxEnt predictors: Tan denotes mean annual temperature, Tqt denotes mean temperature during 
the warmest quarter, and Tmax denotes maximum temperature during the warmest quarter. 
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APPENDIX H. Ant worker density as a function of warming treatment at Harvard Forest. 

 



FIG. H1. Ant worker density as a function of chamber delta (°C) at Harvard Forest. Symbols 
correspond with species identity: Aphaenogaster rudis (filled circles), Camponotus 
pennsylvanicus (open circles), Formica subsericea (filled squares), Lasius alienus (open 
squares), Myrmica punctiventris (filled triangles), Temnothorax longispinosus (open triangles).  
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APPENDIX I. Regressions of maximal accumulation temperature as functions of thermal tolerance 
and MaxEnt predictions. 

 



FIG. I1. The predictive ability of thermal tolerance versus species distribution models in ant 
responses to warming at high and low latitudes: thermal accumulation slope (the slope, β, of the 
linear relationship between ln(cumulative worker density) and Δc)  as a function of (A,C) the 
critical thermal maximum (CTmax), and (B,D) MaxEnt prediction (the change in probability of 
occurrence across MaxEnt models based on current and future (2080) climate as defined by 
mean annual temperature) at (A,B) the low latitude site (Duke Forest), and (C,D) the high 
latitude site (Harvard Forest). Each point represents a single species; solid orange lines represent 
simple linear regressions (p-values indicate whether the slope is significantly different from 
zero), and dashed blue lines represent 95% confidence intervals. 
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APPENDIX J. Regressions of thermal accumulation slope (including standard errors) as functions 
of thermal tolerance and MaxEnt predictions. 
 

 
 



FIG. J1. The predictive ability of thermal tolerance versus species distribution models in ant 
responses to warming at high and low latitudes: thermal accumulation slope (the slope, β, of the 
linear relationship between ln(cumulative worker density) and Δc)  as a function of (A,C) the 
critical thermal maximum (CTmax), and (B,D) MaxEnt prediction (the change in probability of 
occurrence across MaxEnt models based on current and future (2080) climate as defined by 
mean annual temperature) at (A,B) the low latitude site (Duke Forest), and (C,D) the high 
latitude site (Harvard Forest). Each point represents a single species; solid orange lines represent 
simple linear regressions, and dashed blue lines represent 95% confidence intervals.  
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