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Dynamics of cortical decision circuits during changes in the fidelity of sensory 

representations 

Abstract 

Every waking moment, we make decisions, from where to move our eyes to what to eat 

for dinner. The ease and speed with which we do this belie the complexity of the underlying 

neuronal processing. In the visual system, every scene is processed via a complicated network of 

neurons that extends from the retina through multiple areas in the visual cortex. Each decision 

requires rapid coordination of signals from the relevant neurons. Deficits in this integration are 

likely causes of debilitating learning disorders, yet we know little about the processes involved. 

Previous studies of the macaque visual cortex indicate that as monkeys learn a new task 

the  parts  of  the  brain  involved  in  decision  making  select  which  neurons  they  “listen  to”:  the  most  

informative  neurons  become  more  strongly  associated  with  the  animal’s  decisions as it learns. 

However, this process has only been studied over the course of several months as monkeys 

gradually learn a complex task. We set out to probe the dynamics of this relationship on a shorter 

timescale. We studied the middle temporal area (MT) of the visual cortex, where neurons are 

selective for binocular disparity (a depth cue) and motion direction; they have also been shown 

to contribute to perceptual decisions during motion- and depth-based tasks. After training 

monkeys on motion and depth detection tasks, we degraded the sensitivity of MT neurons for 

depth more than motion by reversibly inactivating two major inputs to MT—visual areas V2 and 

V3—by cooling. We hypothesized that degrading depth information more than motion would 

lead to bigger changes in the extent to which MT neurons contributed to decisions during the 
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depth task than the motion task. We monitored this contribution to decisions, as measured by 

detect probability (DP), prior to and during daily inactivation sessions. We found that neuronal 

DP decreased during the depth task, indicating that neurons became less involved in these 

decisions. DP did not change during the motion task, suggesting that these changes can be 

specific to one feature. Our results revealed a level of fast, selective flexibility in the decision 

circuitry. 
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Introduction 

We are confronted with a variety of new sights, sounds, and sensations every second. 

Without much effort, we can quickly use this information to respond to the world around us—

move out of the way of an oncoming car, turn toward a singing bird, or learn to play a video 

game. The ease and speed with which we do these things belie the complexity of the underlying 

neuronal processing. In the visual system, every image that falls on our retina is processed via a 

complicated network of neurons that extends from the retina to the visual cortex—the part of the 

brain that is believed to endow us with visual perception. As the information proceeds through 

various pathways, the image is segmented into components—orientations, colors, speeds, and 

locations in space—different combinations of which are processed by different groups of 

neurons. A single decision, move right or move left, requires rapid coordination of outputs from 

the relevant neurons. This rapid flexibility implies that there are mechanisms in the brain that can 

select these relevant neurons very quickly. Yet we know little about the mechanisms and 

dynamics of how such neurons are selected. 

What little we know about the cortical mechanisms underlying this flexibility has come 

primarily from experiments in monkeys that have been trained to perform demanding cognitive 

tasks. In particular, the visual system has been a particularly fruitful substrate for studies of 

cortical mechanisms because of how well we understand some of its basic properties. In a recent 

investigation into the dynamics accompanying learning in visual cortex, Law and Gold (2008) 

trained macaque monkeys on a motion-based task in which the animals discriminated the 

direction of motion of a visual stimulus presented on a screen. Monkeys master such tasks 

through daily training sessions over the course of several months, and Law and Gold recorded 

neurons in visual cortical area MT (and LIP), an area highly sensitive to motion, during every 
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such training session.  They  found  that  as  the  monkeys’  behavioral  performance  improved,  the  

MT neurons did not get any more sensitive to motion; they were just as informative about the 

visual stimulus at the beginning as they were after months of training. Instead, what seemed to 

change  was  how  much  these  neurons  contributed  to  the  animals’  decisions.  In  particular,  as  the  

animal  learned,  the  more  informative  neurons  became  more  involved  in  the  monkey’s  decisions.  

These results indicate that one way to account for the animal’s  behavioral  improvement  is  via  the  

preferential selection of the most useful neurons through training. We set out to determine 

whether this selection process can happen more quickly, within about an hour.  To do this, we 

inverted the question to ask:  Can  neurons  be  “de-selected”  if  they  become  less  useful  (i.e. less 

informative about the visual stimulus)? Does the decision circuitry adapt by no longer 

monitoring these neurons? Or stated differently, when the circuitry is forced to search for new 

neurons, as might happen when a monkey learns a new task, can we observe this change in the 

time course of an hour? Stating the question this way allowed us to use well-trained animals with 

established decision circuitry. Instead of training animals on a new task, which may take months, 

we degraded the sensitivity of neurons embedded within that circuitry on the time scale of a few 

minutes, thereby encouraging the decision circuitry to adapt.  

To degrade neuronal sensitivity, we used cortical cooling (Lomber et al., 1999; Ponce et 

al., 2008) to inactivate two of the inputs to MT, the same brain area where Law and Gold 

observed long-timescale changes in decision circuits. In addition to being sensitive to motion 

direction, neurons in MT are sensitive to an important depth cue, binocular disparity. Ponce and 

colleagues (2008) showed that reversibly inactivating V2 and V3—two of the major cortical 

inputs to MT—degrades  MT  neurons’  sensitivity  for  binocular  disparity  more  so  than  for  

direction of motion. Using this technique, we asked whether such disproportionate changes in 
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MT  neuron’s  “informativeness”  can  lead  to  disproportionate  changes  in  decision  circuits during 

motion and depth tasks. Since binocular disparity sensitivity is affected more than motion, we 

hypothesized that decision circuitry will also be affected more during depth tasks than motion 

tasks. 

In the following sections I will briefly discuss the properties of MT neurons, focusing on 

their involvement in motion and depth processing as well as behavioral decisions during motion- 

and depth-based tasks. Furthermore, I will discuss potential mechanisms for how they become 

involved in behavioral decisions and present a plausible hypothesis for the results of degrading 

neuronal sensitivity for depth more than motion in MT. 

The middle temporal area  

 MT of the macaque monkey visual cortex is located in the posterior bank of the superior 

temporal sulcus (Dubner and Zeki, 1971). Its connections with other cortical areas place it in the 

dorsal,  or  ‘where’  processing  stream  of  the  visual  hierarchy  (Ungerleider and Mishkin, 1982). 

Accordingly, neurons encode information about the location and motion of visual stimuli but are 

relatively insensitive to form and color (Albright, 1992; Gegenfurtner et al., 1994).     

Anatomical connectivity 

 The two major sources of cortical input to MT originate from distinct but intermingled 

cells in layer 4B in V1 (Figure 1; reviewed in Born and Bradley, 2005). From layer 4B, spiny 

stellate cells provide the majority of the direct monosynaptic input to MT. In contrast, signals 

from the pyramidal 4B neurons proceed to MT indirectly via cortical areas V2 and V3 (Maunsell 

and Van Essen, 1983c; Shipp and Zeki, 1985, 1989; DeYoe and Van Essen, 1988; Sincich and 

Horton, 2003). Although these cortical inputs from V1 predominate, MT also receives 



4 
 

subcortical input from the lateral and inferior pulvinar 

(Glickstein et al., 1980; Maunsell and Van Essen, 1983c; 

Stepniewska et al., 1999) as well as directly from the lateral 

geniculate nucleus (Sincich et al., 2004). As a result, some 

MT neurons can remain somewhat responsive following 

lesions or inactivation of V1 (Rodman et al., 1989; Girard 

et al., 1992). As output, MT sends feed-forward projections 

to areas involved in optic flow processing (e.g. MST, VIP) 

and the generation of eye movements (e.g. LIP, FEF, SC, 

dorsolateral pons) as well as feedback connections to 

earlier visual areas (Maunsell and Van Essen, 1983c; 

Ungerleider and Desimone, 1986). 

Basic visual response properties 

Macaque MT was originally identified by its large 

proportion of strongly direction-selective cells (Dubner and Zeki, 1971). The difference between 

an  MT  neuron’s  response  to  a  stimulus moving in its preferred direction and one moving in the 

opposite direction can exceed 200 action potentials per second. This is one of the most 

pronounced forms of selectivity in visual cortex and has served as the substrate for studies of a 

variety of cortical mechanisms including noise reduction, perception, and attention (reviewed in 

Born and Bradley, 2005). MT neurons are also strongly selective for retinal position: a preferred-

direction stimulus will have no effect on the neuron’s  response  if  placed  outside  of  its  classical 

receptive field (RF). Furthermore, MT neurons are selective for stimulus size, speed, and 

binocular disparity (Maunsell and Van Essen, 1983a, 1983b). Binocular disparity is an important 

 

Figure 1: Schematic of the 
major cortical inputs to MT 
The  “direct”  pathway  from  V1  
is shown in blue and the 
“indirect  pathway”  through  V2  
and V3 is in green.  
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depth cue that arises because of the horizontal 

separation of the two eyes (Figure 2). When gaze 

is directed at a particular point in space (red 

circle), the image of that point falls on the foveae 

of the two eyes; however, the image of any object 

nearer or farther to the observer than that point, 

will fall on slightly different positions on the two 

retinae. The small difference between these two 

positions  (d  and  d’)  gives  the  binocular  disparity. 

For our purposes, we are most concerned with 

MT’s  responses  to  motion  direction  (“direction”,  

for brevity) and binocular disparity. 

Sources of direction and disparity information 
in MT 

Anatomical and functional evidence 

suggests that direction and disparity may be 

conveyed through somewhat anatomically distinct 

pathways. In particular, some segregation may 

occur along the direct and indirect cortical pathways (discussed above) such that the direct 

pathway conveys more direction information and the indirect pathway more binocular disparity 

information. Historically, it has proved challenging to determine both the anatomical 

connectivity and functional properties of individual neurons. Nevertheless, in one study, all of 

the V1 neurons that were identified as directly projecting to MT, were very direction selective 

(Movshon and Newsome, 1996).  Furthermore,  most  of  MT  neurons’  velocity  tuning  properties 

 

Figure 2: Geometry of binocular 
disparity  
 
When gaze is directed at a point in 
space (red circle) the image falls on the 
foveae of the two eyes. An object 
nearer to the observer than the fixation 
plane (blue square) will fall on slightly 
different locations in the two retinae 
relative to each fovea, indicated by d 
and  d’.  The  difference  in  these  distances  
(d-d’)  is  the  binocular  disparity  in  
degrees of visual angle. By convention, 
negative binocular disparities indicate 
objects nearer to the observer than the 
plane of fixation and positive values 
indicate objects farther from the 
observer. 
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appear to be inherited from their V1 inputs  (Pack et al., 2003, 2006; Churchland et al., 2005), 

obviating  the  need  for  intermediate  processing  stages.  In  contrast,  it  seems  that  MT’s  disparity  

tuning preferences  are  different  enough  from  V1’s  to  require  an  additional  processing  step  

(Cumming and DeAngelis, 2001). For example, MT neurons are sensitive to larger disparities 

than V1 neurons, which would require a de novo combination of inputs from the two eyes 

(DeAngelis and Uka, 2003). Moreover, neurons in MT and V1 tend to have differently shaped 

disparity tuning curves: when classified by symmetry around its center (even or odd) V1 neurons 

tend to exhibit even-symmetric tuning curves while MT neurons mostly exhibit odd symmetry 

(DeAngelis and Uka, 2003). Although disparity sensitivity may be computed de novo in MT, an 

alternative possibility is that it is conveyed via V2 and the indirect pathway (Roe et al., 2007). 

Indeed, the V2 compartments that provide the majority of the input to MT have a high 

preponderance of disparity selectivity (DeYoe and Essen, 1985; Hubel and Livingstone, 1987; 

Peterhans and von der Heydt, 1993). Functional evidence for this contribution comes from recent 

experiments by Ponce and colleagues who inactivated the major components of the indirect 

pathway—V2 and V3—by cooling (Ponce et al., 2008). Concurrent recordings of neurons in MT 

revealed that despite a ~20% reduction in overall firing rate, MT neurons retained their direction 

tuning selectivity and bandwidth, consistent with a large proportion of motion information 

arriving directly from V1. In contrast, disparity tuning selectivity was usually significantly 

reduced and sometimes eliminated. Importantly, the effects on binocular disparity tuning were 

bigger than those predicted by the reduction in firing rate alone. These results indicate that V2 

and V3 play an important role in conveying disparity information to MT. In the context of our 

experiments, this method gives us the means to disproportionately degrade the representation of 

these two features. 
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Role of MT in behavioral reports during motion and depth tasks 

   It has been proposed that in order to establish a link between perception and the activity 

of a particular group of neurons, several criteria must be met: 1) neurons should be sensitive to 

the parameters of the task, 2) lesions of the candidate set of neurons should lead to behavioral 

deficits, 3) electrical  stimulation  of  the  candidate  neurons  should  bias  the  subject’s  decisions,  and 

4) neuronal activity should be predictive of the  subject’s  decision  (Parker and Newsome, 1998). 

Over the past several decades, MT neurons have met most of these criteria for both motion- and 

depth-based tasks. As discussed in a previous section, MT neurons are tuned—i.e. sensitive—to 

both direction and binocular disparity (criterion #1). To determine their relationship to behavior, 

researchers have employed a task in which animals are trained to report the direction or depth of 

a random dot stimulus. The stimulus in the direction of motion task consists of a patch of dozens 

of  moving  dots  and  looks  like  snowflakes  during  a  windy  Nor’easter:  some  fall  downward, some 

fly  up,  and  many  seem  to  dance  around  randomly.  The  monkeys’  task  is  a  discrimination:  report  

whether the dots move in one specific direction or the opposite. This stimulus has the advantages 

of eliciting high levels of activity from MT neurons and allowing the experimenter to control the 

task difficulty by changing the proportion of dots moving in one direction relative to those 

moving in the opposite. Analogously, in the depth task, the subject reports whether the patch of 

dots is nearer or farther than the fixation plane and the difficulty can be titrated by changing the 

proportion of dots drawn in each plane. This task design has been used by multiple laboratories 

for several decades to satisfy the criteria listed above.   

First, it was established  that  lesions  in  MT  impair  monkeys’  performance  during the 

motion discrimination task described above (criterion #2; Newsome and Pare, 1988). 

Importantly,  these  lesions  spared  the  monkeys’  performance  in  a  similarly  designed  contrast  
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discrimination task, indicating the impairment was not due to loss of basic visual sensitivity or 

due to deficits in making the behavioral response. Subsequent experiments showed that 

electrically  stimulating  groups  of  MT  neurons  biases  animal’s  judgments  during the motion 

discrimination task toward the preferences of the neurons being stimulated (criterion #3; 

Salzman et al., 1990): when stimulation targeted a cluster of upward-preferring neurons, animals 

more frequently reported seeing the stimulus move up than down, even though this reduced their 

success rate, and thereby reward frequency. Finally, methods from signal detection theory were 

implemented to measure the degree to which the activity of individual neurons correlated with 

perceptual decisions (Britten et al., 1996). Remarkably, individual neurons were weakly 

correlated with behavioral reports on the same motion discrimination task, suggesting that they 

contribute to the behavioral decision (criterion #4). The metric used to determine this correlation 

was  termed  “choice  probability”  because  it measures the probability with which an ideal 

observer  can  predict  the  animal’s  behavioral  choice  from  the  response  of  a  single neuron. A 

choice probability-like metric, called detect probability, has subsequently been used to implicate 

MT neurons on another variant of a motion task, a detection task, in which the animals report 

detecting onset of motion in a noisy patch of dots (Cook and Maunsell, 2002b). 

 A similar series of experiments was later performed while animals performed a depth 

discrimination task in which monkeys were trained to report whether a stimulus was near or far 

relative to the plane of gaze fixation. Similarly, electrically stimulating groups of neurons in MT 

led  to  biases  in  the  animals’  choices  toward  the  preferences  of  the  neurons  being  stimulated  

(DeAngelis et al., 1998). In addition, MT neurons exhibit choice probability greater than 0.5 

during the depth discrimination task (Uka and DeAngelis, 2004). However, lesions in MT did 

not always lead to impairments during depth discrimination tasks. In one case, permanent lesions 
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led to no discernible deficits during depth discrimination or detection tasks (Schiller, 1993). 

However, the monkeys were only required to indicate which one of several stimuli was different, 

not to give information about its actual depth, a task that is possible to solve using binocular 

rivalry cues. A subsequent study demonstrated that MT inactivation impaired depth 

discrimination  performance  in  a  manner  dependent  on  the  animal’s  training  history  (Chowdhury 

and DeAngelis, 2008). When animals were only trained to perform a depth task optimized for 

MT neurons, MT inactivation devastated performance. However, when those same animals were 

trained on a variant of the task that required contribution from other cortical areas—i.e. a task 

where MT neurons were not sufficiently informative—MT inactivation no longer impaired 

performance on either version,  suggesting  processing  for  the  original  task  had  “moved”  to  

another brain area. These results reveal a level of flexibility in the contribution of neurons to 

behavioral reports—one that can occur if neurons in other areas are also sensitive to the task 

demands. Importantly, MT lesions continued to cause impairments in performance during a 

motion discrimination task, indicating that MT was not entirely ignored in decision making. 

 Together, these results indicate that MT neurons are critically involved in both motion 

and depth based tasks. Importantly, choice probability-like measures allow us to assess the 

contribution of MT neurons to these behavioral tasks without having to interfere with the 

neurons’  normal  function  (e.g. with electrical stimulation). 

How do MT neurons come to be involved in behavioral decisions? 

 The results of Chowdhury and DeAngelis (2008) hint at another important feature of 

decision circuit formation: it can be selective. The original variant of the depth task required 

discriminating weak signals in noise—a task for which MT neurons may be especially well 

suited (Born and Bradley, 2005). On the other hand, both variants of the depth task can be solved 
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by neurons in other areas such as V4 or inferotemporal cortex (Janssen et al., 2000, 2001; Umeda 

et al., 2007).  Why  weren’t  these  other  areas  used  to  begin  with?  It seems there may be an 

ongoing optimization process to select some relevant neurons but not all. Indeed, it has often 

been observed that, in the context of both motion and depth tasks, the MT neurons that are most 

sensitive to the task exhibit higher choice probabilities than those less sensitive, suggesting they 

are more strongly weighted in the decision process (Britten et al., 1996; Cook and Maunsell, 

2002b; Uka and DeAngelis, 2004; Smith et al., 2011). In other words, the most sensitive, or 

useful, neurons seem to be prioritized in the decision. This relationship was not found at the start 

of behavioral training on a motion discrimination task in the one study that monitored choice 

probability throughout training (Law and Gold, 2008): few neurons in MT exhibited choice 

probabilities significantly different from chance in the first few weeks of training, even though 

the  animals  seemed  to  know  the  task  rule.  As  animals’  behavioral  performance  improved  over  

many weeks, neurons most sensitive to the task tended to exhibit increasing choice probabilities. 

These results suggest that these slow behavioral improvements—typically  called  “perceptual  

learning”—can be accompanied by changes in the decision circuitry such that the most relevant 

neurons contribute more to the behavioral decision. In a follow-up computational study, the same 

authors showed that this relationship can develop by strengthening the connections between the 

most sensitive neurons  and  the  “decision  pool,” which acts to collect sensory information to 

inform a decision (Law and Gold, 2009). These changes occurred even though the sensitivity of 

the MT population did not change over the course of many behavioral sessions, a change that 

could presumably also lead to improvements in behavioral performance. This is in contrast to a 

report that neuronal sensitivity improved in another mid-level visual cortical area, V4, following 

extensive training on an orientation discrimination task (Yang and Maunsell, 2004). Since 
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training on the same orientation task produced no changes in earlier visual areas V1 and V2 

(Ghose et al., 2002), it is possible that changes of neuronal sensitivity happen only at specific 

stages of visual processing. Both findings are consistent with models that posit that 

improvements in behavioral performance can occur as a result of increases in the weighting of 

the responses of the most informative neurons (Dosher and Lu, 1998; Law and Gold, 2009). 

Since most neurons in visual cortex are sensitive to multiple visual features, another question 

arises about how these neurons contribute to tasks that are dependent on each feature. Do 

neurons contribute to all tasks in which they are relevant? Do they do this if the animal switches 

quickly between such tasks? These questions have begun to be addressed with regard to MT 

neurons’  sensitivity  for  direction  and  binocular  disparity.  In  general,  the  contribution  of  

individual  MT  neurons  to  motion  and  depth  tasks  seems  to  depend  on  the  animal’s  strategy  

(DeAngelis and Newsome, 2004; Sasaki and Uka, 2009).  

In addition to being retinotopically organized, MT neurons are functionally organized by 

both direction and binocular disparity, such that preferences for each feature vary smoothly 

among nearby neurons (Albright et al., 1984; DeAngelis and Newsome, 1999). DeAngelis and 

Newsome (2004) applied electrical microstimulation to regions of MT with varying degrees of  

disparity sensitivity as monkeys performed a direction discrimination task. They found that 

stimulating regions that were most sensitive for binocular disparity had the smallest effects on 

direction judgments (in 2 out of 3 animals); stimulating sites that were poorly tuned for binocular 

disparity had the biggest effect on direction judgments. This was true even though all 

experiments were performed at sites with strong direction tuning. In other words, it seemed that 

neurons that were well tuned for binocular disparity contributed little to direction judgments, 

even though they contained direction information. This was interpreted as resulting from a 
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strategy employed by the monkeys to pool the most versatile set of neurons: since these neurons 

were less sensitive to binocular disparity, they were equally informative at all stimulus depths. 

However,  little  is  known  about  the  interactions  of  MT’s  topographic  maps,  so  it  is  also  possible  

that regions less sensitive to binocular disparity had more variable direction preferences, leading 

to dilution of the microstimulation effects during direction decisions. An approach that 

monitored the activity of single neurons was needed to distinguish between these possibilities. 

Sasaki and Uka (2009) measured choice probability of individual MT neurons as animals 

performed interleaved trials of motion and depth discrimination tasks. Although the monkey 

could not anticipate whether the upcoming trial would be a direction or depth trial, the animal 

was cued to the dimension to be discriminated at the start of each trial. Importantly, visual 

stimuli during both tasks contained information about motion and depth but the animal was only 

rewarded for responding correctly to the cued feature. The response targets for the two tasks had 

the same appearance but corresponded to different answers: the target at the top of the screen 

corresponded  to  ‘up’  or  ‘far’  responses  and  the  target  at  the  bottom  of  the  screen  corresponded  to  

‘down’  or  ‘near’,  depending  on  the  cued  task.  Animals  indicated  their  response  during  each  task  

by looking at one of two targets. Since most MT neurons are tuned for both features, depending 

on  the  neurons’  preferences,  a  higher  firing  rate  might  indicate  only  responses  to  one  target  (e.g. 

if the neuron preferred up and far a high firing rate always indicated the top target) or might be 

different depending on the task (e.g. if the neuron preferred up and near then a higher firing rate 

indicated opposite targets). As animals performed this difficult switching task, neurons that 

signaled behavioral responses to the same target had high choice probability during both tasks. 

However, choice probability for neurons that signaled opposite motor responses was mutually 

exclusive: it was significantly different from chance during only one of the two tasks. These 
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results indicated that neurons that contributed to opposite behavioral decisions were used in only 

one of the two tasks. The task to which each neuron contributed depended on its sensitivity: 

neurons more sensitive to the depth task contributed only during the depth task and neurons more 

sensitive to the motion task contributed only to the motion task (their Supplementary Figure 8; 

Chowdhury and DeAngelis, 2008). Therefore, although neurons contained information for both 

tasks, they were selectively used for just one of them. This might reflect temporal limits on 

reading out information from relevant neurons: the decision circuitry may not be able to switch 

quickly enough to use increases in firing rate from a single neuron for opposite behavioral 

responses. In both of these studies, the dynamics underlying neuronal contribution to behavioral 

decisions depend on a relationship between neuronal sensitivity and task demands that were 

likely established during months of training. For example, connections between the pool of 

relevant neurons and the downstream decision mechanisms for each task may have been 

strengthened over months. The relevant decision circuit for each task may have then been 

recruited by fast mechanisms such as feature attention (Cohen and Newsome, 2008). It was not 

known whether changes in the  relationship  between  a  neuron’s  sensitivity and its contribution to 

a task could change quickly. 

In sum, decades of research indicate that MT neurons are important not only for processing 

motion and binocular disparity, but play an important role in behavioral decisions based on these 

two features. In some cases, changes in the degree to which the activity of MT neurons was 

correlated with behavioral decisions hint at the flexibility of the decision circuitry. In particular, 

the sensitivity of neurons to the particular task demands appears to play an important role in the 

degree to which neurons contribute to behavior. 
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Caution in interpreting choice probability 

 Although I have been using the presence of significant choice probability to implicate 

MT neurons in behavioral judgments, it is important to note that because neurons within MT 

share noise correlations, choice probability likely reflects the causal contribution of a local group 

of neurons rather than any individual neuron. In a simple pooling model, Cohen and Newsome 

(2009) showed that choice-related activity for neurons not causally involved in a task approaches 

that of neurons that are causally involved, if the two groups are even weakly correlated with 

each other. As a result, the magnitude of choice probability reflects the maximum decision 

weight of any neuron within the correlated group, rather than the weight of the single neuron 

being recorded. Since inter-neuronal correlations tend to be highest for neurons that are spatially 

near each other and have similar tuning preferences (Cohen and Kohn, 2011), this correlated 

group is mostly confined to a local cluster of neurons within MT (but see Smith and Kohn, 

2008). Furthermore, there is some debate about whether choice probability reflects only causal 

fluctuations in neuronal activity or contains a component of post-decision feedback signals 

(Nienborg and Cumming, 2009, 2010). Therefore, I simply use choice probability as a measure 

of involvement in behavioral decisions, whether it is entirely causal or not.  

Summary of dissertation research 

 Neurons in MT have served as an important substrate for studies of integration of 

neuronal signals for decision making. They contribute to perceptual decisions during motion and 

depth based tasks in a manner dependent on their task relevance. However, most studies to 

examine the relationship between neuronal sensitivity and their contribution to behavioral tasks 

were performed after animals had been trained and much of the circuitry may have already been 

established. We set out to determine whether changing neuronal sensitivity on a short timescale 
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would lead to changes in their contribution to behavioral reports. We accomplished this by 

reversibly inactivating two of the inputs to MT—V2 and V3—by cooling, which has been shown 

to degrade their sensitivity to depth more than motion. We then measured neurons' correlation 

with behavior while animals performed motion and depth detection tasks using a metric 

analogous  to  choice  probability,  called  “detect  probability”  (DP). 

Our first goal was to determine the effects of this reversible inactivation on behavioral 

performance during motion and depth detection tasks. The disproportionate disruption of 

selectivity for depth in MT led us to hypothesize that we might see bigger behavioral 

impairments during the depth task that during the motion task. Our results indicate that monkeys 

are indeed impaired during the depth task. However, one of the two animals was also 

substantially affected on the motion task, suggesting that the effects on MT neurons do not give a 

complete picture of the underlying impairment. These expectations, results, and implications are 

discussed in detail in Chapter 1.  

Importantly, behavioral performance during both tasks was sufficiently high during 

inactivation  to  allow  us  to  measure  MT  neurons’  correlation  with  behavioral  reports  using  DP.  

We found that during the daily inactivation sessions, which lasted about  an  hour,  MT  neurons’  

DP during the depth task was reduced relative to immediately before the inactivation while DP 

did not change for the motion task. These results indicate fast, selective changes in cortical 

decision circuitry. We elaborate on these results in Chapter 2. 
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Methods 

General Overview 

We recorded MT neurons in two experimentally naïve adult male macaque monkeys 

(Macaca mulatta, 10 and 12 kg) while they performed signal detection tasks. During many 

sessions, we also reversibly inactivated V2 and V3 by cooling. Before task training, each animal 

was trained to sit in a custom-made primate chair. Each animal was then implanted with a 

custom titanium head-post and a scleral search coil in each eye, to monitor eye position and 

vergence. Following a brief period of fixation training, animals were trained on a motion and 

then a depth signal detection task. After training we implanted a Cilux recording cylinder (Crist 

Instrument Co.) in the right hemisphere to access MT via an anterior approach. This was 

followed by recovery, several recording days to locate and map MT, and then by implantation of 

cryoloops, the devices used for cooling. Cooling sessions began after complete recovery, at most 

within a month after the implant surgery. All animal procedures complied with the National 

Institutes of Health Guide for Care and Use of Laboratory Animals, and were approved by the 

Harvard Medical Area Standing Committee on Animals. 

Behavioral Tasks and Visual Stimuli 

Animals were seated comfortably in primate chairs while performing two tasks: a motion 

detection task and a depth detection task. Both tasks began with the appearance of a single patch 

of  random  dots  and  the  animals’  task  was  to  detect  signal  among  noise  in  this  patch.  In  the  

motion task, all the dots started out moving in random directions (motion noise) and the animal 

was rewarded for responding when a proportion of these dots began to move in one direction (the 

signal direction). Analogously, in the depth task, the dots started out scattered in different depth 
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planes and the animal was rewarded for responding when a proportion of these dots appeared in 

one depth plane (the signal depth). We  will  refer  to  this  change  from  noise  to  signal  as  “signal  

onset”  for  both  tasks.  We titrated difficulty by changing the proportion of signal dots—the signal 

strength.  

Each trial began after an animal maintained fixation on a central marker for 500 ms, after 

which a random dot stimulus appeared. Stimuli always contained either motion or depth noise 

dots at the start and after a random time (0.5-5.5 seconds, exponentially distributed with a mean 

of 1.4-1.6 seconds) changed to contain signal dots (“signal onset”). Animals were rewarded by 

making an eye movement toward the stimulus between 200 and 650 ms after signal onset. The 

200 ms minimum was imposed as the minimum plausible reaction time based on the 

distributions  of  the  animal’s  reaction  times  during  the  task.  If  the  animal  responded  before signal 

onset or less than 200 ms after signal onset the trial was counted as a false alarm and no reward 

was given. If the animal did not respond within 650 ms, the trial was counted as a miss and no 

reward  was  given.  When  animals’  fixation  deviated  from  the  0.8-1.2° diameter window around 

the fixation point at any time other than after signal onset, the trial was aborted and no reward 

was given. We used a uniform distribution of waiting times in the first 17 experiments in one 

animal (monkey Q) but this had no obvious effects on the behavior. 

 The stimulus was presented in one of two locations, located symmetrically on either side 

of the fixation point. On days when we recorded neuronal activity, one of these was centered on 

the receptive field of the neuron and the other was in a mirror-symmetric location in the opposite 

visual hemifield. Since the cryoloops were implanted unilaterally, we expected cooling to affect 

behavioral performance only in the contralateral visual hemifield.  Therefore, behavioral 

performance in the ipsilateral visual field served as a negative control for behavioral 
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performance. Stimulus location alternated on every trial or in a 2-to-1 fashion such that two 

consecutive trials were presented in the part of the visual field affected by cooling followed by 

one on the other side. 

The tasks were interleaved in blocks of 25 trials per task. The animal was cued to the task 

by the shape of the fixation point. In addition, the two tasks’  stimuli  had  a  different  starting  

appearance, which served as an additional cue to the dimension of the expected change (see 

Visual Stimulus below). After each task switch, the animal was given practice trials at the easiest 

signal strength, which were not included in the subsequent analysis. The difficulty increased only 

after two such trials were correctly completed.  

 One of the two animals (monkey Q) was also trained on a modified version of the 

detection  tasks  three  months  after  neuronal  recording  was  completed.  In  this  “fine  change”  

version of the task, the animal was rewarded for detecting a small change in the direction or 

depth of the random dot stimulus. All stimuli were presented at the maximal signal strength and 

difficulty was titrated by modulating the magnitude of the direction or disparity change. These 

stimuli also had a different starting appearance from the stimuli in the signal detection tasks. In 

all other respects, the task structure was identical. 

Visual Stimulus 

Visual stimuli were presented through a Wheatstone stereoscope (Wheatstone, 1838) on 

two  Viewsonic  21”  G220F  CRT  monitors.  The image was presented to each eye via a mirror 

positioned at a 45° angle to a dedicated monitor. The stereoscope was calibrated daily such that 

the virtual image of the fixation point was in the same depth plane as a fixation point 57 cm in 

front  of  the  monkey’s  eyes.  The  display  subtended  39 x 29 degrees of visual angle at a resolution 

of 1600 x 1200 and was updated at 75 Hz. All visual stimuli were drawn using the Cogent 
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Graphics Matlab toolbox, developed by John Romaya at the LON at the Wellcome Department 

of Imaging Neuroscience (http://www.vislab.ucl.ac.uk/cogent.php).  

Stimuli were random dot kinetograms (RDKs) drawn with the red phosphor on both 

monitors with a luminance of 6.97 cd/m2 as seen in the mirrors. Binocular disparity stimuli were 

generated by drawing the image of a single dot with a horizontal offset between the two 

monitors. The magnitude and sign of this offset, in degrees, specifies the depth of the stimulus. 

By convention, negative disparities are nearer to the observer than the fixation plane and positive 

disparities are farther.  

During receptive field mapping, neuronal tuning properties were measured with a random 

dot stimulus at 100% coherence with a dot lifetime of 150 ms. 

The stimuli in the signal-detection tasks comprised 0.1° dots presented at a density of 1-2 

dots/deg2 with a 3-frame (40 ms) dot lifetime. The motion stimulus was adapted from the one 

described by Cook and Maunsell (2002a). Briefly, before signal onset all dots moved in random 

directions at a fixed speed (i.e. they were all noise dots). After signal onset, some proportion of 

the dots became signal dots, which all moved in one particular direction at a fixed speed; the rest 

remained noise dots. The proportion of signal dots dictated the motion signal strength. Speed was 

specified by the spatial displacement of the dots between successive video frames. The stimulus 

employed here differed from  Cook  and  Maunsell’s (2002b) only in that we used a 3-frame dot 

lifetime (they used 2-frame lifetime). The lifetime specifies the duration (in number of refresh 

frames)  that  each  dot  was  displaced  by  a  fixed  distance  within  the  aperture;;  after  it  “died”  it  was  

re-plotted in a new location and effectively became a new dot. Dots maintained their direction, 

whether signal or noise, for their entire 3-frame lifetime such that no dot ever changed direction. 

In other words, the stimulus was composed of many dots, each of which moved in one direction 

http://www.vislab.ucl.ac.uk/cogent.php
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for 3 video frames and then disappeared, to be re-drawn in a new location as a new dot. The 

change  from  noise  to  signal  was  smooth  and  happened  for  each  dot  only  after  it  “died”  and  was  

re-plotted in a new location, therefore the change happened over the course of 3 video frames (40 

ms). This eliminated the possibility that monitoring a single dot might give away the time of the 

change. Note that because of the limited lifetime, on every frame a third of the dots was re-

plotted in a new location, therefore the true motion signal (or, the actual percentage of signal dots 

compared to total dots at a given moment) between any two frames was at most 66%. 

Throughout this text, we will always report the true motion signal. Motion task stimuli were 

presented at one constant binocular disparity in any given session.  

The binocular disparity stimulus was designed analogously to the motion stimulus. The 

dots all moved in one unchanging direction throughout both noise and signal epochs. Signal dots 

were all presented at a particular binocular disparity (i.e. depth plane) and noise dots were 

scattered in depth. The proportion of signal dots among noise dictated the signal strength. Noise 

dots were drawn at random binocular disparities in the range -1.5 to 1.5°. Before signal onset, the 

stimulus contained only noise dots, which were drawn at disparities in the same range. This 

stimulus was also drawn with a 3-frame motion lifetime even though the direction of motion 

never changed. During signal onset, dots changed binocular disparity only upon being plotted in 

a new location. This permitted the noise stimulus to transition to the signal stimulus without any 

individual dot ever changing binocular disparity throughout its lifetime. As a result, the change 

occurred over the course of 3 video frames for the depth task, as in the motion task. As in the 

motion task, this eliminated the possibility that monitoring any single dot might reveal the signal 

onset. Unlike with the motion stimuli, these stimuli could attain a maximum binocular disparity 

signal strength of 100% during the signal epoch. Stimuli for both tasks were confined to fixed 
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apertures of equal size in the two eyes to eliminate monocular cues to the depth change. If one of 

the dots of a disparity pair fell outside of that aperture, it was not drawn, leaving the other 

unpaired.  

It is important to note that the stimuli used for each task did not contain both motion and 

depth noise. The motion task stimuli were drawn at a fixed disparity throughout the entire trial 

and the depth task stimuli were drawn at a fixed direction. Therefore, the two starting stimuli had 

a different appearance, which may have functioned as an additional cue to the dimension of the 

expected change. 

During neuronal recording sessions, the speed of the stimulus as well as its signal 

direction and disparity were matched to the preference of the neuron. On days when there was no 

neuronal recording, the stimulus parameters were arbitrarily chosen from a set by the 

experimenter.  

Electrophysiological Recording 

We recorded in MT using standard electrophysiological techniques. Briefly, tungsten 

microelectrodes (impedance, 0.5-3  MΩ  at  1 kHz) were advanced through a trans-dural guide 

tube, the signals were amplified with a conventional amplifier and passed through a band pass 

filter and window discriminator (BAK electronics) for on line spike detection.  The analog 

voltage signals from the extracellular recordings were digitized at 25 kHz and saved to a 

computer disk by using a Cambridge Electronic Design 1401 data acquisition system. Spike2 

software was used to confirm single-unit isolation and stability, which was particularly important 

because of the long duration of these recordings (typically 2-3 hours).  
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Area MT was located by using structural MRI scans aligned to the approach through the 

recording cylinder, transitions between gray and white matter, the established relationship 

between receptive field width and eccentricity, and the high incidence of direction- and binocular 

disparity-tuned neurons.  

Cooling 

Cooling was actuated by passing chilled fluid through small loops of metal tubing—

“cryoloops”—chronically implanted in the lunate sulcus (Figure 3). The cryoloops were made of 

23-guage stainless steel hypodermic tubing with an attached thermocouple, as previously 

described (Lomber et al., 1999; Ponce et al., 2008). Three of these loops were implanted into the 

right lunate sulcus of each animal and spaced to cover an area approximately 8 mm deep into the 

sulcus and 18 mm medio-lateral. Chilled methanol was pumped through the cryoloops to cool 

the surrounding brain tissue to 10-15 °C, which took approximately five minutes. This 

temperature is sufficient to eliminate visually evoked activity in the immediately surrounding 

cortex (Lomber et al., 1999). Temperature at each loop was monitored via an externally located 

connector and was independently controlled for each cryoloop by changing the flow rate of 

methanol from its dedicated pump.  
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Experimental Protocol 

Each  day’s  experimental  timeline  is schematized in Figure 4. The color and naming 

conventions in this figure will be used throughout this text. Experiments began with the isolation 

of a single MT neuron at physiological brain temperatures (35-38 °C) and collection of basic 

tuning data. The neuron’s  preferred location, size, and speed were qualitatively determined by 

 

Figure 3: Cooling methods 
(A) Photo of a cryoloop,  the  device  used  to  cool  local  cortical  tissue.  The  “loop”  is  the  part  
inserted into the lunate sulcus. The attached thermocouple (TC) allows measurement of 
temperature at the loop via the external connector (C). Tubing supplying chilled fluid is 
connected to the input (i) and output (o) tubes of the loop. Image adapted from Lomber, 
Payne, and Horel 1999. 
(B) Placement of three cryoloops in the right lunate sulcus of a macaque brain. 
(C) Schematic of the spacing of the cryoloops once implanted in the lunate sulcus. They are 
spaced approximately 3cm apart, covering a space about 18 mm wide. Image from Ponce, 
Lomber, and Born 2008. 
(D)  Illustration  of  the  monkeys’  field  of  view  and  the  scotoma—the portion affected by 
cooling. The black screen represents the virtual image of the monitors through the 
stereoscope. The dashed lines represent the horizontal and vertical meridians. The blue region 
in the lower left visual field corresponds to the scotoma, the part we expect to be affected by 
cooling of V2 and V3. The yellow circle in the scotoma indicates the placement of the visual 
stimulus. The right visual hemifield serves as the ipsilateral control, which we do not expect 
to be affected by cooling. The stimulus in the ipsilateral field was placed mirror-symmetric to 
the stimulus in the scotoma (yellow circle on the right). 
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hand mapping but direction tuning and binocular disparity tuning were collected quantitatively 

using stimuli presented for 400 ms with a 300 ms inter-stimulus interval, for at least 6 

repetitions. Direction tuning was obtained from a range of 8 directions spaced 45° apart and 

disparity tuning from 11 disparities with the following values:  ±1.2, ±0.8, ±0.6, ±0.4, ±0.2, 0.  If 

a neuron did not have a clear tuning preference for either direction or binocular disparity, it was 

not studied further. Properties of the change detection task stimuli were matched to the 

preferences of the neuron. Pre-cool task data were collected as monkeys performed the detection 

tasks for approximately one hour. Cooling was initiated by pumping chilled methanol through 

the loops and cooling-period data collection began after the temperature had stabilized at 10-

15°C for at least 5 minutes. During cool-down animals either continued to perform the tasks 

(data not included in analyses) or rested. The cooling-period data set was collected in the same 

 
Figure 4: Session Timeline 
For all conditions (pre-cool, cool, and recovery), we measured basic receptive field tuning 
properties  (“RF”)  for  approximately  five  minutes  and  then  the  animal  performed  
interleaved  motion  and  depth  tasks  (“tasks”)  for  approximately  one  hour.  The  red,  blue,  
and green colored bars correspond to pre-cool, cool, and recovery conditions, respectively. 
These color conventions will be used throughout this text. Arrows indicate when the 
cooling pumps were turned on and off. Cool data was collected only after temperature at 
the cryoloops had stabilized between 10-15°C for five minutes. Recovery data was 
collected approximately 15 minutes after cooling offset, when the temperature was at least 
30 °C but often when it had not yet fully returned to physiological baseline (37-39 °C). 
Temperature recovery (black curve) is intentionally drawn with a longer time constant 
than cool-down. 
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way as the pre-cool data, with repeated quantitative measures of tuning properties followed by 

about an hour of task performance. Cooling lasted at most one hour and was never done more 

than once per day. In some sessions, continued isolation of a neuron and the animal’s  continued  

motivation  permitted  us  to  collect  “recovery”  data,  which  began at least 15 minutes after cooling 

was stopped, when temperatures were at least 30°C at the loops, sufficiently warm to resume 

visually evoked activity at the cooling site (Lomber et al., 1999). Usually, recovery data 

comprised repeated quantitative measures of tuning and occasionally sufficient data to measure 

task performance and rarely task-related neuronal activity. 

Data set 

A total of 144 cooling sessions were performed with monkey Q and 48 with monkey S. 

Behavioral sessions shown here are those after performance during cooling had stabilized (see 

below). Cooling data was often collected concurrently with electrophysiological recording in 

MT.  

Monkey  Q’s  behavioral  performance  was  ~0%  correct  during both tasks during the first 

several cooling sessions (data not shown). Since this could have been due to non-task specific 

changes in the appearance of the stimulus (e.g. apparent changes in color resulting from 

inactivation of portions of the ventral stream), we temporarily introduced luminance cues in 

addition to the normal noise-to-signal changes and also increased the dot lifetime in some 

sessions. These changes led to rapid improvements in performance and as performance remained 

high, we eventually were able to phase out the luminance cues entirely by the tenth cooling 

session and reduce the dot lifetime back to three frames after the fourteenth. These cues were 

never re-introduced and we only report sessions after the fourteenth cooling session from this 
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animal.  Importantly, behavioral performance in the ipsilateral visual hemifield was never 

impaired during any of these early sessions.  

Unlike  monkey  Q,  monkey  S’  performance  did not drop to 0% correct during the first 

cooling session, therefore, we did not add additional cues to assist his performance during 

cooling. The results presented here are from all of monkey  S’s behavioral sessions with cooling. 

Neuronal data were only  recoded  if  the  neuron’s  receptive  field  was  mostly  confined to 

the expected scotoma—the site affected by cooling—and if it had a clear tuning preference for 

direction and binocular disparity. Furthermore, since low spike counts violate the assumptions of 

many of our analyses (e.g. ROC), we often did not record neurons with responses to the 

preferred stimulus that were below 50 spikes/s to avoid extremely low spike rates during the cool 

condition. Recorded neurons with a peak firing rate below 15 spikes/s in the cool condition were 

excluded from analysis. Since MT neurons are typically well modulated by our stimuli, it was 

not difficult to find cells with higher rates. 

The data presented here is from a pool of 150 single neurons: 104 from monkey Q and 46 

from monkey S. Of all of these, 98 had sufficient quantitate tuning data for analysis of both 

direction and disparity in both pre-cool and cool conditions, and 78 neurons (44 from monkey Q, 

and 34 from monkey S) had sufficient task-related data during both tasks in both conditions. This 

task related data also met the criteria for behavior inclusion described above. 

Analysis  

Behavioral performance 

There were four possible outcomes to each task trial: 1) a correct detection if the animal 

responded to the change within the allowed reaction time, 2) a miss if the animal did not respond 
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to the change within the allowed reaction time, 3) a false alarm if animal responded before signal 

onset, and 4) a break in fixation at any time during the trial. Behavioral performance was 

measured as a proportion of correct detections out of the sum of correct detections and misses 

(i.e. false detections and breaks in fixation were excluded). The proportion correct as a function 

of signal strength (𝑓(𝑥)) for each task was fit with a logistic function of the form  

𝑓(𝑥) =   𝛾 +   1 − 𝛾 − 𝛿

1 + 𝑒ି൬
ఈି௫
ఉ ൰

 

using the psignifit toolbox version 2.5.6 for Matlab (see http://bootstrap-software.org/psignifit/) 

which implements the maximum-likelihood method described by Wichmann and Hill (2001a). 

Performance data was fit independently for each task in each condition with the free parameters 

α,  β,  and  δ,  which  describe  the offset, slope, and saturation of the sigmoid, respectively. The  γ  

parameter sets the lower saturation for the function and  corresponds  to  the  animal’s  guess  rate. 

The guess rate  can  skew  measures  of  the  animal’s  performance: a high guess rate can make the 

animal appear to perform better than his sensitivity allows and therefore changes in the guess 

rate between conditions can hinder our ability to measure changes in behavioral performance.  

Therefore, we needed to account for any changes in this value between conditions and sessions.  

The animal’s  ability  to  correctly  guess  the  signal onset time depends on the frequency and 

temporal distribution of his attempts to guess, the temporal distribution of signal onset times, and 

the allowed reaction time window. For example, if signal onset can occur during one of two 

times and the animal always responds during the first one, he will perform at a rate of 50% 

correct. We simply extended this calculation to the continuous distribution of possible signal 

onset times and guesses. Our access to the animal’s  attempted guess rate comes from the false 

alarms—trials when the animal reported signal onset but it had not happened yet. These trials 
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consist of some unknown combination of real perceived detections and random guesses and 

therefore represent both his sensitivity to small random fluctuations in the stimulus and monkey 

“jumpiness”.  We  used  the temporal distribution of these responses throughout the trial to 

determine the probability with which the animal can correctly detect the signal onset during a 

false alarm. In other words, since the false alarms were not uniformly distributed throughout the 

trial duration, we first determined the probability of a false alarm at each time point in the trial. 

We then convolved this temporal distribution with the temporal distribution of possible signal 

onset times to give the probability that the animal would correctly guess as a function of time 

throughout the trial. These were then summed across all time points to give the probability of 

guessing correctly in any given trial or across all trials. More specifically, the estimation of guess 

rate in each condition was performed using the following equation:  

𝑝௚௨௘௦௦ =    ෍ 𝑝ி஺ × 𝑝௖௛௔௡௚௘
௧ெ௔௫

௧೔ୀ௧ெ௜௡
 

where 𝑡𝑀𝑖𝑛 and 𝑡𝑀𝑎𝑥 correspond to the minimum and maximum possible change time, 

respectively and 𝑝௖௛௔௡௚௘ corresponds to the probability of a change happening at time 𝑡௜. 𝑝ி஺ 

corresponds to the probability that the animal made a false alarm during all trials longer than 𝑡௜ 

in the allowed reaction time window for a change at 𝑡௜ (i.e. from 𝑡௜ + 200  𝑡𝑜  𝑡௜ + 650). Using 

this estimate, we determined that the animals could correctly guess signal onset with a frequency 

of 5-15%. For each condition and task, we fixed the γ  parameter of the psychometric function to 

the estimated value of the guess rate.  

Measurement of behavioral threshold and slope were obtained from the point on the 

psychometric function where the animal performed at 80% correct. Confidence intervals for 
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threshold and slope estimates were found by bootstrapping the fit 1999 times as implemented by 

the psignifit toolbox (Wichmann and Hill, 2001b). Note that although the motion stimulus 

strength could not exceed 66%, the behavioral threshold was not restricted to be below this 

value.  

Reaction times for correct trials were determined from the time of saccade onset, defined 

as the time when the eye velocity first exceeded a threshold that depended on the saccade 

magnitude. 

Standard statistical methods were used to compare changes between pre-cool and cool 

parameters. 

Neuronal tuning properties 

Spiking activity during the period 100-400 ms after stimulus onset was used to construct 

time-averaged direction and disparity tuning curves. ANOVA was used to determine whether a 

neuron’s  activity  was  reliably  modulated  by  variations  in  stimulus  features. Cells were included 

in subsequent analyses only if they were significantly tuned for either direction of motion or 

binocular disparity. Tuning was quantified by a discrimination index (DI): 

𝐷𝐼 = (𝑅௠௔௫ − 𝑅௠௜௡)
(𝑅௠௔௫ − 𝑅௠௜௡) + 2ඥ𝑆𝑆𝐸/(𝑁 −𝑀)

 

where 𝑅௠௔௫ and 𝑅௠௜௡ are the responses to the preferred and null direction or disparity, 𝑆𝑆𝐸 is 

the sum squared error for the mean of the response to each trial type, 𝑁 is the number of trials, 

and 𝑀 is the number of stimuli used for tuning. Thus the DI is a measure of modulation by the 

preferred feature, normalized by the variability. As previously reported, there was no appreciable 

change in preferred direction or binocular disparity during inactivation when tuning could be 
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measured (Ponce et al., 2008). Therefore, in order to directly compare DIs collected during both 

pre-cool and cool conditions, the values of 𝑅௠௔௫ and 𝑅௠௜௡ were fixed at the values of direction 

and disparity that were calculated during the pre-cool condition.  

Task-related neuronal activity 

Spiking activity of single neurons was also collected as the animals performed the 

behavioral tasks described above. For all analyses, neuronal data were aligned to the onset of the 

signal stimulus. Only correct and missed trials were used in the following analyses. 

Neurometric performance. We measured task-related cell sensitivity of single neurons by 

constructing  a  “neurometric  function”. For trials at each signal strength, we compared the 

distribution of responses immediately before signal onset to those shortly after signal onset with 

a receiver operating characteristic (ROC) curve (e.g. Bosking & Maunsell, 2011). The area under 

the ROC curve corresponds to the probability with which an ideal observer can correctly 

determine whether a firing rate chosen randomly from these two distributions belongs to the pre-

change or post-change epoch. Thus, it can be used as a measure of the probability with which the 

neuron can correctly detect the signal onset.  As  a  neuron’s  response  to  the  signal  stimulus  gets  

stronger, this value approaches 1; if the responses to the noise and signal stimuli are 

indistinguishable, it is 0.5; and if the neuron is less active upon signal onset the value will be 

below 0.5. Firing rates were compared between the 450 ms window immediately before the 

change and the window 50-650 ms after the change. For correct trials, spikes were only included 

up to 100 ms before the reaction time to exclude some post-decision signals (e.g. Cook & 

Maunsell, 2002b). Thus, the post signal  onset  window  varied  with  the  animals’  reaction  time,  

which allowed us to include spikes from most of the signal epoch used by the animal. However, 

results were similar for a variety of window lengths and start times.  
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To determine the effect of cooling on cell sensitivity we aimed to compare neurometric 

performance between the pre-cool and cool conditions using data that fell along the steep portion 

of  a  neuron’s  neurometric  function. Like the psychometric threshold, this is often determined at 

the  neurometric  threshold:  the  signal  strength  at  which  the  neuron’s  performance  is 0.8 (i.e. 80% 

correct). Analogously, the neurometric threshold is typically obtained from a function fitted to 

the neurometric data. However, no single function described a large majority of our data well; 

therefore we simply approximated the neurometric threshold by choosing the signal strength at 

which the neurometric performance was closest to 0.8 in the pre-cool condition and calculating 

the change in neurometric performance due to cooling only at that signal strength (see Figure 

20). This near-threshold value was used to compute the percent change in neurometric 

performance relative to the pre-cool value. Since 0.5 is the chance level for neurometric 

performance, all values were first converted to distances from 0.5 by subtracting 0.5 as shown 

below:  

𝑁𝑃௦௛௜௙௧ =    (𝑁𝑃௖௢௢௟ − 0.5)   − (𝑁𝑃௣௥௘ି௖௢௢௟ − 0.5)
(𝑁𝑃௣௥௘ି௖௢௢௟ − 0.5)   × 100% 

where 𝑁𝑃௣௥௘ି௖௢௢௟ and 𝑁𝑃௖௢௢௟ are the neurometric performance values at the near-threshold 

signal strength in the pre-cool and cool conditions, respectively. This calculation allows us to 

preserve the sign of the effect—values of 𝑁𝑃௦௛௜௙௧ between -100% and 0% are decreases of 

neurometric performance toward chance, positive values are increases away from chance—and 

also to distinguish changes in sign, which will result in 𝑁𝑃௦௛௜௙௧ value less than -100%. 

We also attempted to estimate a  more precise neurometric threshold by fitting a line to 

the neurometric data and comparing estimated thresholds from the fit (i.e. the signal strength at 
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which the neurometric performance is exactly 0.8). The results for neurons that were reasonably 

well fit by a line were qualitatively similar with either method. 

Detect probability. We used the detect probability (DP) metric to measure the trial-to-

trial co-variation between fluctuations in single-neuron firing rates and behavioral reports (Cook 

and Maunsell, 2002b). DP is a version of the more commonly used choice probability metric, 

adapted for detection tasks. DP was calculated for a given signal strength by comparing firing 

rates between correct and missed trials after signal onset. We constructed an ROC curve for the 

two distributions of rates (correct and missed trials) and measured the area under the curve to 

give the DP. This provides an estimate of the probability that an ideal observer can determine 

whether the monkey detected the signal onset by relying only on the firing rate of a single 

neuron. It is important to note that the stimuli are virtually identical for all trials of a given signal 

strength so a DP that deviates from the chance value of 0.5 indicates firing rate differences that 

are largely independent of differences in the visual stimulus and therefore are due to differences 

in the behavioral outcome. 

Individual neurons’  DP was calculated in a time window beginning 50 ms after signal 

onset and ending 100 ms before the reaction time during that trial. The results did not vary with 

reasonable size variations of this window, provided it was large enough to include more than a 

couple of spikes. DP was calculated using only responses that had at least 5 completed trials and, 

to reduce bias in the DP calculation, in which one trial outcome (i.e. correct or miss) did not 

occur more than 75% of the time (Uka & DeAngelis, 2004; I.Kang, personal communication).  

For neurons where multiple signal strengths met these criteria, responses were z-scored within 

each signal strength and combined.  This procedure normalizes each rate to units of standard 

deviation and is commonly used to combine responses across conditions with different mean 
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rates. DP values from z-scored responses were similar at all signal strengths for each cell. A 

single ROC curve was constructed for all z-scored rates and the area under the resulting curve 

gives the neuron’s DP. We used a permutation test to determine whether individual DP values 

were significantly different from 0.5. For the distribution of firing rates used to calculate the DP 

for each cell, we permuted the relationship between firing rate and choice, while preserving their 

relative frequencies. A new DP was calculated from the permuted data and this was repeated 

2000 times to construct a distribution of DPs expected by chance. We rejected the null 

hypothesis that the DP was not significantly different from 0.5 if the measured DP fell outside 

the 95% confidence interval of the mean of the permuted distribution. 

 The time course of detect probability for the entire neuronal population was computed 

using the same basic method described above, but repeated within a 100-ms sliding time window 

that moved in 20 ms steps. First, each neuron’s  responses  were z-scored within eligible signal 

strengths for each time window and then combined across signal strengths and neurons. To allow 

for fair comparison, only neurons with both pre-cool and cool data contributed to the DP time 

course. The DP at each time point was given by the area under the ROC curve for the combined 

z-scored responses at that point. The standard error of the mean (SEM) for the time series was 

computed via a bootstrap procedure (Efron and Tibshirani, 1998). At each time point, we 

sampled with replacement unpermuted pairs of z-scored rate and behavioral response to compute 

a new DP value. This was repeated 1000 times to generate a distribution of sample DP. The 

standard deviation of this distribution was taken to be the SEM. 

 To determine whether changes in DP were significant between pre-cool and cool 

conditions, we used the metric where we had the greatest statistical power: the detect probability 

computed from the combined z-scored rates across all neurons in a single time window. For this 
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analysis, we used a window 100-450 ms following signal onset, which was chosen to encompass 

the peaks of the DP time course for both tasks in pre-cool and cool conditions. To determine 

whether DP values were significantly different between pre-cool and cool conditions, we 

computed a distribution of re-sampled DPs for each condition and task with a similar bootstrap 

procedure as was described above. We then obtained a sampled distribution of DP differences 

(DPcool – DPpre-cool) from the generated DP values for each task. If the 95% confidence interval of 

this difference distribution included zero, then we concluded that there was no significant 

difference between the pre-cool and cool DP for that task. 

Spike count mean to variance relationship. We determined the relationship between a 

neuron’s mean spike count and the associated spike count variance by computing the ratio 

between the variance and the mean—a metric called the Fano factor. Spike counts were 

measured in a window 50-300 ms after signal onset, only from trials with a reaction time of at 

least 350 ms. Mean spike count and variance was computed from the responses to each signal 

strength for each task and condition. The relationship between spike count and variance did not 

differ between tasks so the data were combined in the presented analyses. Since responses from 

each neuron were collected at multiple signal strengths during each task, each neuron contributed 

2-14 data points. The population Fano factor for each condition was estimated from the slope of 

the best-fit line to the mean-to-variance scatter plot (see Figure 26). The line was not constrained 

to pass through the origin. Fano factor was also computed for each data point in that plot (i.e. 

each signal strength in each condition) by taking the ratio of spike count variance to spike count 

mean.  

Prediction of DP given changes in firing rate and variance. The relationship between 

DP,  the  sensitivity  index,  d’, and their mutual dependence on changes in mean firing rate and 
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variance are discussed in Chapter 2. To determine the effect of our observed changes in mean 

rate and variance on DP,  we  calculated  a  predicted  d’: 

𝑑′௣௥௘ௗ =      ඥ𝑝𝑅𝑎𝑡𝑒
ඥ𝑝𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

  𝑑′௣௥௘ି௖௢௢௟ 

where 𝑝𝑅𝑎𝑡𝑒 and 𝑝𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 are the ratio of cool to pre-cool firing rate and variance, 

respectively, and 𝑑′௣௥௘ି௖௢௢௟ is  the  d’  value  computed  in  the  pre-cool condition. 𝑝𝑅𝑎𝑡𝑒 was 

determined from the change in mean firing rate during the task by calculating the ratio of rates in 

the 50-300 ms window after signal onset (same window as used for Fano factor estimation). 

𝑝𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 was computed as the ratio of the population Fano factor measured in the cool to pre-

cool conditions. 

Threshold model. To examine the relationship between the MT population response and 

the  animals’  reaction  times, we adapted a threshold model that has previously been used for a 

motion detection task (Cook and Maunsell, 2002b). This model had two free parameters, 

threshold and motor preparation time, and was used to predict reaction times from the responses 

of the neuronal population. First, we sorted spike rates from individual neurons into 20 bins 

based  on  each  trial’s  reaction  time such that each bin contained the same number of trials from 

each neuron. Since reaction times varied day-to-day, quantile binning ensured that every neuron 

contributed to each time bin but resulted in differently sized bins. We then averaged the 

responses within each time bin across neurons. Responses were smoothed with an exponential 

filter  (τ  =  100  ms) and normalized by the mean firing rate 400 ms prior to signal onset. Every 

binned response was normalized by the same value across time so the normalization procedure 

simply scaled all the responses and did not change their relationship to each other. The predicted 

reaction time for each firing rate bin was the time that bin’s  response crossed the model’s  
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threshold, plus the motor preparation time. Threshold and motor preparation time were 

simultaneously fit to data from both the pre-cool and cool conditions for each task. The model fit 

was performed using maximum likelihood estimation under normal assumptions for the mean 

reaction time estimates and attempted to minimize the error between the predicted and measured 

reaction  times  (with  the  use  of  the  fminsearch  function  in  MATLAB’s  Optimization  Toolbox  

V6.1 (R2011b)). This method was robust to starting threshold and motor preparation time. 
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Chapter 1: Effects of V2 and V3 inactivation on behavioral performance 

during motion and depth detection tasks  

The data presented in this chapter was collected with the assistance of Alexandra A. 

Smith. A.A.S performed the experiments in Figure 16 and Figure 17. I performed the remainder 

of the experiments and analyzed all of the data. 

Introduction 

 We trained two monkeys on motion and depth detection tasks optimized for MT neurons. 

Previous electrophysiological results indicate that inactivation of V2 and V3 leads to a selective 

impairment in binocular disparity tuning but not direction tuning in MT (Ponce et al., 2008). We 

might therefore expect that cooling V2 and V3 would affect behavioral performance more during 

the depth task than the motion task. However, although we are generally interested in the effects 

of V2 and V3 inactivation in the context of neuronal responses in MT, the behavioral effects of 

inactivation need to be considered more broadly. In addition to providing major input to MT and 

the  dorsal  (“where”)  processing  stream,  V2 is the major source of input to the ventral (“what”)  

processing stream (Ungerleider and Mishkin, 1982; Van Essen and Gallant, 1994). It is therefore 

likely we are also affecting processing in its downstream areas, such as V4 and IT. Therefore, we 

might also expect that changes in the  animals’ basic visual abilities or appearance of the stimulus 

(e.g. color) may have detrimental effects on their behavioral performance during motion or depth 

tasks. 

 Importantly, we do not expect the animal to be blind in the affected part of the visual 

field—the  “scotoma”.  In  a  previous  study,  Merigan  and  colleagues  placed  chemical  lesions  in  

parts of V2 and V3 in the lunate sulcus (Merigan et al., 1993), the region targeted by our 
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cryoloops. They found that animals were not impaired in their acuity or contrast sensitivity, 

indicating that not only were the animals able to see, but important aspects of basic visual 

sensitivity were not significantly affected.  

Neurons in V2 are sensitive to a variety of basic visual properties including color, 

orientation, complex edges, motion direction, motion speed, and binocular disparity (DeYoe and 

Essen, 1985; Hubel and Livingstone, 1985; Peterhans and von der Heydt, 1993; Levitt et al., 

1994; Gegenfurtner et al., 1996; Hegdé and Van Essen, 2000). Consistent with its role as a major 

contributor  to  the  “what”  visual  processing  stream,  most  outputs  from  V2  that  proceed  to  V4  

originate in V2 compartments that contain color and form information (DeYoe and Essen, 1985); 

V2’s  major  projections  to  MT  originate  predominately  in  compartments with orientation, 

binocular disparity, and some direction sensitivity. The dorsal portion of V3, the part adjacent to 

our cryoloops,  has somewhat larger receptive fields than V2 neurons (Gattass et al., 1988) but is 

selective for a similar array of visual features including orientation, direction, color, binocular 

disparity, and speed (Felleman and Van Essen, 1987; Gegenfurtner et al., 1997; Adams and Zeki, 

2001). Based on these properties, it may be expected that aspects of form, color, and motion, and 

depth perception may be affected by inactivation of V2 and V3.  This may explain why Merigan 

and colleagues (1993) observed  a  decrement  in  one  animal’s  ability  to  discriminate  isoluminant  

chromatic gratings, indicating some impairment in color processing. The other animal was not 

affected, suggesting such impairments can be variable. Since inactivation of V2 and V3 by 

cooling did not impair direction selectivity in MT (Ponce et al., 2008), the major site of motion 

processing, we expected behavioral performance during the motion task to be less affected. As 

suggested by Ponce and colleagues, motion information is likely reaching MT via direct 
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projections from V1.Therefore, in the context of our study we expected behavioral performance 

to be impaired more during the depth task than the motion task.  

 Interestingly, neurons in V2 and V3 have also been implicated in more complex visual 

processing. For example, neurons in V2 are sensitive to illusory contours, which are created by 

flaking  objects  outside  the  neurons’  receptive  field  (von der Heydt et al., 1984). Neurons in V3 

can have multi-peaked orientation and direction tuning curves (Felleman and Van Essen, 1987) 

and respond to particular combinations of color and motion (Gegenfurtner et al., 1997). Indeed 

Merigan  and  colleagues’  (1993) major finding was that lesions of V2 and parts of V3 lead to 

impairments in visual grouping. However, our experiments were not designed to address these 

remarkable properties. 
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Results 

Signal Detection Tasks 

We trained two macaque monkeys to perform both a motion and a depth reaction time 

detection task in which they were rewarded for detecting onset of either coherent motion or 

depth(Figure 5). Trials for both tasks began with a fixation period of 500 ms, followed by a noise 

stimulus that lasted a random time between 500 and 5,500 ms before signal onset.  The  animals’  

task was to detect this onset and make an eye movement toward the stimulus within the 650 ms 

 

Figure 5: Motion and depth task design 
After the animal acquired fixation on the central marker for 500 ms, a noise stimulus was 
presented for a random time between 500 and 5,500 ms and was followed by the signal onset. 
Animals were rewarded for reporting signal onset by making an eye movement toward the 
patch of dots between 200 and 650 ms after onset. If no response was made, the trial was 
labeled as missed and no reward was given. Any response after noise stimulus onset but prior 
to 200ms (minimum plausible reaction time) after signal onset was labeled a false alarm. 
Difficulty of both tasks was titrated by changing the proportion of signal dots in the signal 
stimulus. Lines in the depth task point to a top-down view of the stimulus in each stimulus 
epoch. The dashed line represents the plane of fixation.  
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presentation period. We titrated difficulty of both tasks by varying the proportion of signal 

dots—the signal strength—in the signal stimulus. The two tasks were interleaved in blocks of 25 

trials per task. At the beginning of each block the animal had to correctly complete two practice 

trials before difficulty increased; these were not included in the analyses.  

Effects of inactivation  

In every cooling session, immediately before cooling, we  measured  the  animals’  

behavioral performance. Visual stimuli were restricted to the part of the visual field affected by 

cooling based on the anatomical placement of the cryoloops and previous electrophysiological 

results (Ponce et al., 2008). This region,  “the scotoma”,  extended approximately 10° into the 

periphery and excluded the fovea (Figure 3D). Unlike a scotoma created by a corresponding 

lesion in V1, this was not a blind spot; instead, this site is the location of the higher order deficits 

described below and in previous experiments (Merigan et al., 1993). During some sessions the 

animals also performed both tasks in the part of the visual field ipsilateral to the cryoloops, 

which we did not expect to be affected by cooling, thus allowing us to monitor any non-specific 

changes in performance. For  simplicity,  we  will  call  this  region  the  “ipsilateral  visual  field”.  The 

behavioral effects of cooling differed between the two animals so their results will be presented 

separately. 

A representative behavioral session during cooling from monkey Q is shown in Figure 6. 

This animal’s behavioral performance in the scotoma was degraded on both tasks during 

inactivation of V2/V3 (Figure 6A). This is evidenced by the reduction in his performance at most 

signal strengths (blue points are below the red points at the weaker signal strengths) and can be 

summarized by an increase in behavioral threshold, which we took as the signal strength at 

which the animal performed at 80% correct. Further evidence for degraded performance is the 
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increase in reaction time shown in Figure 6B. On this day, the median reaction time increased by 

63 ms during the motion task and by 53 ms during the depth task. Importantly, the monkey was 

able to perform both tasks during cooling with reasonable success and there was no evidence of 

decreased trial initiation or general lack of motivation. Behavioral performance in the ipsilateral 

visual field was not significantly affected (Figure 6C-D). Also shown in this example is the 

 
Figure 6: Monkey Q example behavioral performance 
(A) Behavioral performance and fitted psychometric functions for the motion task (left) and 
depth task (right) in the scotoma during a single session. Data shown in red is from the pre-
cool condition and data shown in blue is from the cool condition.  The  “shift”  is  the  percent  
increase in behavioral threshold as compared to the pre-cool value (i.e.௖௢௢௟  ି  ௣௥௘ି௖௢௢௟௣௥௘ି௖௢௢௟ ). Points 
shown at signal strengths greater than 100% correspond to proportion of breaks in fixation (□) 
and false alarms (■) across all trials. 
(B) Reaction times in the scotoma. Median reaction times () on the motion task (left) were 
429 ms in the pre-cool condition and 492 ms in the cool condition. Median reaction times on 
the depth task (right) were 432 ms in the pre-cool condition and 485 ms in the cool condition. 
(C-D) Behavioral performance (C) and reaction times (D) in the ipsilateral hemifield. Same 
conventions as in A-B. Median reaction times on the motion task were 447 ms in the pre-cool 
condition and 453 ms in the cool condition. Median reaction times on the depth task were 397 
ms in the pre-cool condition and 412 ms in the cool condition. 
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proportion of breaks in fixation and proportion false alarms during both conditions (Figure 6A, 

C). Across all behavioral sessions for this animal, the proportion of false alarms and breaks in 

fixation was not significantly different during inactivation from those made in the pre-cool 

condition (p>0.05, sign test on paired data). The behavioral thresholds for this animal in sessions 

where thresholds could be measured are shown in Figure 7. Thresholds increase during most 

cooling sessions for both the motion and depth tasks (mean increase = 54% of pre-cool for the 

motion task, p<<0.01 sign test; mean increase = 53% of pre-cool for the depth task, p<<0.01 sign 

test). The threshold change was not significantly different between the two tasks within each 

session (Figure 7C; median shift difference = -11%, p > 0.05, paired sign test). Performance on 

either task was not significantly affected in the ipsilateral visual field (Figure 7B, D). Since we 

did not observe an effect of cooling on the ipsilateral side in the first 35 cooling sessions 

(including first 14 sessions, not shown, see Methods) we did not always test performance in the 

ipsilateral visual field in subsequent sessions in order to increase the number of trials completed 

with the stimulus in the scotoma.   

In several behavioral sessions, we could not get an estimate of behavioral threshold 

because either there were insufficient data points to fit a psychometric function or the fit was 

poor. For monkey Q there were 20 such sessions with motion task performance and 10 with 

depth task performance. To include these sessions in a metric of behavioral performance, we 

generated a grand psychometric function by averaging performance across signal strengths in all 

sessions. Performance data at a particular signal strength was included only if there were data 

from both the pre-cool and cool conditions on the same day to allow for direct comparisons of 

performance in both conditions. The resulting performance data and fitted function are shown in 

Figure 8. Across 94 cooling sessions, the combined psychometric functions show a decrease in 
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Figure 7: Population behavioral thresholds for monkey Q  
(A-B) Behavioral thresholds () compared pre-cool to cool in the scotoma (A) and in the 
ipsilateral visual field (B). Data points lying above the unity line indicate an increase in 
threshold and therefore a decrement in behavioral performance. Error bars on the ipsilateral 
control data are 95% confidence intervals on the estimated threshold, derived from a 
parametric bootstrap procedure (Wichmann and Hill, 2001b); red = pre-cool, blue = cool. 
These were similar for behavioral performance in the scotoma and are not shown for clarity. 
Mean ↑ = mean increase in threshold during the cool condition expressed as a percent of pre-
cool threshold. * = p<0.05; n.s. = not significant.  
(C-D) Comparison of threshold increases between the depth and motion tasks in the scotoma 
(C) and in the hemifield not affected by cooling (D). For the subset of sessions for which we 
had estimates of threshold on both tasks we first computed the percent threshold increase 
from the pre-cool value for each task (same value as indicated within the axes of panels A-B). 
The values shown are the histogram of differences between motion and depth increases 
(Δdepth - Δmotion) within each session. Values greater than zero indicate the depth threshold 
shift was greater and performance affected more on the depth task. The median difference is 
shown in the upper right corner. Neither was significantly different from zero, sign test. 

performance over the full range of tested signal strenghts. The increase in grand threshold was 

69% during the motion task and 67% during the depth task, indicating that, for monkey Q, 

performance on both tasks was similarly affected even when all experiments are taken into 
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consideration. We also observed a decrease in slope in the grand psychometric function, which 

corresponds to a decline in sensitivity to increasing signal strengths. There was a significant 

decrease in slope across individual experiments as well, with a median slope decrease of 34% on 

the motion task and 22% on the depth task. These were not significantly different from each 

other when compared pairwise within sessions (p>0.05; data not shown). We observed no 

significant changes in slope during trials when the stimulus was presented in the ipsilateral visual 

hemifield. 

Across all behavioral 

sessions,  monkey  Q’s  

reaction times also increased 

during both tasks during 

inactivation. The median 

increase was 42 ms and 37 ms 

during the motion and depth 

tasks, respectively (Figure 9). 

Across all sessions, this 

increase was slightly bigger 

during the motion task 

(Figure 9C; median difference 

= -9ms, p = 0.02, sign test on 

paired means). There was no 

significant change in reaction 

times in the ipsilateral visual 

 
Figure 8: Grand psychometric function for monkey Q 
Behavioral performance combined across all behavioral 
sessions with cooling in the scotoma (A) and in the ipsilateral 
visual field (B). Performance from any given session was 
pooled only for signal strengths tested in both pre-cool and 
cool conditions. Values in the upper left corners indicate 
threshold and the  value  in  the  lower  left  corner  (“shift”)  
corresponds to the percent increase in threshold relative to 
the pre-cool value.  
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field on either the motion task (median increase = 5 ms, p > 0.05, sign test) or the depth task 

(median increase = -3 ms, p > 0.05) and these effects were not significantly different from each 

other (Figure 9D; median difference = 9ms, p > 0.5). Thus we concluded that monkey Q was 

impaired very similarly on both the motion and depth tasks.  

 
Figure 9: Reaction times for monkey Q  
(A) Mean reaction times compared pre-cool to cool for the motion (left) and depth (right) 
tasks in the scotoma. Both motion and depth reaction times are significantly longer in the 
cool condition (p<<0.01 sign test on paired data for both tasks) with a median increase of 
42ms on the motion task and 37 ms on the depth task. Asterisk indicates that the increase 
was statistically significant.  
(B) Mean reaction times in the ipsilateral hemifield were not significantly different during 
the cool condition on either task (p>0.05 sign test on paired data). Same conventions as in 
(A). n.s. = not significant. 
(C-D) Comparison of mean reaction time shifts between the motion and depth tasks in the 
scotoma (C) and in the ipsilateral visual field (D). For each session, we first compute the 
increase in mean reaction time between pre-cool and cool conditions (Δ  =  RTcool – RTpre-cool) 
for the motion and depth tasks. The histogram of difference between the increases (Δdepth-
Δmotion) for each session is shown in C-D. Differences less than zero indicate that reaction 
times increased more during the motion task than the depth task. The median differences are 
shown in the top right corner; * = p<0.05; n.s. = not significant. 
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The behavioral effects for monkey S were somewhat different, but were more in line with 

our initial expectations based on changes to tuning curves (their Figure 4, Ponce et al., 2008). A 

representative behavioral session is shown in Figure 10. Monkey  S’s  performance  was  more 

affected during the depth task than during the motion task, with a threshold increase of 60% 

during the depth task and 3% during the motion task (Figure 10A). This was true in most 

sessions: on average, depth threshold increased significantly more than did the motion threshold 

 

Figure 10: Monkey S example behavioral performance 
(A) Behavioral performance in the scotoma. Same conventions as in Figure 6. 
(B) Reaction times in the scotoma. Same conventions as in Figure 6. Median reaction times 
() during the motion task were 414 ms in the pre-cool condition and 439 ms in the cool 
condition. Median reaction times during the depth task were 399 ms in the pre-cool condition 
and 418 ms in the cool condition. 
(C-D) Behavioral performance (C) and reaction times (D) in the ipsilateral hemifield. Median 
reaction times during the motion task were 402 ms in the pre-cool condition and 372 ms in 
the cool condition. Median reaction times on the depth task were 385 ms in the pre-cool 
condition and 359 ms in the cool condition. 
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(Figure 11A, C; median depth increase = 46%; median motion increase = 18%, p<<0.01 paired 

sign test on difference). When performance in the ipsilateral hemifield was tested, there was no 

significant increase in threshold during either the motion or depth task and the small differences 

were not significantly different from each other (Figure 11B, D). In this example session, the 

median reaction time increased by 25 ms during the motion task and 19 ms during the depth task. 

Across all behavioral sessions the median increase was similar during the two tasks: 43 ms 

during the motion task and 45 ms during the depth task; the distributions were not significantly 

different between the tasks (Figure 12; p>0.05, sign test paired data). This animal also exhibited 

a significant decrease in the proportion of false alarms (5% decrease, p<<0.01; depth task 2% 

 
Figure 11: Population behavioral thresholds for monkey S 
(A-B) Behavioral thresholds () compared pre-cool to cool in the scotoma (A) and in the 
ipsilateral visual field (B). Same conventions as in Figure 7. 
(C-D) Comparison of threshold increases between the depth and motion tasks in the scotoma 
(C) and in the hemifield not affected by cooling (D). Same conventions as in Figure 7. 
Values greater than zero indicate the depth threshold increase was larger. 
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decrease, p<<0.01) and a slight increase in the proportion of breaks in fixation (motion task 2% 

increase, p<<0.01; depth task 3% increase, p<<0.01). Since the false alarm rate has an effect on 

the  animal’s  guess  rate,  and  thus  the  shape  of  the  psychometric  function,  we  always  included the 

estimated guess rate in the psychometric function fit for both animals (see Methods).  

There were only two sessions in which psychometric functions could not be fit to 

Monkey S’s  performance but we computed a grand psychometric function for comparison to 

monkey Q. The results confirm what we observed on individual sessions, which is that 

inactivation of V2 and V3 impaired the animal more during the depth task than during the 

motion task (Figure 13). As in monkey Q, we observed a decrease in slope that was also evident 

in individual sessions. The median slope decrease was 21% and 24% for the motion and depth 

task, respectively. These differences were not significantly different within sessions (p >0.05). 

There were no significant changes in slope in the visual hemifield unaffected by cooling.  
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Figure 12: Reaction times for monkey S  
(A) Mean reaction times compared pre-cool to cool during the motion (left) and depth (right) 
tasks. Both motion and depth reaction times are significantly longer in the cool condition 
(p<<0.01 sign test on paired data for both tasks) with a median increase of 42ms on the 
motion task and 37 ms on the depth task. Solid line is line of unity. 
(B) Mean reaction times in the visual hemifield not affected by cooling were not significantly 
different in the cool condition on either task (p>0.05 sign test on paired data).  
(C-D) Comparison of mean reaction time shifts between the motion and depth tasks. For each 
session, we compute the increase in mean reaction time between pre-cool and cool conditions 
for the motion and depth tasks. The difference between the increases (Δdepth-Δmotion) is 
shown here. Same conventions as in Figure 9. 
(C) Comparison of mean reaction time shifts between the motion and depth tasks in the visual 
hemifield affected by cooling. 
(D) Comparison of mean reaction time shifts between the motion and depth tasks in the visual 
hemifield not affected by cooling. 
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Recovery from inactivation 

During some  sessions,  the  animals’  continued  motivation  permitted  us  to  get  an  accurate  

estimate of his behavioral performance in the scotoma upon recovery from inactivation. 

Recovery data were collected beginning 15 minutes after cooling was stopped or when the 

temperature at the loops had reached at least 30°C (sufficiently warm for visually evoked activity 

to resume in the region adjacent to the cryoloops). An example recovery session form monkey S 

is shown in Figure 14. Although the animal’s  performance  during both tasks is impaired 

somewhat by cooling on this day, both his behavioral performance and reaction times return to 

pre-cool values during the recovery period. This was true for both monkeys in most sessions 

where we were able to measure behavioral performance (Figure 15), although monkey  Q’s  mean  

 
Figure 13: Grand psychometric function for monkey S 
Behavioral performance combined across all behavioral sessions with cooling in the scotoma 
(A) and in the ipsilateral visual field (B).  
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reaction times tended to be slightly but significantly elevated during the recovery period (median 

reaction times were 13 ms longer during the depth task and 19 ms longer on the motion task, 

p<0.05 for both values being significantly different from zero).   

We also looked for changes in pre-cool values of threshold and reaction time as a 

function of session number to determine whether there were any long-term behavioral effects of 

inactivation. Experimental testing spanned a total of 12 months for monkey Q and 3 months for 

2  
Figure 14: Example behavioral session with recovery  
(A) Psychometric functions and threshold estimates (numbers in upper right corener) shown 
in all three conditions in a single session. Left: motion task, right: depth task. Data in green 
corresponds to the recovery period, which began 15 min after cooling offset when 
temperature at the loops was at least 32°C. 
(B) Reaction distributions. Median reaction times () in the motion task were 411 ms, 441 
ms, and 381 ms in the pre-cool, cool, and recovery periods, respectively. Median reaction 
times in the depth task were 412 ms, 452 ms, and 389 ms in the pre-cool, cool, and recovery 
periods, respectively. 
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Figure 15: Recovery from inactivation population summary 
(A) Monkey Q behavioral thresholds compared pre-cool to recovery in the scotoma. Same 
conventions as in Figure 7. 
(B) Monkey Q mean reaction times compared pre-cool to recovery in the scotoma. Same 
conventions as in Figure 9. 
(C) Monkey S behavioral thresholds compared pre-cool to recovery in the scotoma.  
(D) Monkey S mean reaction times compared pre-cool to recovery in the scotoma. 

monkey S. We found no significant change in pre-cool reaction times in the first third of the 

sessions compared to the last third for either monkey. We found a significant increase in pre-cool 

depth threshold in monkey Q but additional experiments indicated that this was due to a decrease 

in the stimulus size in later sessions to  accommodate  those  sessions’  MT  receptive  fields. The 

depth task is selectively more difficult with small stimuli because a higher proportion of dots is 

near the perimeter of the aperture and therefore unpaired, thereby reducing the proportion of 

signal dots (see Methods: Visual Stimulus). We found no changes in the motion task thresholds 

or in pre-cool thresholds during either task for monkey S. Furthermore, we found no difference 
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in the magnitude of the cooling effect on either task over the several months of testing with each 

animal. Therefore, we conclude that the behavioral effects we observed were reversible on a 

daily basis and not due to long-term damage or other permanently disruptive effects of cooling. 

Fine Change Detection Tasks 

 Our finding that monkey Q was equally impaired during both  motion and depth signal 

detection tasks was somewhat unexpected given previous results suggesting the disparity-heavy 

contribution of the V2/V3 pathway to MT. In an additional attempt to uncover differential effects 

of inactivation on tasks involving the two modalities in this animal, we tested his behavioral 

performance during a task that required a slightly different cortical computation. Performance on 

the  signal  detection  tasks  we  initially  employed  depends  on  neurons’  ability  to  discriminate  

signal stimuli from noise stimuli. Subsequent analysis of concurrent MT neuron recordings 

revealed that MT neurons are indeed impaired more in disparity signal-from-noise discrimination 

than motion signal-from-noise discrimination (see Chapter 2). Furthermore, we found that MT 

neurons tuning selectivity was degraded more for disparity than direction of motion, as 

previously reported by Ponce et al. (2008). Tuning selectivity, unlike signal-to-noise sensitivity, 

is measured as the differences in neuronal responses to 100% signal stimuli at different 

directions or binocular disparities for direction and disparity tuning, respectively. Since tuning 

selectivity does not depend on whether neurons can discriminate noise from signal, it represents 

a different cortical computation.  Therefore,  we  tested  monkey  Q’s  behavioral  performance  on  

tasks that more closely depend on the tuning properties of MT neurons rather than their ability to 

discriminate noise from signal. In  this  “fine  change”  task,  the  animal  was  rewarded for detecting 

a small change in the direction or depth of random dot stimuli. All stimuli were presented at the 

maximal signal strength and only changed in either direction or disparity. Task difficulty was 
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titrated by varying the change amount in degrees direction or disparity rather than by 

manipulating the overall signal strength. Thus, the  animal’s  ability  to  do  this  task  depends on the 

tuning selectivity of the underlying sensory pool, which we know is also disrupted during 

inactivation. Since tuning for binocular disparity is also degraded more so than for direction of 

motion, we would again predict that the animal would be more impaired during the depth fine 

change task than the motion fine change task. 

 
 
Figure 16: Fine change motion and depth tasks example behavioral session  
(A) Behavioral performance in the scotoma. Example performance and fitted psychometric 
functions for the motion task (left) and depth task (right) from a single session. Note the axes 
for the motion and depth tasks are different. Otherwise, same conventions as in Figure 6. 
(B) Reaction times in the part of the visual field affected by cooling. Median reaction times 
() during the motion task (left) were 466 ms in the pre-cool condition and 513 ms in the 
cool condition. Median reaction times during the depth task (right) were 460 ms in the pre-
cool condition and 491 ms in the cool condition. 
(C-D) Behavioral performance (C) and reaction times (D) in the ipsilateral hemifield. Same 
conventions as in A-B. Median reaction times on the motion task were 439 ms in the pre-cool 
condition and 424 ms in the cool condition. Median reaction times on the depth task were 451 
ms in the pre-cool condition and 452 ms in the cool condition. 
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We performed a total of 16 cooling sessions while the animal performed the fine change 

versions of the motion and depth tasks, two of which were excluded due to insufficient data.  An 

example behavioral session from this task is shown in Figure 16.  

 As in the signal detection tasks, this animal appears to be impaired during both the 

motion and depth tasks with a 73% increase the fine motion task threshold and 120% increase in 

the fine depth task threshold. This experiment is representative of the population effects, which 

are shown in Figure 17.  Although there are too few sessions to determine whether there are 

small differences in the magnitude of the effects during the two tasks, it is clear that the animal’s 

performance is impaired substantially on both tasks: the median threshold increase was 81% 

during the motion task and 115% during the depth task. Furthermore, the median reaction time 

across experiments increased by 34 ms on the motion task and 51 ms on the depth task, although 

this difference was not significant (data not shown). Therefore, we conclude that this animal was 

similarly impaired on fine-change versions of both motion and depth tasks as well. 
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Figure 17: Fine change task population thresholds 
(A-B) Behavioral thresholds () compared pre-cool to cool in the scotoma (A) and in the 
ipsilateral visual field (B). Note axes are different between the motion and depth tasks. 
Otherwise, same conventions as in Figure 7. 
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Discussion  

We measured behavioral performance of two animals during motion and depth signal 

detection tasks tailored to the preferences of MT neurons while we inactivated V2 and V3. 

Previous anatomical and neuronal studies of MT inputs suggested we might see a bigger 

impairment during the depth task than the motion task. This is indeed what we saw in one of our 

animals, monkey S but not in the other, monkey Q. We  found  that  monkey  S’  performance  was  

degraded more during the depth than motion signal detection task, as evidenced by much larger 

increases in behavioral threshold as well as reaction times during the depth task. However, 

monkey  Q’s  performance  was  similarly impaired during two versions of motion and depth tasks: 

a signal detection task and a fine-change task.  

The non-specific impairment of monkey Q presents a bit of a mystery, especially in light 

of  monkey  S’s  specific behavioral effects. It is unlikely that this is simply due to reduced 

motivation or alertness for several reasons: 1) performance remains unaffected for the 

interleaved trials in the visual hemifield not affected by cooling, 2) the typical shape of the 

psychometric function during cooling rejects the idea that the animal adopted a mixed strategy 

(e.g. ignoring the difficult trials), 3) we observed no changes in the rate of trial initiation. 

Furthermore,  it  is  unlikely  that  the  animal  simply  can’t  see. In a previous study, permanent 

lesions in V2 and parts of V3 did not lead impairments in basic visual processing such as 

contrast sensitivity and spatial acuity (Merigan et al., 1993). In our experiments, monkey Q often 

continues to do well during the easiest trials (e.g. performance at 100% signal on the depth task 

and 66% signal on the motion task in Figure 6A), indicating that his ability to resolve the dots is 

not impaired.  
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However, as discussed in the introduction to this chapter, it is likely that inactivating V2 

and V3 affected a variety of visual processes. For example, it is likely that we affected color and 

form processing and thereby the appearance of the task stimuli. In fact, Merigan and colleagues 

observed color processing deficits in one of their two animals following lesions of V2 and V3 

(Merigan et al., 1993). Such changes in the appearance of the stimulus may have led to the non-

specific impairments that we observed in monkey Q. It is also possible these behavioral results 

reflect real deficits in motion processing. For example, many neurons in V3 are sensitive to 

motion, some similarly to MT neurons (Gegenfurtner et al., 1997), so their inactivation may 

explain the effects on the behavioral performance during the motion task. As a result, perhaps the 

selective results of monkey S are most surprising. However, since they are in line with the 

predictions from the MT neuronal data, they likely reflect underlying deficits in depth processing 

that exceed those of motion processing.  
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Chapter 2: Effects of V2 and V3 inactivation on neuronal activity during 

motion and depth detection tasks 

Introduction 

 Reversible inactivation of V2 and V3 by cooling has been shown to lead to a larger 

reduction in  MT  neurons’  tuning  selectivity  for  binocular  disparity  than motion direction, 

suggesting that these areas convey a disproportionate amount of binocular disparity information 

to MT (Ponce et al., 2008). We implemented this technique to determine whether changes in 

neuronal sensitivity on a short time scale (the hour-long cooling session) can lead to changes in 

the contribution of MT neurons to behavioral reports during motion and depth detection tasks. 

Previous work indicates that choice probability—a  metric  of  neurons’  correlation with 

behavior—is often highest for the neurons most sensitive to the task demands and that this 

relationship can evolve over months as animals’  performance gradually improves during a 

complex task (Britten et al., 1996; Law and Gold, 2008, 2009). These results reveal a level of 

flexibility in the decision circuitry that can accompany learning on a long timescale. We set out 

to use a choice probability-like metric, called detect probability (DP), to determine whether the 

decision circuitry could adapt on a short timescale if we suddenly changed  MT  neurons’  

“informativeness” for binocular disparity more than motion.   

First, it is important to note that although the selective changes in tuning strength indicate 

that the indirect pathway through V2 and V3 is necessary for recovering one aspect of disparity 

but not motion information in MT, we did not know how these changes in tuning properties 

would affect neurons’ performance in the context of the motion and depth signal detection tasks 

we used. To clarify: behavioral performance during both tasks depends on a group of neurons’  
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ability to encode signal as being distinct from noise—i.e. signal detection. In contrast, when we 

evaluate  a  neuron’s  tuning  strength,  we  measure  the  differences  in  the  neuron’s  response  to  a  

range  of  values  of  a  feature  presented  only  at  100%  signal  strength.  Thus  a  neuron’s  tuning  

strength does not necessarily reflect how well it can distinguish signal from noise at its preferred 

direction or disparity, the neuronal computation necessary for the tasks. Since the signal from 

noise discrimination also depends on the availability of binocular disparity and direction 

information, we hypothesized that weakened tuning for binocular disparity in MT would also 

lead to  greater  impairments  in  neuron’s  ability  to  discriminate  signal  from  noise  stimuli  during  

the depth task than the motion task. This, in turn, could lead to a larger reduction in  MT  neurons’  

involvement in behavioral judgments during the depth task than the motion task.  

Therefore, our two major goals were to determine whether: 1) the previously observed 

selective effects of inactivating V2 and V3 on MT tuning curves extend to neurons’ sensitivity 

during the signal detection tasks and 2) to determine the effects of inactivation on MT 

correlations with behavior (DP). 

Results 

  We  observed  several  effects  of  inactivation  on  MT  neurons’  sensory  representation:  a  

non-specific global reduction in firing rate, a larger impairment in binocular disparity tuning 

selectivity than direction tuning selectivity, a larger reduction of cell sensitivity during the depth 

task than the motion task, and a reduction in spike count variability (Fano factor) across both 

tasks. Furthermore, we found that choice-related activity, as measured by detect probability 

(DP), was reduced during the depth task and not the motion task, suggesting that the impairments 

we induced in cell sensitivity during cooling led to a selective restructuring of the depth but not 

motion task-related decision circuitry. We also found that a simple integrate-to-bound model of 
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MT read-out  can  account  for  a  large  proportion  of  the  variability  in  the  animals’  reaction  times  

during both tasks in both conditions. All neuronal results were similar between the two animals 

so their data will be presented together. 

Firing Rate and Tuning 

We observed marked changes in the basic visual responses of MT neurons during 

reversible inactivation of V2 and V3 by cooling. Many of these effects are similar to those 

previously reported by Ponce and colleagues (2008). First, we observed a global reduction in 

visually-evoked firing rate. The median effect was a 36% reduction as measured from the 

response to the preferred direction of motion (100% signal strength) in the pre-cool vs. cool 

conditions. Secondly, we observed a greater reduction in tuning strength for binocular disparity 

than  for  direction  of  motion.  An  example  cell’s  tuning  curve  for  binocular disparity and direction 

is shown in Figure 18A. Despite overall decrease in firing rate during inactivation (18% 

reduction for this cell), this neuron continued to be strongly selective for direction of motion but 

became less selective for binocular disparity. We quantified the tuning selectivity for both 

direction and disparity with a discrimination index (DI) for each feature (see Methods). The DI is 

0 when the responses to the preferred feature value are indistinguishable from the responses to 

the null value (i.e. the cell is not tuned) and it approaches 1 as the responses to the preferred 

feature become more distinguishable from the responses to the null feature. The DI was 

measured at the same stimulus values in both the pre-cool and cool conditions. For this example 

cell, the DI decreased by 3% for direction tuning and 11% for disparity tuning. This pattern of 

results is representative of the population of recorded neurons in that the disparity DI declined 

more than the direction DI in most cells (Figure 18B-D). The median DI change for direction 

tuning was a reduction of 5% and a reduction of 26% for disparity tuning, both of 
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Figure 18: Binocular disparity tuning is impaired more than direction tuning 
(A) Example direction (left) and disparity (right) tuning curve for a single neuron during the 
pre-cool, cool, and recovery periods. Tuning selectivity is quantified by a discrimination 
index (DI), which is shown for each condition next to the tuning curve. Data from the pre-
cool, cool, and recovery periods are shown in red, blue, and green, respectively. 
(B) Population comparison of DI pre-cool to cool for direction (left) and disparity (right). 
Dashed line is line of unity. Values below zero in the cool condition (in the disparity DI plot) 
indicate that tuning modulation inverted such that the neuron now responded more to the null 
stimulus than the preferred. 
(C) Comparison of DI changes for cells in which both direction and disparity tuning data was 
collected in both pre-cool and cool conditions. Asterisks indicate that each distribution was 
significantly different from zero (p <0.01, sign test). 
(D) Pair-wise comparison of DI changes between the two features. The percent change in DI 
for direction tuning is subtracted from the change in DI for disparity tuning. Values less than 
zero indicate that disparity tuning was impaired more than direction tuning. (* = p<0.01, sign 
test) 
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which were significantly different from zero (Figure 18C). The decrease in disparity DI was 

significantly greater than the decrease in direction DI in a pair-wise comparison within each 

session (Figure 18D; median difference = 16%, p<0.01 sign test). This confirms the earlier 

findings of Ponce and colleagues (2008) and indicates that the indirect pathway to MT convey a 

disproportionate amount of disparity information. The global reduction in firing rate likely 

reflects the removal of input to MT neurons. 

Also shown in the example in Figure 18A is the tuning curve measured during the 

recovery period (in green), which in this case was obtained 23 minutes after cooling was 

discontinued, when the temperature had returned close to physiological temperature (> 36.6°C at 

each of the three cryoloops, normal physiological temperature was 38-39°C for this animal). For 

this example cell, the firing rates at all directions and binocular disparities had returned to the 

pre-cool values by this time. Accordingly, the DI calculated during the recovery period was 

similar to the pre-cool DI value. We were able to collect recovery tuning data for 49 MT 

neurons. Recovery-period data was always collected at least 15 minutes after the cooling period 

had ended, when temperatures were at least 30°C at the loops, which is sufficiently warm to 

resume normal visually evoked activity (Lomber et al., 1999). The recovery DI for direction and 

disparity for these cells is plotted against the pre-cool values in Figure 19. Many cells have 

recovered completely by this time and the median DI difference between pre-cool and recovery 

is -3% and -7% for the motion and depth tasks, respectively. Although these are both 

significantly less than zero, the difference in DI is smaller than it was during cooling, indicating 

that these cells are on their way to complete recovery. Additional evidence supports that the 

neuronal effects of inactivation were fully reversible. First, we did not observe any change in the 

distribution of pre-cool direction or disparity DIs as a function of experimental session, most of 
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which were on 

consecutive days, 

indicating complete 

recovery by the next 

day. We also 

observed no 

difference in the 

magnitude of the 

inactivation effect 

over time (3-12 

months of 

experiments in the two animals) which suggests that long term damage or reorganization was 

unlikely. Taken together, these results indicate that the neuronal effects of inactivation were 

repeatable and reversible on a daily basis. 

Task-related cell sensitivity 

To  assess  the  effects  of  inactivation  on  the  neurons’  performance  during  each  task,  we 

constructed a neurometric function for each neuron (see Methods). This is analogous to a 

psychometric function and describes how well each neuron would be able to discriminate signal 

from noise during the task and thereby detect signal onset. This allowed us to measure the effects 

of inactivation on the neurons informativeness as it pertains to the tasks. For each task, the 

neurometric function was computed by comparing neuronal responses at each signal strength 

immediately prior to signal onset to the responses shortly after signal onset. The area under the 

ROC curve for these two distributions corresponds to the probability with which an ideal 

 

Figure 19: Recovery of tuning DI  
Tuning DI during the recovery period is shown plotted against the 
pre-cool DI for direction (left) and disparity (right) tuning. The 

median percent difference ൬஽ூೝ೐೎೚ೡ೐ೝ೤ି  ஽ூ೛ೝ೐ష೎೚೚೗஽ூ೛ೝ೐ష೎೚೚೗
  ×   100%൰   is shown 

in the bottom right corner. The asterisk indicates that the median 
difference is significantly different from zero (p<0.01, sign test). 
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observer can correctly determine whether a randomly selected rate belongs to the pre- or post-

signal onset epoch. Thus it gives the probability with which the neuron can correctly detect the 

change. This  metric  is  likely  an  overestimate  of  the  neuron’s  performance  because  we  specify  the  

time windows in which to compare responses, removing the temporal ambiguity that is present in 

each trial. It is therefore an upper bound on how sensitive each neuron is to the change the 

monkey must detect. The neurometric functions for four example neurons are shown in Figure 

20. In both conditions, MT  neurons’  responses  increased  as  a  function  of signal strength in both 

 

Figure 20: Example neurometric functions 
(A-D) Neurometric performance during the motion (left) and depth (right) tasks for four 
example neurons (numbered 1-4). Squares correspond to the neurometric performance at each 
tested signal strength. Not all signal strengths were tested in all conditions. Of the signal 
strengths  tested  in  both  conditions,  the  signal  strength  at  which  the  neuron’s  performance  was  
nearest to 0.8 (i.e. 80% correct) in the pre-cool condition was chosen as the comparison point 
for the cool condition. Responses to this signal strength are shown as filled squares. The 
neurometric performance values and percent change in neurometric performance relative to 
the pre-cool value are shown in the corner of each panel. Dashed horizontal line at 0.5 
indicates the chance rate of performance. 
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motion and binocular disparity. In the pre-cool condition, neurons often reached near-perfect 

performance at the highest signal strengths during the motion task; however, they tended to 

perform poorly during the depth task even though the maximum available signal strength was 

higher (100% on the depth task versus 66% on the motion task). This is largely because MT 

neurons are modulated more by direction than binocular disparity, leading to smaller differences 

in the firing rate distributions pre- and post-signal onset on the depth task (DeAngelis and Uka, 

2003).   

To determine the effect of cooling on the neurometric performance, we approximated the 

neurometric threshold (the signal strength at which neurometric performance was nearest to 0.8. 

i.e. 80% correct) in the pre-cool condition. We then calculated the neurometric performance 

during inactivation at that same signal strength. This near-threshold signal strength is indicated 

by the filled markers for each neurometric performance function  in Figure 20. Neurons with pre-

cool neurometric performance below 0.55 were excluded from this analysis since they were 

effectively insensitive to the task prior to inactivation (1 excluded for motion, 9 excluded for 

depth; total number of neurons = 78).  Individual  cells’  near-threshold neurometric performance 

during both conditions and for both tasks is plotted in Figure 21A. The median decrement in 

neurometric performance during inactivation was 18% during motion task and 41% during the 

depth task. This difference was significant in a pair-wise comparison within each session, such 

that for most neurons, the decrement in performance was greater during the depth task than the 

motion task (Figure 21C; median difference = 20%, p<0.05).  Note that for many neurons, the 

neurometric performance nearest 0.8—the signal strength defined to be the threshold—was often 

substantially below 0.8 (as evidenced by the spread along the abscissa in the right panel of 

Figure 21A). This was usually the case when the neurons maximal performance was below 0.8 at  
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Figure 21: Neurometric performance population summary 
(A) Neurometric performance of individual neurons compared pre-cool to cool for the motion 
(left) and depth (right) tasks. Diagonal line is line of unity. Dashed vertical line indicates the 
threshold below which neurons were excluded from the neurometric performance analysis (1 
excluded point in the motion plot and 9 excluded points in the depth plot are not shown). 
(B) Comparison of the percent change in neurometric performance for each task. Only 
neurons that contributed to both histograms are included. The median reduction was 18% 
during the motion task and 41% during the depth task. Values below -100% indicate sign 
changes in performance relative to 0.5 (see Methods). 
(C) Pair-wise comparison of the performance changes during the two tasks for each neuron. 
The percent change in neurometric performance during the motion task is subtracted from the 
change in neurometric performance during the depth task. Values below zero indicate that 
depth neurometric performance was impaired more than motion neurometric performance. (* 
= p<0.01, sign test) 
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all signal strengths. Since this was more common during the depth task, one concern is that if 

lower-performing neurons were more sensitive to the effects of inactivation (e.g. the computation 

was more fragile to begin with) we might see disproportionate effects on the tasks simply due to 

differences in pre-cool neurometric performance. However, restricting the analysis to the subset 

of neurons with the highest neurometric performance during the depth task did not lead to 

qualitative changes in this effect: neurometric performance was still affected significantly more 

during the depth task than the motion task. This was true for all tested subsets of the data. 

Furthermore, we found no significant correlation between the magnitude of the effects of 

inactivation on neurometric performance and pre-cool neurometric performance during the depth 

task  (ρ  =  0.1,  p  >  0.05)  indicating  that  lower-performing cells were not affected more strongly by 

inactivation.  

Although neurometric performance was impaired more during the depth task than the 

motion task, there was still a significant impairment during the motion task. Unlike direction 

tuning, neurometric performance during the motion task was often affected by cooling: the 

median decrease in direction tuning DI was only 5% but neurometric performance on the motion 

task declines by 18%, on average. However these results are not in conflict since tuning and task-

related neurometric performance reflect different aspects  of  the  neurons’  encoding  of  direction  

information, as discussed above. Therefore, our results indicate that input from V2 and V3 also 

affects  MT  neurons’  representation  of  noisy  motion  stimuli,  albeit  less  than  noisy  disparity  

stimuli.  

Choice-related activity in MT 

The discovery that cortical neuronal responses are weakly correlated with behavioral 

reports has been used to suggest that a neuron, or a set of neurons, contribute to perceptual 
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decisions. Such correlations with behavior occur when the animal is presented with identical 

visual stimuli, even one with no signal strength, suggesting that small fluctuations in neuronal 

firing influence perceptual decisions. Experimenters often search for these effects under 

experimental conditions where task parameters are tailored to the preferences of the neuron 

under study in order to  give  the  neuron  its  “best  chance”  of  being  involved.  Neurons  in  MT  

exhibit this kind of choice-related activity during motion and depth discrimination tasks (Britten 

et al., 1996; Uka and DeAngelis, 2004) and in the motion detection task we used (Cook and 

Maunsell, 2002b; Bosking and Maunsell, 2011). However, choice related activity in MT neurons 

had not previously been examined in the context of a depth detection task. 

 We measured these correlations, termed “detect probability” (DP) for detection tasks, for 

individual neurons as monkeys alternated between the two tasks. DP was measured at 

intermediate signal strengths where there were sufficient numbers of both correct and missed 

trials (see Methods). Neuronal responses after the signal onset were z-scored within each 

stimulus (i.e. signal strength) and then combined, across stimuli, for each neuron. Responses 

were sorted into two distributions: one containing trials when the animal correctly detected the 

change and one for trials when the animal missed the change. The area under the ROC curve for 

these two distributions is the DP, which indicates the probability with which an ideal observer 

can determine whether the animal reported detecting the signal onset from a firing rate chosen 

randomly from the two distributions. This value will differ from chance (0.5) if the two 

distributions are somewhat non-overlapping. Such a difference would indicate that neuronal 

responses differed on  the  basis  of  the  animal’s  choice.  Like  any  ROC  measure,  possible values 

range from 0 to 1, where a DP of 1 signifies that the neuron always fired more when the animal 

detected the change than when it missed the change. Conversely, when the value approaches 0, 
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the neuron fires less when the animal correctly detected the change than when it missed the 

change. 

We found that MT neurons exhibit choice-related activity during both motion and depth 

detection tasks during the pre-cool condition (Figure 22). Individual neuron DPs had a median 

value of 0.54 during the motion task and 0.54 during the depth task, both of which were 

significantly greater than 0.5 (p<0.05, sign test). Such small values are typical and perhaps not 

surprising when one considers that we are measuring the activity of only a single neuron at a 

time, while it is likely that hundreds, if not thousands, of neurons are being used to solve these 

tasks. The finding that the population’s DP is significantly greater than chance during both tasks 

suggests that MT neurons contribute to perceptual decisions involving both motion and depth 

stimuli. Importantly,  individual  neurons’  DP  values  for  the  motion  and  depth  tasks  were  not  

correlated, indicating the perceptual contributions could be determined independently for 

different modalities. 

 

Figure 22: Population DP histograms 
Detect probability during the pre-cool condition from all recorded single neurons for the 
motion (left) and depth (right) tasks. Filled in bars indicate individual neurons that had 
DPs significantly different from 0.5 as determined by a permutation test. Triangles 
indicate median values. * = p<0.05, sign test 
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Relationship between detect probability and neuronal sensitivity 

 We found that DP was significantly correlated with neurometric performance, suggesting 

that the most informative neurons had the strongest correlations with behavioral reports. For this 

analysis, neurometric performance was determined across all signal strengths tested in the pre-

cool condition. The correlation was 0.25 for the motion task and 0.25 for the depth task, both of 

which were significant (p<0.01, Figure 23). Recent experiments show that this relationship does 

not exist at the beginning of 

training on a motion 

discrimination task, but develops 

over  many  months  as  animals’  

performance improves (Law and 

Gold, 2008). We set out to 

determine whether such changes 

can occur on the time scale of an 

hour by reversibly degrading 

neuronal sensitivity for both 

direction and disparity stimuli, but 

more so for disparity. 

Effects of inactivation of V2 and V3 on choice-related activity in MT 

To compare choice-related activity between the pre-cool and cool conditions we computed 

the DP time course aligned to the signal onset, for the entire population of recorded MT neurons 

(Figure 24). This allowed us to examine the dynamics of choice-related activity and provided 

sufficient statistical power to compare DP between conditions. In the pre-cool condition, DP 

 

Figure 23: Relationship between neurometric 
sensitivity and detect probability 
DP plotted against neurometric performance for all 
recoded neurons during the motion (left) and depth 
(right)  tasks.  r  =  Pearson’s  correlation  coefficient;;  p  =  
p value; n = number of neurons.  
 



73 
 

during the motion and depth tasks shared a similar time course. Before signal onset, DP is at the 

chance value of 0.5, indicating that there were no anticipatory biases in activity prior signal 

onset. DPs rose shortly after signal onset and peaked at similar times for the two tasks, beginning 

approximately 300 ms after signal onset. The comparable time courses indicate that MT firing 

rates were most predictive of the animals’  responses at similar times throughout the trial. DP 

 

Figure 24: DP time course 
(A-B) DP time course plotted aligned to the signal onset at time 0. Thick lines are DP value 
computed in a sliding window and thin lines are SEM obtained via a bootstrap procedure. 
Gray box indicates time window used to compute population DP value in C-D. n = number of 
neurons.  
(C-D) Population DP computed by combining z-scored responses in a single time window 
(100-500 ms after signal onset) from all neurons with both pre-cool and cool data for both 
tasks. Error bars are SEM from bootstrap. The measured DP value is printed in each bar. The 
difference between DP changes during the depth task and motion task was significant (p < 
0.01, data not shown).  ** = p < 0.01; n.s = not significant. 
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during both tasks began to fall before the monkey’s  behavioral  response, possibly reflecting that 

the movement constituting the behavioral response depended on later areas.  These time courses 

are similar to those that have previously been observed in reaction-time or short duration motion 

and depth tasks (Cook and Maunsell, 2002b; Cohen and Newsome, 2009; Sasaki and Uka, 2009; 

Bosking and Maunsell, 2011). During inactivation we observed a selective reduction of DP 

during the depth task but not the motion task. This is evident throughout most of the DP time 

course following signal onset. The difference first became statistically significant approximately 

175 ms following signal onset and remained until ~275 ms following signal onset. However, 

because statistical significance is sensitive to trial numbers and spike rate, we do not take these 

times to be the definitive start of DP differences.  Interestingly, we found that during cooling, 

depth DP was significantly lower than 0.5 in the brief period immediately before the change 

(~400 ms before the change). This cannot be explained by non-selective changes like the 

reduction in firing rate or change in motivational state since those would tend to bring the DP 

value toward 0.5. Instead, a drop in DP below 0.5 indicates that the animal tended to correctly 

detect the signal when the firing rate before the change was slightly lower than average. This 

may reflect a decoding strategy  where,  to  facilitate  detection  of  the  change,  the  neurons’  

responses are being compared in a sliding time window throughout the trial (e.g. Cook and 

Maunsell, 2002b). During trials where the firing rate is slightly lower than average before the 

change, the signal onset would lead to a larger modulation than average and it would be easier 

for the neuron—and the monkey—to detect the signal. 

 To summarize the effect of reversible inactivation on DP, we also pooled DP values across 

time in a fixed 400 ms window after signal onset (indicated by the gray area in Figure 24). A 

bootstrap procedure revealed that DP during the depth task decreased significantly between pre-
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Figure 25: DP recovery  
Population DP computed in the same way as in Figure 
24C-D. Only the 11 neurons with recovery data 
contributed to the pre-cool and cool DP estimate. Same 
conventions as in Figure 24C-D. 
 

cool and cool conditions from 0.60 to 0.56 (p<0.01). The change in motion DP from 0.58 to 0.6 

was not statistically significant (p>0.05). Importantly, depth DP was affected significantly more 

than motion DP, as measured by a separate bootstrap procedure that compared the distributions 

of re-sampled effect magnitudes (p<0.01, see Methods). Although a seemingly small change, the 

drop in depth DP during cooling represents a 40% decrease when measured relative to chance 

(0.5) and could have substantial implications for downstream decision mechanisms. 

We were able to collect sufficient recovery data from 11 single neurons to measure DP 

during both tasks in all three conditions. This data could not be collected for most neurons 

because it required continuous isolation of a single neuron’s  electrical response for 

approximately three hours, a task that proved difficult. For these 11 neurons, we found that DP 

during the depth task 

returned to values similar to 

those in the pre-cool 

condition during the recovery 

period (Figure 25), 

demonstrating the changes in 

DP during inactivation are 

reversible on a similar 

timescale.  

Changes in DP and neurometric performance are not due to changes in firing rate  

Measures that depend on the receiver operating characteristic (ROC) curve, such as DP and 

neurometric performance, are sensitive to both the mean and standard deviation of the 
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distributions being compared. This is evident by examining the relationship between the area 

under the ROC curve and the sensitivity measure, 𝑑′: 

𝑎𝑅𝑂𝐶 = 𝛷 ቆ 𝑑′
√2

ቇ 

where 𝑎𝑅𝑂𝐶  is the area under the ROC curve, 𝛷 is the transformation by the cumulative normal 

distribution function, and 𝑑′ is the sensitivity index, which depends on the mean and standard 

deviation in the following way: 

𝑑ᇱ =   𝑚ଵ − 𝑚ଶ
√𝜎ଶ

 

where 𝑚ଵand 𝑚ଶ are the means of the two distributions being discriminated and σ is their 

standard deviation, which is assumed to be the same for both distributions (Macmillan and 

Creelman, 2004). For DP measures, 𝑚ଵ  and 𝑚ଶ usually differ by only a few spikes (which is 

why 𝑎𝑅𝑂𝐶 is close to 0.5) so this is a fair assumption. Of course, the denominator reduces to the 

standard deviation (𝜎) but it is easier to think about this problem in terms of the variance, 𝜎ଶ. 

Cortical neurons typically exhibit a constant relationship between their mean spike count and 

variance across all firing rates (Softky and Koch, 1993). This relationship can be quantified by 

the Fano factor, which is simply the ratio of spike count variance to mean spike count. As a 

result, as long as  𝑚ଵ   ≈   𝑚ଶ   ≈ 𝜎ଶ in all conditions, we would have expected that, given a 

reduction in firing rate, d’ should decrease simply because the mean rates 𝑚ଵand 𝑚ଶ decline 

faster than the square root of the variance (𝜎ଶ) in the denominator. Therefore we were surprised 

that DP did not decrease during both tasks solely due to the lower mean firing rate in MT caused 

by inactivation of V2 and V3. This prompted us to examine the relationship between the mean 

spike count and the variance during inactivation. 
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For each neuron, we computed the mean spike count and associated variance in response to 

each unique stimulus type—i.e. signal strength—separately for each condition. Since neuronal 

responses were collected at multiple signal strengths for each task, each neuron contributed 2-14 

data points. A scatter plot of the calculated mean spike counts and associated variance is shown 

in Figure 26. The slope of the best-fit line gives the Fano factor for the entire population of 

neurons. The Fano factor declines from a pre-cool value of 1.19 to 0.76 during inactivation. This 

decrease was similar when the data were analyzed separately for each task, across different 

signal strengths (including the noise epoch immediately before signal onset), and in response to 

the 100%-signal stimuli used for quantitative tuning. This decrease persisted when we matched 

mean spike counts and numbers of data points between conditions. We also computed the Fano 

factor for each data point in Figure 26A individually by computing the variance to mean ratio 

(rather than the fit to all the data) and found that there is no significant correlation between mean 

spike count and Fano factor in any condition or task. Similarly, we found that the median Fano 

factor computed in this way was significantly lower during cooling, even when restricted to 

points with lower mean spike counts (Figure 26C). Thus, we observed a decrease in Fano factor 

even when we accounted for the difference in spike rate. This finding has several important 

implications that will be elaborated upon in the general Discussion. In the context of our other 

findings, our estimation of the Fano factor allowed us to generate expected DP values given the 

reduction in both firing rate and variance. 
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Figure 26: Fano factor 
(A) Scatter plot of mean spike count vs. spike count variance. Each point is the mean 
spike count and variance measured at one signal strength during one task. Data from each 
neuron was only included if the neuron contributed to both pre-cool and cool data sets. 
One cell contributes 2-14 points, one for each signal strength in each task. The gray region 
indicates data used for comparison in (C). FF is the Fano factor, which is the slope the 
best fit line to each data set (pre-cool and cool). The black diagonal line is the unity line, 
which corresponds to the Poisson prediction of FF = 1. 
(B) Box plot of the Fano factor computed for each point in (A) by dividing the variance 
by the mean spike count. The central mark is the median and the edges of the box are the 
25th and 75th percentiles. Whiskers include approximately 95% of the distribution and 
crosses are remaining points. The median Fano factor is shown adjacent to each box plot. 
The distributions are significantly different from each other (p<<0.01, rank sum test). 
(C) Same as (B) but only showing Fano factor for points where the mean spike count was 
between 6 and 12 (gray area in (A). For this subset, the number of points in each 
distribution is approximately equal (~450). These distributions are also significantly 
different (p<0.01, rank sum test). 
 



79 
 

 We estimated the expected DP in the 

cool condition by adjusting the pre-cool DP 

(i.e. its underlying d’, see Methods) by the 

measured reduction in firing rate and 

variance (Figure 27). We also show the 

predicted DP based on the firing rate 

reduction alone. As discussed above, the 

predicted DP when we only accounted for 

the change in mean rate (dashed light blue 

line) was lower than the DP we observed 

during cooling during the motion task and 

was similar to the measured DP during the 

depth task. However, when we accounted 

for the changes in both mean and variance 

we found that the expected DP is very 

similar to the pre-cool value on both tasks. 

Thus the reduced variance effectively 

counteract the reduced firing rate we 

observed. Therefore, the changes we see in 

depth DP during cooling are larger than would be expected given the reduction in firing rate 

alone. Since this decline in variability was constant across all stimulus strengths and stimulus 

configurations, all other ROC-based measures such as neurometric performance should also not 

be affected by the change in mean rate. 

 

Figure 27: DP prediction  
Predicted DP time courses for the motion (top) 
and depth (tasks). Predictions were obtained by 
adjusting the measured  d’  in  the  pre-cool 
condition by the observed reduction in firing 
rate (dashed light blue line) and by the 
combined reduction in firing rate and variance 
(dotted light blue line). The measured DP in the 
cool condition is also shown (solid blue line). 
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Neuronal population dynamics 

 Although DP declines during the depth task during inactivation, it continues to be 

significantly greater than chance level in both tasks. This suggests that the MT population 

continues to be involved in depth decisions in addition to motion decisions, albeit at reduced 

levels. However, the changes in firing rate during both tasks that we observed during inactivation 

of V2 and V3 present a 

challenge to downstream 

decision circuitry. Most 

models of MT read-out posit 

an integrate-to-bound 

mechanism where 

information from relevant 

MT neurons is accumulated 

until a fixed threshold is 

reached, which in turn 

triggers a behavioral response 

(Cook and Maunsell, 2002b; 

Roitman and Shadlen, 2002). 

If this threshold were expressed in terms of absolute firing rate, the population response in our 

experiments would rarely reach this threshold during inactivation since few neurons ever fire 

enough spikes to approach even the responses to pre-signal onset stimuli in the pre-cool 

condition. This is evident in the response averaged across all of our recorded neurons, which is 

shown, aligned to the signal onset, in Figure 28. For example, if increases in firing rate in the 

population were used to detect signal onset via a threshold crossing, any threshold established 

 

Figure 28 Average firing rates in the recorded MT population  
For each neuron, responses to all signal strengths were 
filtered with exponential filter (τ = 100 ms) and averaged 
across all neurons. Responses are aligned to signal onset at t = 
0. Gray area indicates possible threshold values that could be 
used to detect signal onset in the pre-cool condition. No 
threshold established in the pre-cool condition and expressed 
as an absolute firing rate can be used to perform either task in 
the cool condition. 
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during the motion task in the pre-cool condition would be somewhere between 40 and 65 spikes 

per second (indicated by the gray area in Figure 28); clearly, this threshold would never lead to 

detections during the motion task during cooling. The same is true for the depth task. However, 

the animals continue to be able to perform both tasks, at least partially from the neuronal signals 

in MT, suggesting the need for some flexibility in how the population response informs 

behavioral decisions. One simple way to allow for such flexibility is to implement a relative 

threshold, rather than a fixed one, across different conditions; e.g. rather than make the 

behavioral response when the neuronal population response reaches 40 spikes per second, wait 

for it to reach a 40% increase, relative to some baseline rate. This could provide a mechanism for 

the downstream read-out mechanism to detect the signal in our signal detection tasks under two 

very different spike rate regimes (pre-cooling and cooling) and, furthermore, to be responsive 

during the variety of spike rate regimes encountered during different tasks (e.g. compare mean 

pre-cool motion rates to pre-cool depth task rates). We should note that few experimenters, if 

any, have argued that this threshold is expressed as an absolute firing rate; however, few have 

had opportunities to explore the possibility of a relative threshold explicitly. 

To determine whether such a relative threshold can be used to predict behavioral 

responses from responses of the  population of MT neurons, we implemented a model of MT 

read-out that has previously been used with great success to account for the observed variability 

in reaction times during a motion detection task (Cook and Maunsell, 2002b). This model 

assumes two stages: a perceptual processing stage and a motor preparation stage that leads to the 

behavioral output, in our case an eye movement to the stimulus. A schematic of this model is 

shown in Figure 29C. The perceptual processing stage includes filtering of the MT population 

responses by a leaky integrator to simulate the integration of MT population responses in a 
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down-stream area. These responses are then passed through a threshold detector and the time at 

which responses cross the threshold is used to predict reaction time. The additional motor 

preparation time is added to account for the post-decision processing needed to generate the 

operant response.   

We implemented this model for our population of MT neurons by sorting responses by 

reaction time separately for each task and condition. We sorted responses from each neuron into 

20 bins based on reaction time, such that each neuron contributed an equal number of trials to 

each bin. Sorted responses were then averaged across neurons and filtered with an exponential 

filter to simulate the responses of a leaky integrator. To explore the possibility of a relative 

threshold, we simply normalized the population responses to the mean firing rate in the epoch 

preceding signal onset. Since every bin’s  response  was  simply  divided  by  the  same  value, the 

end result was just a change in y-axis units; there was no change in the relative relationship 

between the responses. As a result, rather than being expressed as an absolute firing rate, this 

threshold would be expressed as a constant multiple of the pre-signal onset response in the pre-

cool and cool conditions for each task independently.  

We found that responses’ rate of rise increased with shorter reaction times for both the 

motion and depth task under both cool and pre-cool conditions (Figure 29). This suggests that a 

threshold model might be sufficient to predict reaction times during both tasks and therefore that 

MT may contribute to motion and depth processing in a similar manner. Although the absolute 

firing rates during each task were very different between conditions, they reach a similar peak 

value in the cool condition when normalized, suggesting a relative threshold could be used.  



83 
 

 

 

Figure 29: Threshold model 
(A) Individual neuron responses during each task and condition were filtered by a leaky 
integrator,  binned  by  the  animals’  reaction  time,  and  averaged  across  neurons.  Responses  
were normalized to the mean response across all bins the 400 ms period prior to signal onset. 
A total of 20 bins were used but only every third (i.e. bins 1, 3, 6, 9, 12, 15, and 18) is shown, 
for  clarity.  Each  bin’s  median  reaction  time  is  shown  near  the  end  of  every  trace.  Thresholds  
and motor preparation times were fit simultaneously to data from both conditions from each 
task. The resultant values are indicated in each plot. Also shown are the responses during 
missed trials, which were not used in model optimization. Note that although the missed 
responses cross threshold during the depth task in the pre-cool condition, the predicted RT 
given the motor preparation time would exceed the allowed RT window (max 650 ms). 
(B) Schematic of the threshold model (adapted from Cook and Maunsell 2012b) 
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To determine whether a single threshold could account for measured reaction times in all 

conditions, we fit a single threshold and motor preparation time to each task under both 

conditions. The threshold and motor preparation time were optimized to best predict the 

measured reaction times for each response bin. The resultant threshold is indicated by the dashed 

lines in Figure 29A: 41% for the motion task and 12% for the depth task. Optimized motor 

preparation times were 200 ms for the motion task and 205 ms on the depth task. The similarity 

in motor preparation times suggests that MT may be similarly positioned from the motor 

processing stage in both decision circuits. The motor preparation time during the motion task is 

slightly faster than that of 264 ms obtained by Cook and Maunsell (2002b), likely because our 

animals were making an eye movement response, which tends to be faster than the lever release 

used in their study.  

We found that this single threshold and motor preparation time provide a good prediction 

of the observed reaction times for each task in both conditions (Figure 30). The model could 

explain at least 82% of the variance in reaction times, and as much as 98% in the depth task 

during the pre-cool condition.  Allowing either parameter to vary between conditions did not 

improve the proportion of explained variance by more than 2%. Allowing both parameters to be 

free in each condition also did not improve the proportion of explained variance by more than 

2%. As a result, it seems that a constant relative threshold can be used to account for the 

variability in reaction times, providing a mechanism by which the decision circuitry can be 

robust to changes in mean firing rate. 

Notably, we did not see evidence of a speed-accuracy tradeoff in the population data. 

Since reaction times during inactivation were longer during both tasks for both animals, a lower 

threshold could have allowed for faster reaction times and a faster rate of reward (e.g. Gold & 
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Shadlen, 2002). This would 

have been manifest in the data 

by an over-prediction of 

reaction time in the cool 

condition and/or an under-

prediction in the pre-cool 

condition, since the data were 

fit simultaneously. A lack of 

consistent bias in both 

conditions indicates that the 

internal threshold was likely 

similar under the two 

conditions. However, averaging 

an arbitrary number of trials 

and neurons, as we did, 

obscures two important aspects 

of the data: 1) the possibility of 

day-to-day variability of the threshold and 2) the level of noise that might be present for any 

given read-out neuron’s  inputs. It is likely that our averaging procedure smoothed out any day-

to-day fluctuations in this threshold between or within sessions and obscured more minute 

dynamics. Alternatively, the level of threshold we observed for each task may be necessary to 

distinguish responses to signal among noise from a pool of neurons during a single trial. For 

example, at the other extreme, when this model is applied to individual neurons, they are very 

 

Figure 30: Predicted reaction times  
Optimized threshold model parameters were used to 
determine predicted reaction times from the MT 
population response. The predicted reaction time was 
determined from the first time each binned population 
response crosses the threshold plus the motor preparation 
time. r2 is the proportion of variance explained by the 
model. Filled symbols correspond to the traces shown in 
Figure 29. 
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poor detectors of signal during both motion and depth based tasks because of the large response 

fluctuations (i.e. noise) in the response to the visual stimulus during a single trial (data not 

shown; also see Cook & Maunsell, 2002b). If the integrator neuron was receiving only a few 

noisy inputs during any given trial, a higher threshold would allow the animal to avoid making 

false alarms in response to this noise in the pre-signal onset epoch. Nonetheless, the data 

indicates that, on average, a relative threshold can be used for each task under a variety 

conditions.  

Although this threshold was the same across conditions for each task, it was different 

between tasks. Looking at the data, it is clear why this was the case: the neuronal modulation 

during depth task was much smaller than the modulation during the motion task. This flexibility 

between the two decision circuits indicates that, not only can the threshold be robust to different 

firing rates within a task, but it can be robust to firing rate differences between tasks. 

We should point out that when the data was analyzed separately for each monkey, the 

model  did  not  do  a  good  job  predicting  monkey  Q’s  reaction  times  during  the  motion  task  in  the  

cool condition (Figure 31A, gray panel). The proportion of explained variance was only 54%, 

substantially lower than in all other cases: the minimum explained variance for this monkey in 

the other conditions was 79% and the minimum for monkey S in all conditions was 90%.  This 

was mostly because the rate of rise of most MT responses did not differ when sorted by reaction 

time in this condition, which is evident in the vertical clustering of the predicted reaction times in 

the gray panel. That is, for most reaction time bins MT responses increased at a similar rate and 

were therefore not predictive of reaction time. Since DP values remained high for this animal 

during the motion task in this condition, MT neurons likely continued to be involved in the 

decision but this data suggests that there was a change in how MT responses were used to make 
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the decision. Importantly, this animal was significantly impaired in his performance during the 

motion task during cooling, as discussed in Chapter 1. It is therefore possible that his impaired 

performance was due to a disruption in how MT responses were used during the motion task in 

the cool condition.  

Summary  

We found that neuronal sensitivity in MT was degraded during both motion and depth 

signal detection tasks during reversible inactivation of V2 and V3, but significantly more so 

during the depth task. Furthermore, we found that detect probability decreased selectively during 

the depth task and not the motion task, possibly reflecting the disproportionate reduction in 

neuronal sensitivity during the depth task. Taken together, these data reflect re-structuring in the 

 

Figure 31: Predicted reaction times, shown separately for each monkey 
The threshold and motor preparation time were fit simultaneously for both pre-cool and cool 
conditions for each task, but separately for each monkey. Same conventions as in Figure 30 
(A) Comparison of predicted and measured reaction times for monkey Q.  
(B) Comparison of predicted and measured reaction times for monkey S. 
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MT-related decision circuitry during the depth task but not the motion task. This change 

occurred on the timescale of the approximately one-hour daily cooling sessions and was 

reversible on a similar timescale. Furthermore, we found that an integrate-to-bound model with a 

fixed relative threshold can account for the observed variability in reaction time under most 

conditions. Since the absolute firing rates under these conditions vary drastically, this finding 

reflects the flexibility of the decision bound.  
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Discussion 

 In the experiments described here, we used reversible inactivation to inactivate V2 and 

V3, visual cortical areas along one of the two major cortical pathways to MT—the indirect 

pathway. Previous work indicates that information passing through these areas is necessary to 

recover binocular disparity information in MT (Ponce et al., 2008). We found that inactivation of 

V2 and V3 impaired behavioral performance during depth signal detection, indicating that these 

areas are also involved in perception of depth. One of the two animals was also similarly 

impaired during a motion signal detection task. Furthermore, we found that the activity of MT 

neurons was correlated with behavioral reports during both depth- and motion-detection tasks, 

indicating that they are involved in the perceptual decision process. When we disproportionately 

impaired MT neurons’ sensitivity for binocular disparity, we found that these correlations —i.e. 

detect probability—declined during the depth task, suggesting that these neurons became less 

involved in the decision. This is notable for the short timescale over which it occurred—the 

hour-long inactivation sessions—and for its specificity to decisions on the depth task but not 

motion task.  

Behavioral effects of inactivation of V2 and V3 

 We found that inactivation of V2 and V3 led to impairments in the ability of MT neurons 

to discriminate signal from noise in both motion and binocular disparity, but significantly more 

so for binocular disparity. Given  MT’s  involvement  in  these  tasks,  it is therefore not surprising 

that there was some degree of behavioral impairment during the motion task in both animals. 

However, if behavioral performance during these tasks was based solely on MT processing, we 

would expect a bigger behavioral impairment during the depth task than the motion task. This is 

indeed what we observed in one animal, monkey S, but not monkey Q, who was about equally 
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impaired during motion- and depth-based detection tasks. Monkey Q was also about similarly 

impaired during fine change motion and depth tasks. There are several possible reasons for the 

non-specific impairment in monkey Q: first, there may have been non-specific changes in the 

animal’s  overall  motivation  or  alertness;;  second,  he  may  have  been  less  robust  to  changes  in  

stimulus appearance that may have occurred due to changes in processing in other visual areas 

(e.g. V4); third, the difference may due to real underlying impairments in both motion and depth 

processing in this animal, perhaps in visual areas other than MT.  

As discussed in Chapter 1, there are multiple reasons to believe that it is unlikely that 

monkey Q was simply unmotivated during inactivation: his performance remained unaffected in 

the ipsilateral visual field and we observed no changes in the rate of trial initiation. Furthermore, 

his high success rate during the easy trials of both tasks indicates that it is unlikely that the 

animal simply could not see. Instead, his deficits should be considered in the broader context of 

the effects of V2 and V3 inactivation. V2 and V3 neurons are themselves selective for 

orientation, color, motion, and binocular disparity (DeYoe and Essen, 1985; Hubel and 

Livingstone, 1985; Peterhans and von der Heydt, 1993; Levitt et al., 1994; Gegenfurtner et al., 

1996). Furthermore, V2 and V3 provide a major sources of input to V4, the major conduit to the 

ventral processing stream (reviewed in Maunsell and Newsome, 1987 and Van Essen and 

Gallant, 1994). Therefore, it is likely that cooling also affected processing in V4 and downstream 

areas. Given the response properties of V4 neurons (reviewed in Roe et al., 2012) and the ventral 

stream’s  role  in  object  recognition,  inactivation may have led to changes in processing of 

features such as color and form. The resultant changes in the appearance of the stimulus may 

have made both tasks equally difficult for monkey Q. Monkey S may have not been affected by 

these changes if the magnitude of these effects varied between the animals or if monkey S was 
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more robust to these changes in appearance. Alternatively, it is possible that motion processing 

in areas other than MT was also affected in monkey Q, leading to the similar behavioral 

impairment during the two tasks. For example, humans with damage to V2 and possibly V3 

exhibit deficits in motion processing similar to the kind we measured here (Vaina et al., 2000). 

However, this damage may have also extended to fibers of passage of other areas. Furthermore, 

transcranial magnetic stimulation (TMS) of human V2 has been shown to lead to disruptions of 

motion perception (Cowey et al., 2006); although this may be due to indirect disruption of 

activity in connected areas such as MT (Ilmoniemi et al., 1997). In either case, this does not 

account for the lack of substantial impairment during the motion task in monkey S. Instead, 

results from our attempts to model the read out of the MT population response (Chapter 2) 

suggest that MT responses during the motion task were used differently during inactivation in 

this animal: unlike in all other conditions, MT responses were not good predictors of monkey 

Q’s  reaction  time. This was true even though the activity of MT neurons continued to be 

correlated with behavioral reports, indicating that these neurons continued to be involved in the 

task. It therefore seems to have been a change in how MT responses were used to inform 

behavior—whether  because  of  a  change  in  monkey  Q’s  strategy  or  a  change in how MT 

responses were pooled. Such changes may have led to the decrement in this animal’s 

performance during the motion task during inactivation of V2 and V3. Ultimately, since we do 

not have access to the effects of inactivation on ventral stream processing or the underlying MT 

population read out mechanisms, we cannot distinguish between the relative contributions of 

these  effects  to  monkey  Q’s  behavioral  impairment  during  the  motion  task.    We therefore 

conclude that the results reflect some combination of differences in cooling effects between the 
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two animals such that additional visual processing such as color, form, or motion (in MT or other 

areas) were more affected in monkey Q than in monkey S.  

Our finding that both animals are impaired during the depth detection task is similar to a 

previous study in which removal of the foveal representation of V2 led to increases in 

stereoacuity thresholds (Cowey and Wilkinson, 1991). However,  subjects’  eye  movements  were  

not monitored and it was not clear that the deficits were due to lesions in V2 alone. Indeed, few 

studies have monitored eye movements and none that we are aware of monitored vergence 

(reviewed in Cumming and DeAngelis, 2001). In one study where monkeys performed  a depth 

discrimination task, lesions in the foveal V2 representation led to no behavioral impairment 

(Cowey and Porter, 1979). However, eye movements were not monitored and it is possible 

monkeys used their peripheral vision to perform the task. In a subsequent study, Cowey and 

Wilkinson (1991) found up to 10-fold increases in behavioral thresholds during the same task 

(although fixation was not enforced in this study either, as mentioned above). Our study 

therefore serves as the first attempt to monitor the effects of V2 and V3 inactivation on 

behavioral performance during a depth task while also monitoring eye position. 

Changes in neuronal variability 

We were surprised to find that neuronal variability in MT—as measured by the Fano 

factor—declines during inactivation of V2 and V3. Fano factor is typically considered to be a 

property of the local cortical circuit and several groups have previously reported a decrease in 

Fano factor in response to changes in visual stimulation or behavioral state (e.g. attention) 

(Churchland et al., 2006, 2010; Cohen and Maunsell, 2009; Mitchell et al., 2009). However, in 

all of these cases the Fano factor rarely, if ever, declined below a value of 1. The earlier 

observation that Fano factor tends to be near 1 for cortical neurons, regardless of firing rate, 
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contributed to the characterization of spike generation as a Poisson-like process (Softky and 

Koch, 1993). However, the Poisson-like variability of cortical neurons is difficult to explain with 

a simple integrate-and-fire model with only excitatory inputs, one of the more basic 

approximations for cortical neurons. Any such model that averages inputs that are themselves 

random should produce increasingly regular firing patterns (i.e. lower variability) as input—and 

the output firing rate—increases (Softky and Koch, 1993). To account for the observed 

variability in visual cortex, Shadlen and Newsome (1994)  proposed a model that posits balanced 

excitatory and inhibitory input to each model cortical neuron, a property that has recently been 

corroborated in vivo (Okun and Lampl, 2008). This balanced input predicts spike rate variability 

that is as high as what is observed in vivo and may account for Poisson-like properties of cortical 

neurons. It is therefore possible that the decrease in variability that we observed is due to 

changes in this excitatory and inhibitory balance. In collaboration with Camille Gomez and 

Gabriel Kreiman, we are currently investigating whether our observed decrease in Fano factor 

can be explained by a change in the excitatory/inhibitory balance with the use of a relatively 

simple integrate-and-fire model neuron whose number of excitatory and inhibitory inputs can be 

manipulated. We find that certain changes in the excitatory/inhibitory balance can lead to a 

decline in Fano factor and mean rate, similar to what we observed experimentally. However, 

these simulations are still in the preliminary stage and require further exploration before we can 

draw any conclusions.  

Dynamics of cortical decision circuitry 

We found that inactivation of V2 and V3 led to a larger degradation  of  MT  neuron’s  

performance during the depth signal detection task than the motion signal detection task. These 

changes were accompanied by a selective reduction in choice-related activity—as measured by 
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detect probability (DP)—during the depth task but not the motion task. This finding corroborates 

the main hypothesis for our experiments: that cortical decision circuitry can adapt on a short 

timescale  to  changes  in  the  “informativeness”  in  the  underlying  sensory  pool  of  neurons.  But  

what  does  “adapt”  mean  in  this  case? 

As noted in the Introduction, because of correlated variability between groups of MT 

neurons, DP likely reflects the contribution of a local group of neurons rather than any individual 

neuron. Therefore, a reduction in DP likely reflects a decrease in weighting of the neurons in the 

local MT pool. This can happen as a result of dilution of the decision across a larger population 

of neurons within MT or in other areas. For example, since the effects of inactivation on 

neurometric performance were heterogeneous and some neurons maintained high sensitivity, 

pooling across a larger number of MT neurons may have increased the sensitivity of the 

population as a whole. Alternatively, binocular-disparity sensitive neurons in other visual areas 

may have been recruited instead (e.g. Chowdhury and DeAngelis, 2008).  

It has also recently been proposed that decision-related activity partially reflects non-causal 

top-down effects such as attention (Nienborg and Cumming, 2009). Using a fixed-duration (i.e. 

non-reaction time) discrimination task, Nienborg and Cumming found that choice-related 

activity peaked at a later time relative to the when the stimulus contributed most to the decision, 

indicating a non-causal component to the choice-related response. However, it is not clear how 

much such top-down signals such as those proposed by Nienborg and Cumming contribute to DP 

for reaction-time detections tasks with more unpredictable timing, such as the ones we used. For 

example, Smith et al. (2011) trained animals to detect a very brief (50ms) motion pulse and 

showed that peak DP was coincident with the availability of sensory information. Furthermore, 

the DP reached similar peak values to those reported in longer duration studies, indicating that 
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any post-decision contribution may be small. It is therefore unlikely that the changes we observe 

are entirely due to changes in top-down processing. 

Finally, changes in the inter-neuronal correlation structure in MT may have also led to 

changes in DP. However, any global changes in correlation structure should have similarly 

affected motion DP, which we did not observe. Nevertheless, since we did not record the activity 

of multiple neurons simultaneously, we do not have access to the inter-neuronal correlation 

structure and our data cannot directly address this hypothesis. The simplest conclusion we can 

draw is that the reduced DP during the depth task reflects reduced weighting of the local pool of 

MT neurons in the decision. 

The selective change in DP raises another interesting question: since neurometric 

performance was degraded somewhat during the motion task as well as during the depth task, 

albeit significantly less so, why didn’t  we observe changes to DP during the motion task? It is 

possible that the magnitude of the impairment was simply not sufficient to trigger changes in the 

decision circuitry. Alternatively, it may be that MT neurons are the only neurons ideally suited 

for the motion detection task we employed. Unlike neurons in any other visual cortical area, a 

large majority of neurons in MT are predominately tuned for direction of motion irrespective of 

shape or color (Albright, 1992; Seidemann et al., 1999). Furthermore, permanent and reversible 

lesions in MT lead to large deficits in motion perception and discrimination (Newsome and Pare, 

1988; Chowdhury and DeAngelis, 2008). In contrast, previous work indicates that training 

history can change whether or not MT neurons are correlated with decisions during a depth task, 

suggesting that other areas can be recruited during this task (Chowdhury and DeAngelis, 2008). 

Therefore, changes in decision circuits may only occur when there are other available neurons to 

recruit for the task at hand. 
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 Several other laboratories have reported short timescale changes in choice-related activity 

in individual MT neurons (Purushothaman and Bradley, 2005; Cohen and Newsome, 2009; 

Bosking and Maunsell, 2011). In all of them, choice-related activity declined (within a single 

session) when the stimulus properties were chosen to differ from the preferences of the neuron—

e.g. if the direction of the stimulus was sufficiently different from preferred direction of the 

neuron. Thus, choice-related activity was largest for a neuron when it most informative for the 

upcoming trial. In these experiments the monkeys were cued to the properties of the upcoming 

stimulus, allowing for fast anticipatory mechanisms  such  as  feature  attention  to  “select”  the  most  

relevant neurons (Cohen and Newsome, 2008). Indeed, recent evidence from our laboratory 

indicates that feature attention effects are largest for the most strongly tuned neurons (Ruff and 

Born, in preparation). Although a feature attention-like mechanism can recruit neurons quickly, 

the relationship between the magnitude of feature attention effects and the neuronal 

informativeness likely relies on circuitry established throughout months of training.  Our 

manipulation of neuronal sensitivity would have disrupted any such pre-existing relationship 

since neurons there were previously useful became less so during inactivation. Therefore, the 

changes we observe in DP reflect the ability of the circuit to adapt to changing sensitivity on a 

short timescale. Whether this adaptation is linked to changes in feature-attention mechanisms 

presents an interesting direction for future experiments. 

Dynamics of the population response 

 Despite the changes in DP that we observed, neurons in MT continued to be correlated 

with decisions during both motion and depth tasks during inactivation of V2 and V3. To 

determine whether a single scheme could be used to inform behavioral decisions for both tasks 

under both pre-cool and cool conditions we implemented a simple population read-out model. 
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The model consists of two major stages: a perceptual processing stage where sensory evidence is 

accumulated by a later area, such as sensorimotor area LIP, until responses reach a decision 

bound and a motor preparation stage where the eye movement is generated (Cook and Maunsell, 

2002b). A leaky integrator is used to model that accumulation of sensory responses. This serves 

as a sort of sliding window over neuronal responses in time and helps account for the temporal 

uncertainly in when to begin sensory integration. A fixed motor preparation delay is consistent 

with studies of eye movement generation that have suggested that most noise in the behavioral 

output can be attributed to variability in the sensory estimate—that is, the visual processing stage 

rather than the motor preparation stage (Osborne et al., 2005). 

First, we found that this model accounted for a large proportion in the variability in our 

animals’  reaction  times  during both motion and depth tasks, indicating that MT population 

responses were used in a similar way. Furthermore, the motor preparation time was similar 

between the two tasks, suggesting that they may require a similar number of subsequent 

processing steps. To our knowledge, this is the first attempt to determine how MT population 

responses may contribute to decisions during a depth detection task.  

Moreover, we found that a single threshold could account for variability in the each 

tasks’  reaction  times in both pre-cool and cool conditions if the population responses were first 

normalized. In other words, the threshold can be expressed in terms of gain over the baseline 

response, which would provide a way for read-out circuitry to be robust to different firing rates. 

Remarkably, this flexibility allows neurons to contribute to the motion and depth tasks even 

when firing rates during a particular task are drastically reduced, which does not happen under 

normal physiological conditions. Although the mechanism for this process remains to be 

explored, one way this relative threshold could be implemented is by normalization of the 
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activity of neurons in the read-out pool. Divisive normalization—or gain control—in cortical 

circuits is a mechanism by which the response of a neuron is divided by the responses of the 

local pool of neurons (reviewed in Carandini and Heeger, 2011). This mechanism could 

effectively perform the same normalization on neuronal responses that we did and allow read-out 

neurons to respond to relative changes over baseline. 

It is important to note that this model is likely an oversimplification of the underlying 

mechanisms used to decode the population response. In particular, the stimulus parameters were 

always tailored to the preferences of each neuron so we could only include responses from 

neurons tuned to each stimulus. However, previous work indicates that responses from neurons 

with opposite tuning preferences can be anti-correlated with decisions during a detection task, 

suggesting that their activity is used in comparison to that of other neurons (Bosking and 

Maunsell, 2011). Furthermore, we averaged MT responses over an arbitrary number of neurons 

over many days, likely smoothing out realistic noise levels and any short-term fluctuations in the 

underlying threshold. Nonetheless, the model provides a surprisingly good account of the 

variability in reaction times observed during both tasks during both pre-cool and cool conditions. 

Conclusion 

In summary, we found evidence for selective restructuring of decision circuitry during a 

depth task and not motion task following degradation of depth sensory information more than 

motion information. This reflects fast-timescale adaptation to reduced neuronal sensitivity and 

might mirror changes that occur when we rapidly learn new tasks.   
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