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Ecological patterns and processes in Sarracenia carnivorous pitcher plant fungi 

ABSTRACT 

The kingdom Fungi is taxonomically and ecologically diverse, containing an 

estimated 1.5 million species. Fungi include decomposers, pathogens, and plant and 

animal mutualists. Many fungi are microorganisms, and the processes shaping microbial 

diversity may be fundamentally different from those that shape plants and animals. 

However, ecologists do not yet fully understand how fungal species are distributed over 

space and time. Using fungi that inhabit the water of Sarracenia carnivorous pitchers, I 

describe inter and intraspecific fungal diversity and investigate the processes that shape 

fungal diversity. I introduce these concepts in Chapter 1. 

 In Chapter 2, I describe changes in fungal species diversity over space and time. I 

enumerated fungal species in five Sarracenia populations across the United States and 

Canada, and show that thousands, but not hundreds of kilometers separate distinct fungal 

communities. I also sampled a single Sarracenia population over a Sarracenia growing 

season, and found that young fungal communities are significantly different from older 

fungal communities. Observed patterns correlate with environmental factors including 

temperature and pitcher pH, and with the presence or population structure of pitcher 

inhabiting arthropods. 

 In Chapter 3, I describe dispersal of and competition among three common 

pitcher fungi. I tracked Candida glaebosa, Rhodotorula glutinis, and Pseudozyma aphidis 

appearances in pitchers in a single Sarracenia population, and show that different 
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appearances reflect different dispersal times. I also describe interactions between 

dispersal and competition in microcosms: high numbers of propagules introduced into a 

microcosm give a competitive advantage to investigated fungi. 

 In Chapter 4, I describe changes in genotype composition of a population of 

Candida glaebosa, which is widespread and abundant in pitchers, and disperses early in 

the season. I observed three C. glaebosa populations in five locations; C. glaebosa 

population structure does not reflect broader community structure as described in 

Chapter 2. Population structure instead correlates with host taxonomy, and I contrast inter 

and intraspecific diversity patterns and the processes that potentially cause such patterns. 
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CHAPTER 1 

Introduction and motivation 
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Motivation 

 Ecologists study the distributions of biodiversity, the processes that maintain 

biodiversity, and biodiversity’s functions in nature. In this thesis, I define biodiversity as 

the identities and distributions of species and genotypes at a particular location, and over 

space and time. Biodiversity can be organized into communities and populations. I define 

a community as in Hubbell (2005): “[a] co-occurring assemblage…of trophically similar 

species.” I define a population as a group of individuals of the same species that 

recombines freely; populations can be composed of individuals with identical or different 

genotypes. 

 We know little about microbial diversity in nature. For example, mycologists 

have described ~97 000 fungal species (Kirk et al. 2008), but estimate that there are 1.5 

to 5.1 million fungal species on Earth (Hawksworth 1991, O’Brien et al. 2005). Fungal 

diversity estimates are based on ratios of fungal to plant species in well studied systems. 

We know even less about bacterial diversity: bacteriologists have described ~5000 

bacterial species (Garrity & Holt 2001). Estimates of numbers of bacterial species on 

Earth vary by orders of magnitude from 10 000 to 1 trillion (Mora et al. 2011, Dykhuizen 

1998). Current taxonomic information is not sufficient to precisely estimate the order of 

magnitude of the number of bacterial taxa on Earth (Pedrós-Alió 2012). In contrast, 

~220 000 of the estimated ~300 000 land plant species have been described; this estimate 

of land plant species diversity is the result of extrapolating species numbers from 

numbers of higher taxonomic levels (Mora et al. 2011). 

 Humans depend on microbes for survival, and changes in microbial diversity can 

lead to environmental problems. Microorganisms are responsible for nutrient cycling 
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(e.g., Nitrogen-cycling bacteria), primary production (e.g., cyanobacteria), decomposition 

(e.g., wood-decomposing fungi), and regulation of larger organisms through symbioses 

(e.g., human gut microbes, Madigan et al. 2009). All of these are examples of ecological 

functions: activities of an organism that alter the ecosystem it inhabits. Functions include 

metabolism and interactions with other organisms. Changes in biodiversity can result in 

changes in ecological function. For example, intermediate (21-40%) decreases in local 

biodiversity reduce primary production (by 5-10%), and decreases in litter consumer 

diversity reduce decomposition by ~8% (Hooper et al. 2012). Changes in microbial 

diversity can also lead to diverse environmental problems including animal diseases (e.g., 

chytridiomycosis, Berger et al. 1998), plant diseases (e.g., sudden oak death, 

Meentemeyer 2004), and harmful algal blooms (Hallegraeff 1993). 

 

Ecological processes 

 Competition, environmental filtering, and dispersal are all examples of processes 

that act on biodiversity in nature, or ecological processes. Ecological processes can 

increase, decrease, or maintain biodiversity, and they can operate over time, space, or 

both. They often interact with each other; two ecological processes working in opposition 

can maintain an equilibrium number of species. An ecological processes can be 

deterministic if it acts on any particular species or genotype more than others, or 

stochastic if it acts equally on all species in a community or genotypes in a population. If 

ecological processes are deterministic in a community or population, then an observer 

can predict species composition; if ecological processes are stochastic, then the observer 

cannot predict species composition, but often can predict other qualities of the 
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community or population, including species number and distribution of abundant or rare 

species (Hubbell 2001). 

 For example, competition can interact with environmental filtering to maintain 

species diversity. Two organisms compete when the presence of one decreases the other’s 

survival, growth, or reproduction (Begon et al. 2006). Competition can be direct or 

indirect. Direct (interference) competition is the result of physical or chemical contact 

among organisms; for example, wood-decomposing fungi produce physical barriers or 

toxic chemicals that prevent competing fungi from accessing resources (Boddy 2000). 

Indirect (exploitation) competition occurs when an organism reduces the availability of a 

resource (for example, a fungus might reduce the concentration of sugars on a substrate) 

to a level that is too low to support its competitors. Environmental filtering occurs when 

environmental conditions do not permit an organism to persist in a location. This 

definition of environmental filtering is the same as the definition of environmental 

constraints according to Belyea & Lancaster (1999). Environmental filtering may be 

absolute: for example, no obligately anoxic bacterium can survive in the presence of 

oxygen. Environmental filtering may also interact with competition when local 

environmental conditions allow one organism to outcompete another. 

 In 1957, Hutchinson formalized the niche concept of ecology, which invokes both 

competition and environmental filtering. Under the niche concept, each member of a 

community can only survive under a restricted set of environmental conditions, or niche. 

Each species in a community has a unique niche, although subsets of multiple species’ 

niches may overlap. Competition always drives all competitors in a particular location 

except one extinct, given enough time, because exactly one member of any community is 
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better than all others at competing under a given set of environmental conditions. In the 

niche ecology framework, environmental heterogeneity permits coexistence of different 

species in close proximity. The niche concept is a deterministic framework for explaining 

species diversity. 

 In addition to competition and environmental filtering, dispersal and dispersal 

limitation influence diversity in both patchy and continuous systems. Dispersal is the 

movement of propagules of an organism from one habitat to another; dispersal rate or 

dispersal ability can be the same among all members of a community or population, or 

they can vary. An organism experiences dispersal limitation if it cannot arrive at a given 

location at a given time. This definition of dispersal limitation contrasts with other 

definitions that include the ability of a propagule to reproduce once it arrives at a location 

(e.g., Hanson et al. 2012). Dispersal can also be saturating: under saturating dispersal all 

organisms in a community can reach all locations as at all times. Dispersal saturation is 

an extreme case of no dispersal limitation. Organisms can experience more or less 

dispersal limitation relative to one another. For example, the rate of dispersal to a given 

location can vary among organisms in a community, or the timing of dispersal can vary 

so that some organisms arrive in a habitat patch earlier than others. Dispersal limitation 

can be caused by a variety of events: a population can have low rates of propagule 

production, propagules may not survive between habitat patches, or small population 

sizes may produce limited numbers of propagules. 

 Dispersal limitation is a key process in the theory of island biogeography 

(MacArthur & Wilson 1967). The theory of island biogeography invokes dispersal 

(“immigration” in MacArthur & Wilson 1967) and extinction rates to explain numbers of 
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species on islands. These authors explained observations of increasing species diversity 

with increasing island area and decreasing distance to the mainland in many communities 

including amphibians and reptiles in the West Indies, and birds in the Philippines and 

New Guinea. They theorized that the rate of dispersal of all organisms to an island is a 

function of the distance from the island to the mainland, and that the rate of extinction of 

all organisms from an island is a function of the island’s area. Number of species on an 

island is the species number at which dispersal and extinction rates are at equilibrium. 

Since MacArthur and Wilson described the theory of island biogeography, ecologists 

have observed island biogeographic patterns in microbes. Microbial island biogeographic 

patterns include increasing numbers of bacterial taxa with increasing tree hole volume 

(Bell et al. 2005); increasing numbers of bacterial taxa with increasing carnivorous plant 

pitcher volume (Peterson et al. 2008); increasing numbers of ecomycorrhizal fungal 

species with increasing tree island area (Peay et al. 2007); and decreasing numbers of 

ectomycorrhizal fungal species with increasing distance between tree islands and the 

forest mainland (Peay et al. 2010). 

The theory of island biogeography is a stochastic theory: immigration and 

extinction rates are rates for the entire community, and the theory does not distinguish 

rates among species within a community. The neutral theory of ecology extends ideas 

from the theory of island biogeography to mainland systems (Hubbell 2001). The neutral 

theory invokes stochastic births, deaths, speciation, and dispersal to explain community 

patterns, and assumes that rates of all processes are equivalent among members of the 

community. 
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Metacommunity theory 

 Dispersal, competition, and environmental filtering interact in metacommunities. 

A metacommunity is “a set of local communities that are linked by dispersal of 

potentially interacting species” (Leibold et al. 2004). Not all patchy habitats house 

metacommunities: if all patches are completely isolated from one another, then species in 

different patches never have the opportunity to interact, and if all patches are completely 

mixed, then the patches together are a single community. 

 Ecologists have organized ecological processes into a metacommunity 

framework, a list of possible metacommunity types in which different ecological 

processes shape the species compositions of component communities (Leibold et al. 

2004, Logue et al. 2011). The four metacommunity types are species-sorting, patch 

dynamics, mass effects, and neutral metacommunities. Species-sorting metacommunities 

assemble according to the niche concept of ecology: each component community has 

different environmental conditions and dispersal is not limiting, so each species persists 

in communities with suitable environmental conditions. In patch dynamics 

metacommunities, component communities have identical environmental conditions. 

Species in patch dynamics metacommunities have different dispersal and competitive 

abilities, and there is a tradeoff between dispersal and competition; good dispersers 

colonize patches first, and are then outcompeted by good competitors. Mass effects 

metacommunities resemble species-sorting metacommunities, but species have high 

enough dispersal rates that they can exist in patches with unsuitable environmental 

conditions. Finally, neutral metacommunities have identical habitat patches and identical 



 

 8 

species dispersal and competitive abilities; diversity is maintained through stochastic 

births and deaths, and stochastic dispersal events among communities. 

 Ecologists often assign metacommunities to one of the four metacommunity types 

by correlating species compositions, environmental conditions, and geographic distance 

(space). Cottenie (2005) extended a variance partitioning technique of Legendre & 

Legendre (1998) to assign metacommunities on a space-environment axis: when 

community composition correlated with space independent of environmental conditions, 

Cottenie assigned a metacommunity to neutral or patch dynamics; when community 

composition correlated with environmental conditions independent of space, he assigned 

a metacommunity to species-sorting; and when community composition correlated with 

both space and environmental conditions, he assigned a metacommunity to mass effects. 

Microbiologists have taken advantage of this technique to assign microbial 

metacommunities to the ecological processes that shape metacommunity types. For 

example, Van der Gucht et al. (2007) examined bacterial community composition in 

ponds and lakes on a 2500 km spatial scale, and found significant correlations between 

environmental conditions and community compositions, but little evidence of dispersal 

limitation. They concluded that bacteria living in European lakes form a species-sorting 

metacommunity. There are two disadvantages to using variance partitioning to assign 

metacommunity type. The first is that it is a correlative technique, and is limited to 

presenting hypotheses in need of testing. The second is that variance partitioning studies 

tend to result in over 50% unexplained variation (e.g., Van der Gucht 2007). Unexplained 

variation may be due to unmeasured environmental conditions, intertrophic interactions, 

or dispersal mechanisms that do not directly correlate with environmental distance (for 
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example, a vector may move propagules in a non-random pattern that researchers are 

unaware of). 

 

Dispersal limitation and microbes 

 Many researchers have hypothesized that dispersal operates fundamentally 

differently for macroorganisms and microorganisms. Historically, microbial ecologists 

assumed that all microbial species experience saturating dispersal, and that local 

environmental conditions filter local species from a global species pool (Baas Becking 

1934, Finlay 2002). The only processes that this hypothesis (“the Baas Becking 

hypothesis”) invokes are deterministic environmental filtering and competition. The Baas 

Becking hypothesis is based on observations of similar microbial morphologies in distant 

habitats; researchers concluded from these observations that all microbial species have 

large enough populations to produce nearly infinite numbers of propagules, and therefore 

experience saturating dispersal. Recently, the “everything is everywhere; the environment 

selects” hypothesis has been discredited globally: there are population patterns in nature 

that can only be explained by invoking dispersal limitation (e.g., Whitaker et al. 2003). 

 While microbial populations and species do not experience immediate saturating 

dispersal globally, they may experience saturating dispersal over smaller spatial scales or 

larger temporal scales. For example, all species in a microbial community covering a few 

kilometers, a few meters, or a few millimeters may produce enough propagules to reach 

the entire community. These species may then be subject to environmental filtering and 

competition. All species in a microbial community may also reach all locations given 
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enough time, although order of dispersal might lead to competitive advantages in early 

arriving organisms (priority effects, e.g., Peay et al. 2012).  

 

Fungi: macrobes and microbes 

 Mycologists can compare small and large fungi with similar dispersal strategies 

and metabolisms to understand how ecological processes differ between macroorganisms 

and microorganisms. Individual fungal vegetative bodies have diverse sizes: they range 

from yeasts (3-8 x 5-10 !m, reviewed in Kurtzman & Fell 1998) to large Armillaria 

underground mycelia (15 ha, Smith et al. 1992). For comparison, fungal bodies range in 

volume from bacteria sized to blue whale sized. Body size can also change throughout 

the life cycle of a fungal individual. Almost all fungi reproduce using microscopic spores, 

and large-bodied fungi only attain large sizes after having grown from one or two spores. 

Finally, all fungi—even those with very large vegetative bodies—interact with their 

environments on microscopic hyphal scales. 

 Fungal dispersal from one substrate to another can be passive, aided by vectors, or 

active. Most fungal spores are nonmotile and require transport by wind or water (e.g., 

mushrooms frequently produce wind-dispersed basidiospores, Galante et al. 2011). Some 

fungi take advantage of vectors, i.e., animals that move propagules of an organism 

between locations. Vectors can decrease an organism’s dispersal limitation when they 

carry spores farther than wind or water can. Examples of insects and other animals that 

act as vectors for nonmotile fungi include aphids and beetles that move spores of rust 

fungi (Kluth et al. 2002), and flying squirrels that move spores of false truffles (Gabel et 
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al. 2010). A few fungal groups produce active zoospores, which can move distances of 

centimeters using flagella (e.g., Chytrid pathogens of frogs, Piotrowski et al. 2004). 

 All fungi are heterotrophs, but they get energy from a variety of substrates. For 

example, fungi decompose most wood in temperate and tropical forests (Rayner & Boddy 

1998); they also degrade many ephemeral substrates, like fruits and dung (e.g., 

Saccharomyces on grapes, Fleet et al. 1984, Pilobolus on cow dung, Page 1962). In 

addition, many fungi gain energy through symbioses with a variety of plants and animals. 

They can be pathogens (e.g., Laboulbeniales on insects, Weir & Hammond 1997), 

commensals (e.g., plant endophytes, Arnold 2007), and mutualists (e.g., mycorrhizal 

fungi, Landeweert et al. 2001, lichens, Brodo et al. 2001). 

 

Pitcher plants: model metacommunities 

 I investigated fungi that inhabit Sarracenia carnivorous plant pitchers, and 

focused on two Sarracenia species: S. purpurea and S. rosea. Sarracenia species produce 

pitcher-shaped leaves (pitchers). When young, S. purpurea and S. rosea pitchers are 

sealed closed and sterile (Peterson et al. 2008). As pitchers mature, they open and collect 

rainwater; both microorganisms and macroorganisms live in opened pitchers. Pitchers 

also attract insects with extrafloral nectaries, and some insects fall in pitchers and drown 

(Bennett & Ellison 2009). Invertebrates, protists, and other organisms that inhabit 

pitchers shred and decompose insect prey, and these pitcher-inhabiting organisms form a 

food web with bacteria at the bottom and insect larvae at the top (reviewed in Ellison et 

al. 2003). Fungi, especially yeasts, also inhabit pitchers, and may occupy similar niches 

to bacteria. Ecologists have recently shown an interest in the biogeography of the bacteria 
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that inhabit pitcher plants. For example, Peterson et al. (2008) showed that pitcher-

inhabiting bacteria have community structure over tens of kilometers; Koopman et al. 

(2010) showed that bacterial communities change in pitchers over the growing season; 

Kreiger & Kourtev (2011) showed that subhabitats within pitchers house distinct 

bacterial communities; and Koopman & Carstens (2011) showed that bacterial 

community structure reflects host phylogeographic structure over tens to hundreds of 

kilometers. 

Sarracenia purpurea and S. rosea occupy bogs or wet savannas, and together 

range from the United States Gulf Coast to southern Canada. Sarracenia purpurea ranges 

from Georgia north to Newfoundland, and west through the northeastern United States 

and southern Canada to northeastern British Columbia. Sarracenia rosea has a more 

limited distribution, along the Gulf Coast from Louisiana to the Florida panhandle (Naczi 

et al. 1999). Taxonomists have only recently split S. rosea from S. purpurea; Sarracenia 

rosea is often included in investigations of S. purpurea and its associated organisms over 

broad spatial scales (e.g., Buckley et al. 2010). 

Organisms living in Sarracenia pitchers live in a hierarchically structured patchy 

habitat. Organisms within a pitcher can interact with each other through competition, for 

example, but only interact with organisms in another pitcher after dispersing to that 

pitcher. Organisms inhabiting separate islands on a bog are also separated from other 

islands by space and must first disperse in order to interact. Finally, both Sarracenia 

species occupy patchy habitats on the landscape, and organisms in individual Sarracenia 

populations must disperse to encounter each other. Organisms may form a 

metacommunity at each level of spatial organization. 
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Questions and hypotheses 

 In this thesis, I ask how dispersal influences fungal diversity in pitcher plants, and 

how dispersal interacts with other ecological processes. Over the course of my disseration 

work, I looked for patterns consistent with the presence of dispersal limitation or 

dispersal saturation on local and continental spatial scales. I also tested for dispersal 

limitation and dispersal saturation local spatial scales. Finally, I looked for interactions 

between dispersal, competition, and environmental filtering on single pitcher and 

continental scales. 

 To understand if fungi experience dispersal limitation at local scales, I observed 

whether pitcher fungi appear in pitchers immediately after pitchers open. I isolated three 

target yeast species from pitchers, and subsequently observed their arrivals in pitchers 

over a single bog habitat. If all target species do not arrive in pitchers as soon as pitchers 

open, then fungi do not experience saturating dispersal on local spatial scales. I also 

looked for variation in arrival times among yeast species. I observed the day that each of 

the three target yeasts appeared in pitchers, and interpreted different appearances either as 

different dispersal times or as environmental filtering; a yeast that does not appear early 

in a pitcher’s life span may not be able to survive in the niches provided by young 

pitchers. To distinguish between the variable dispersal limitation and environmental 

filtering hypotheses, I tested for environmental filtering by inoculating young pitchers 

with a yeast that appears in pitchers late in the growing season. Survival of a late-arriving 

yeast in young pitchers indicates that pitcher environments do not prevent establishment 

of late-appearing yeasts when pitchers are young. 
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 I also looked for correlative evidence of dispersal limitation and dispersal 

saturation on continental spatial scales. I estimated population structure of the most 

abundant pitcher plant yeast, Candida glaebosa, and interpreted that there is saturating 

dispersal among individuals from locations with interbreeding genotypes. I also looked 

for fungal community structure over space, and interpreted that different locations 

containing the same community had saturating dispersal. However, locations with 

different communities may experience dispersal saturation, but be structured by processes 

other than dispersal (e.g., environmental filtering). 

 Finally, I looked for interactions between dispersal and other processes on pitcher 

and continental scales. I asked if high dispersal could give a competitive advantage to 

yeasts in pitcher-like microcosms. I also looked at correlations between community 

composition and environmental conditions on a continental spatial scale. If 

environmental filtering and competition shape fungal communities, I expected to observe 

a correlation between environmental conditions and fungal community structure when I 

controlled for geographic distance among communities. 
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CHAPTER 2 

Fungal species composition changes over space and time 
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Abstract 

Fungi are often the primary decomposers and nutrient cyclers in an ecosystem, 

and they can also facilitate or limit other organisms as mutualists and pathogens. 

However, ecologists do not yet fully understand how fungal species and populations are 

distributed over space and time, or how ecological processes shape fungal diversity. To 

better understand fungal diversity, we surveyed fungal taxa in pitchers of Sarracenia 

purpurea and S. rosea carnivorous plants. We used 454 sequencing to enumerate taxon 

diversity in five locations on a 4000 km spatial scale and over two months at one 

location. Fungal taxon numbers in pitchers peak early in the Sarracenia growing season 

and decline as the season progresses, and taxon composition is significantly different at 

different times in the season. There were also four distinct fungal communities in the five 

sampled locations; thousands, but not hundreds, of kilometers separated distinct 

communities. We propose processes causing observed diversity patterns, including 

environmental restrictions, dispersal, and biotic interactions, and identify correlations to 

support each process. 
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Introduction 

 The central goals of ecology include both understanding the numbers and 

identities of species in nature, and understanding the processes that maintain them. 

Ecologists understand biodiversity patterns of large charismatic organisms like 

vertebrates better than they understand biodiversity patterns of microorganisms, including 

fungi (Blackwell 2011). Only about 97 000 of the estimated 1.5 million or more fungal 

species on earth have been described (Kirk et al. 2008, Hawksworth 1991).  

 Fungal diversity over space and time shapes community ecological processes and 

ecosystem function. For example, local pathogen diversity can limit the ranges of trees in 

tropical forests (Gilbert & Webb 2007, Liu et al. 2011). Identities of wood decomposing 

fungi on a single substrate change over time and control rates of decomposition (Holmer 

& Stenlid 1997, Boddy et al. 1989). Arbuscular mycorrhizal fungal (AMF) communities 

change over both space and time, and the different identities of AMF symbionts cause 

changes in host biomass (Yang et al. 2012, Pringle & Bever 2002, Bever et al. 1997). 

These examples illustrate that patterns of fungal diversity can have widespread impacts; 

we describe fungal diversity in a model system and provide a first step to understanding 

how fungal community processes and functions change over space and time. 

We describe fungal species diversity in carnivorous plant pitchers of the genus 

Sarracenia. We targeted two Sarracenia species with different ranges across the United 

States and Canada: S. purpurea and S. rosea. Sarracenia purpurea ranges from Georgia 

north to Newfoundland, and west through the northeastern United States and southern 

Canada to northeastern British Columbia. Sarracenia rosea has a more limited 

distribution, along the Gulf Coast from Louisiana to the Florida panhandle (Naczi et al. 
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1999). Taxonomists have only recently split S. rosea from S. purpurea; Sarracenia rosea 

is often included in investigations of S. purpurea and its associated organisms over broad 

spatial scales (e.g., Buckley et al. 2010). Both plants have similar morphologies, and 

develop pitcher-shaped modified leaves (pitchers). Pitchers fill with rainwater and attract 

insects, which occasionally fall into pitchers and drown. In both species, pitchers develop 

aquatic food webs comprising arthropods, protists, and other small animals and 

microorganisms (reviewed in Ellison et al. 2003). These food webs shred and decompose 

insect prey. Fungi are easily cultured from pitchers, but the ecological functions of fungi 

in pitcher ecosystems are unknown; they likely perform many functions, including 

decomposition and plant and animal symbiosis. For this study, we enumerated fungal 

diversity in pitchers using high-throughput 454 sequencing. We described fungal species 

composition on a continental spatial scale, and, at one location, over a S. purpurea 

growing season. 

We asked two questions about fungal community diversity in pitcher plants: 1) 

How do Sarracenia fungal communities differ across the range of their host plant? 2) 

How do Sarracenia fungal communities change over a single growing season? We follow 

the answers to these questions with speculation on the processes that might drive fungal 

diversity patterns and the influence of fungal diversity on pitcher ecosystems. 

 

Materials and methods 

Field collections: geographic sampling 

 In July and August of 2010, we sampled from Sarracenia populations once at 

each of five locations in the United States and Canada (Figure 2.1, Table 2.1). We 
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Table 2.1: Details on sites and fungal community sampling conducted in the United 

States and Canada in the summer of 2010. 

Site Location Sampling 
date 

Temperature 
(°C) 

Precipitation 
(mm) 

Plants 
sampled 

British 
Columbia 

Parker Lake 
Ecological Reserve 

July 19, 
2010 

-0.7 451.7 5 
 

Newfoundland La Manche 
Provincial Park 

August 
19, 2010 

4.7 1513.7 11 
 

Massachusetts Harvard Forest July 13, 
2010 

8.8 1202.8 7 

Georgia Tattnall County July 5, 
2010 

19.3 1252.8 6 

Florida Apalachicola 
National Forest 

July 7, 
2010 

19.4 1604.0 5  

 
 
 
sampled from a single S. purpurea population in each of British Columbia, 

Newfoundland, Massachusetts, and Georgia, and from two S. rosea populations 10 km 

apart in Florida. Habitat types included Sphagnum bogs (British Columbia, 

Newfoundland, and Massachusetts) and pine savanna (Georgia and Florida). Distances 

between populations ranged from 10 to 4630 km. We used average annual temperature 

and precipitation data (1971-2000) at each site to test for relationships between coarse 

environmental conditions and fungal community composition (NOAA 2012, 

Environment Canada 2002). We chose temperature and precipitation because they 

represented coarse continent-scale variation in climate. Temperature and precipitation 

were only available from Environment Canada as averages from 1971-2000; for 

consistency, we used averages from the same year range for locations in the United 

States. 

To control for the effect of pitcher age on fungal communities, we collected water 

from differently aged pitchers at each plant. Sarracenia pitchers develop one by one, as a 

rosette, about 20 days apart throughout the growing season (Fish & Hall 1978); pitchers 
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from different parts of a rosette have different ages. Two pitchers can be as close in age 

as 20 days. Pitchers occasionally persist from one growing season to the next, and two 

pitchers can be as distant in age as over a year (Miller & Kneitel 2005). We selected 

plants with at least four pitchers and sampled from all pitchers on a plant. If the plant 

consisted of more than ten pitchers, we drew an imaginary line through the center of the 

plant, and sampled all pitchers along the line; in this way we sampled young pitchers 

from the center of the plant’s rosette, old pitchers from the rosette’s periphery, and 

intermediate aged pitchers between the rosette’s center and periphery. The number of 

pitchers sampled per plant ranged from 4 to 13, and we combined all pitcher samples for 

each plant before sequencing. We removed water from each pitcher using a sterile plastic 

transfer pipette. First, we mixed the water inside a pitcher by pipetting up and down. We 

then removed about 0.25 ml of pitcher water, excluding large insect parts, and mixed the 

pitcher water with 0.25 ml of 2x CTAB buffer (100 mM Tris pH 8.0, 1.4 M sodium 

chloride, 20 mM Ethylenediaminetetraacetic acid disodium salt dihydrate, 2% cetyl 

trimethylammonium bromide). Samples were flash-frozen within six days of collection 

and stored at -20 or -80°C until DNA extraction. 

 

Field collections: temporal sampling 

 Starting in May of 2009, we sampled pitcher water over a single growing season 

from pitchers in the Massachusetts location. We identified 43 unopened pitchers, 

recorded the date each pitcher opened, and sampled water from each pitcher 6-9 days, 

(hereafter referred to as one week), 34-42 days (one month), and 66-74 days (two 

months; only 33 of the original 43 pitchers were intact at this timepoint) after it opened. 
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We removed water from each pitcher at each timepoint as described above, except that 

samples were frozen within five hours of collection. We screened each pitcher sample for 

the presence of fungal sequences using a PCR assay.  

Prior to the PCR assay, we extracted DNA from each sample. We thawed and 

centrifuged frozen samples at 16.1 g for 10 min, and removed the supernatant from each 

pellet. Then we suspended each pellet in 200 µL of breaking buffer (2% Triton X-100, 

1% sodium dodecyl sulfate, 100 mM sodium chloride, 10 mM Tris, and 1 mM 

Ethylenediaminetetraacetic acid; Hoffman 1997). We mixed each suspension with about 

200 µL of 0.5 mm glass beads and 200 µL 25:24:1 chloroform:phenol:isoamyl alcohol. 

We vortexed each mixture for 2 min, and then centrifuged it for 5 min at 16.1 g. After 

centrifugation, we removed the aqueous layer and mixed it with 2.5 volumes of 95% 

ethanol and 0.1 volume of 3M sodium acetate (Sambrook & Russell 2001); we incubated 

each aqueous layer mixture at -20°C for at least three hours. Next, we centrifuged each 

aqueous layer mixture for 15 min at 16.1 g, and removed the supernatant. Finally, we 

washed each pellet with 0.5 ml 70% ethanol, centrifuged each mixture for 10 min at 

16.1 g, removed the supernatant, and resuspended each pellet in 50 µl water. 

Next, we attempted to amplify fungal DNA from extracts using the fungal-

specific primer pair ITS1F and ITS4 (Gardes & Bruns 1993, White et al. 1990). Each 

PCR reaction was composed of 7.9 µL water, 0.1 µL GoTaq! Flexi polymerase 

(Promega), 5 µL Flexi buffer with green dye added, 5 µL 5x CES (combinatorial PCR 

enhancer solution: 2.7 M beatine, 6.7 mM dithiothreitol, 6.7% dimethyl sulfoxide, 55 

µg/mL bovine serum albumin; Ralser et al. 2006), 5 µL nucleotide mix, 2 µL magnesium 

chloride, 1 µL of 10 µM of each primer, and 1 µL template DNA extract. All reactions 
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were cycled on a Biorad iCycler or myCycler using denaturing, annealing, and extension 

temperatures of 95, 55, and 72 °C, respectively. We denatured for 85 s, then ran 13 cycles 

of 35 s denaturing, 55 s annealing, and 45 s extension, followed by 13 cycles that were 

identical but had a 2 min extension, and finally 9 cycles with a 3 min extension. We ran a 

subsequent 10 min extension. Two µL of each PCR product were visualized on 1% 

agarose gels stained with SYBR! Safe dye (Invitrogen) and photographed using a 

U:genius gel documenting system (Syngene) and a Stratagene transilluminator. 

Photographs of gels were scored for presence or absence of a band. Bands that were too 

faint to reliably score were run a second time with 6 µL of PCR product per well. 

Presence of a band on a gel indicated the presence of detectable fungal DNA in a water 

sample. Of the 43 pitchers (33 at two months), fungal DNA was present in 91% of 

pitchers after one week, 95% after one month, and 73% after two months. We chose 17 

of the original 43 pitchers with detectable fungal DNA at all three timepoints for 454 

sequencing. We sequenced samples from these pitchers at all timepoints. In total, we 

sequenced and analyzed DNA from 51 pitcher-timepoint combinations. 

 

454 sequencing 

 We prepared two amplicon pools for 454 sequencing: one pool contained only 

geographic samples, and the other contained only temporal samples. Each amplicon pool 

consisted of amplicons of the ITS2, 5.8s, and ITS1 ribosomal regions; we targeted 

regions amplified by the fungal specific ITS1F/ITS4 primer pair. Individual samples in 

each amplicon pool were tagged using 10-bp multiplex identifier (MID) tags (454 Life 

Sciences Corporation 2009) to distinguish samples. For temporal sampling, each sample 
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is an individual pitcher-timepoint combination. For geographic sampling, each sample is 

all pitchers from an individual plant combined. In total, we sequenced DNA from 239 

pitchers combined into 38 plant samples for the geographic data set, and 51 pitcher-

timepoint combinations for the temporal data set. 

We extracted fungal DNA and amplified it using the extraction protocol and PCR 

recipe described above, except that Gotaq® Hotstart polymerase (Promega) was used 

instead of Flexi polymerase, and we used 50 !M instead of 10 !M of the reverse primer. 

We used a forward primer consisting of (in order from 5’ to 3’) the 454 “A” primer 

(CCATCTCATCCCTGCGTGTCTCCGACTCAG) concatenated with a 10-bp multiplex 

tag, and ITS4; we used a reverse primer consisting of the 454 “B” primer 

(CCTATCCCCTGTGTGCCTTGGCAGTCTCAG) concatenated with ITS1F. Multiplex 

tags were unique to each sample. Reactions were cycled at 95 °C for 15 min; 30 cycles of 

95 °C for 1 min, 51 °C for 1 min, 72 °C for 1 min; and a final extension of 72 °C for 

8 min. PCR products were purified using Agencourt® AMPure® XP (Beckman Coulter) 

and quantitated using a Qubit® dsDNA HS Assay (Invitrogen) according to the 

manufacturers’ instructions.  

To make geographic samples representing all sampled pitchers for each plant, we 

combined equimolar concentrations of PCR products from each pitcher in a plant 

together. To make temporal samples representing several PCR replicates for each pitcher-

timepoint combination, we combined equimolar concentrations of the products of each of 

three PCR reactions from each pitcher-timepoint DNA extract. For each sequencing pool 

(geographic and temporal), we pooled equimolar concentrations of PCR products from 

either each plant sample (many pitchers combined) or each pitcher-timepoint 
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combination. The Duke Genome Sequencing & Analysis Core Resource carried out 454 

sequencing: geographic and temporal pools were each sequenced on separate one-eighths 

of a 454 Titanium sequencing run. 

 

454 sequence processing 

 We processed 454 sequencing runs using QIIME 1.3.0 (Caporaso et al. 2010). 

Low quality sequences were removed and remaining sequences were assigned to their 

MID barcodes using the default QIIME quality filtering settings. Primers and barcodes 

were trimmed from each sequence and sequences shorter than 200 and longer than 

1000 bp were removed from each data set. Sequences were denoised using the QIIME 

denoiser.  

We reduced chimeric sequences by trimming the 5.8s and ITS1 portions from all 

sequences and only analyzing the ITS2 portion. The 5.8s ribosomal region lies between 

the ITS1 and ITS2 spacers, and is conserved among fungi relative to the spacers. Because 

the 5.8s region is conserved, we expected most chimeric sequences to form in the 5.8s 

region and to be composed of ITS1 and ITS2 sequences from different templates (Nilsson 

et al. 2010a). While chimera detection software for fungal ITS sequences exists (Nilsson 

et al. 2010a), it requires longer sequences than the ones we produced. We extracted ITS2 

subunits using the Fungal ITS Extractor (Nilsson et al. 2010b).  

We chose operational taxonomic units (OTUs) using the uclust method in QIIME, 

which forms OTU clusters around seed sequences taken from the input dataset, at 97% 

similarity. All singleton OTUs were discarded. The longest sequence in each remaining 

cluster was retained as a representative sequence. 
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Of the total of 152 667 sequences produced for the geographic data set, 23 663 

were discarded for having lengths less than 200 or more than 1000 bp, and 48 024 were 

discarded because either they had low quality, they did not have matching barcodes, the 

ITS2 subunit could not be extracted, or they were singleton OTUs. In total, we retained 

80 980 sequences from the geographic data set for further analysis, and the number of 

sequences per plant sample ranged from 292 to 4490 in the 38 samples.  

Of the total of 141 424 sequences produced for the temporal data set, 27 632 were 

discarded for having lengths less than 200 or more than 1000 bp and 14 160 were 

discarded because either they had low quality, they did not have a matching barcode, the 

ITS2 subunit could not be extracted, or they were singleton OTUs. In total, we retained 

99 632 sequences from the temporal data set for further analysis, and the number of 

sequences per pitcher-timepoint combination ranged from 253 to 4365 in the 51 samples.  

To assign taxonomy, we performed a MEGAN analysis on the top ten hits from 

the NCBI BLAST nucleotide database extracted using BLAST 2.2.25+ (Huson et al. 

2011, Zhang et al. 2000), and the default MEGAN settings. MEGAN takes files of 

sequences and BLAST outputs, and assigns each sequence to a taxon based on the lowest 

taxonomic level shared by all BLAST hits above a threshold bit score for that sequence. 

We discarded OTUs matching organisms not in the kingdom Fungi (plant, animal, and 

protist sequences), and we assumed that OTUs with no BLAST matches or matching 

unassigned fungal environmental sequences were fungal sequences not yet identified in 

the NCBI database because we used fungal specific primers. We retained unassigned 

OTUs for diversity measurements, but did not include them in taxonomy summary plots. 

We reviewed the taxon assignments output by MEGAN manually, and we filled in 
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higher-level classifications (e.g., order or class) using Index Fungorum 

(http://www.indexfungorum.org/) when an OTU was assigned to a genus but not higher-

level classifications. We attempted to assign all taxa to genera; if it was not possible to 

assign a taxon to a genus, we assigned it to the lowest order taxonomic group possible.  

 

Statistical analyses 

 We compared numbers of OTUs observed and OTU composition among locations 

and timepoints using rarefied data sets. We chose rarefied numbers of OTUs observed 

instead of other diversity measures (e.g., Chao1, Shannon Index) because these other 

diversity measures extrapolate total diversity. Extrapolation of 454 data sets can be 

unreliable because extrapolation can amplify sequencing errors (Gihring et al. 2012). We 

first discarded the 4 samples from the geographic data set and 8 samples from the 

temporal data set containing less than 1000 sequences each, and then rarefied the 

remaining samples to the lowest OTU count in each data set. We rarefied to 1109 

sequences at each location or 1140 sequences at each pitcher-timepoint combination.  

We compared alpha diversity (number of taxa observed in a location) among 

locations using one-way analysis of variance (ANOVA), and among timepoints using 

repeated measures ANOVA controlling for pitcher. ANOVAs were performed using R 

2.14.1 (R Development Core Team 2011). Although we sampled from 17 pitchers for 

temporal patterns, we discarded samples with fewer than 1000 sequences; to maintain a 

balanced design, we only included data from 10 pitchers in the repeated measures 

ANOVA. We produced species-accumulation curves with 95% confidence intervals for 
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each full data set using EstimateS 8.2.0 (Colwell 2005), and the Mao Tau estimator of 

observed species (Colwell et al. 2004). 

We visualized species compositions in each sample using nonmetric 

multidimensional scaling (NMDS) and tested for differences in species composition 

among locations or timepoints using analysis of similarity (ANOSIM), using the rationale 

of Sthultz et al. (2009). Briefly, NMDS is an ordination method that ranks similarities of 

pairs of samples, then randomly places samples on a two-dimensional plot and iteratively 

moves more similar communities closer together (Clarke 1993). We only used NMDS to 

visually summarize our data; NMDS plots were created using the vegan 2.0-3 package in 

R (Oksanen et al. 2008). ANOSIM is a nonparametric statistical test for spatial or 

temporal structure: first, the algorithm calculates a statistic, R, between -1 and 1, where 

R = 1 if all pairs of samples within a group are more similar than pairs of samples pairs of 

samples from different groups; next, the algorithm repeatedly shuffles the labels on 

samples and calculates R for shuffled data sets; finally, the algorithm calculates a p-value 

based on the percentage of shuffled data sets with larger R than the original data set 

(Clarke 1993). Pairwise ANOSIM corrects p-values for multiple comparisons. ANOSIMs 

and pairwise ANOSIMs were conducted with Primer 5 (Clarke & Gorley 2006). We 

transformed each rarefied OTU sequence abundance matrix to reflect taxon presences 

and absences instead of sequence abundance; biases introduced through PCR, 

sequencing, and the number of ribosomal copies in a cell’s genome can influence 

sequence abundance (Amend et al. 2010a). We therefore consider 454 presence-absence 

data to be more reliable than sequence abundance data. However, analyses conducted 

using OTU abundance matrices are provided in Appendix 1; sequence abundances were 
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standardized within samples (plants or pitcher-timepoint combinations) so that each 

sample had the same total relative abundance, but abundances of each OTU varied within 

a sample. Relativized abundances were then square-root transformed. We used the Bray-

Curtis distance metric for all ANOSIM and NMDS analyses. 

We detected many taxa from the Agaricomycetes in our data sets, and produced 

additional NMDS plots and ANOSIMs with subsets of each data set that did not include 

Agaricomycete or unassigned taxa. The Agaricomycetes are a class of Basidiomycetes 

(including mushrooms) that produce large fruiting bodies and numerous spores (Hibbett 

et al. 2007). Observed Agaricomycete sequences are either from Agaricomycete fungi 

that grow in pitchers or are from spores temporarily found in pitchers. To be 

conservative, we removed unassigned OTUs in addition to Agaricomycete OTUs from 

this analysis. NMDS plots and ANOSIMs from subsets were conducted as described 

above. After removing OTUs, we discarded the 7 plant samples from the geographic data 

set and 21 pitcher-timepoint samples from the temporal data set with fewer than 1000 

sequences. We then rarefied the geographic and taxonomic data sets to 1033 and 1276 

sequences respectively. 

To understand the relationships between species composition, spatial, and 

environmental factors, we correlated OTU dissimilarity with geographic and 

environmental distance using Mantel and partial Mantel tests. Mantel tests are analogous 

to linear regression: they correlate community distance between pairs of samples with 

geographic or environmental distance while correcting for spatial autocorrelation (Mantel 

1967, Fortin & Gurevitch 2001). Mantel tests first calculate Mantel’s R, a statistic 

analogous to Pearson’s r, based on the sum of products of corresponding cells in each of 
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two distance matrices (community composition distance, geographic distance, or 

environmental distance). Mantel’s R ranges from -1 to 1, and R = 1 when all pairs of 

geographically close (or environmentally similar) samples are more similar to each other 

than pairs of geographically distant (or environmentally different) samples are. 

Significance is computed by repeatedly shuffling all cells in one matrix, calculating 

Mantel’s R on shuffled matrices, and calculating a p-value based on the percentage of 

shuffled data sets with Mantel’s R greater than that calculated for the unshuffled data set. 

Partial Mantel tests compare two matrices while controlling for a third: they are Mantel 

tests calculated on the residuals of community distance and environmental difference (in 

the case of our data) on geographic distance. In this way, partial Mantel tests indicate 

correlation between community and environmental distances when geographic distance is 

controlled. We computed OTU dissimilarity on each rarefied presence-absence matrix 

using Jaccard dissimilarity in the vegan library in R, and calculated geographic distance 

between sampling points using the fields library in R (Furrer et al. 2012). All Mantel tests 

were conducted in the vegan library in R with 999 permutations. 

 

Results 

454 sequence summary 

In total, geographic sequences produced 696 OTUs, of which 497 were assigned 

to fungal taxa; 3 were discarded because they matched non-fungal sequences; and 196 

were not assigned. Of the 497 fungal taxa in the geographic data set, 35% were 

Basidiomycota, 59% Ascomycota, and 6% basal fungal lineages. Temporal sequences 

produced 553 OTUs, of which 379 were assigned to fungal taxa; fifteen were discarded 
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because they matched non-fungal sequences; and 159 were not assigned. Of the 379 

fungal taxa in the temporal data set, 52% were Basidiomycota, 43% Ascomycota, and 5% 

basal fungal lineages.  

 

Fungal species alpha diversity 

 We observed a decline in alpha diversity (defined as OTU numbers observed at a 

timepoint or location) with pitcher age (Tables 2.2 and 2.3), and no change in alpha 

diversity among locations (Tables 2.4 and 2.5). The average number of OTUs observed at 

each timepoint declined significantly over time (p = 0.03). The average number of OTUs 

observed at each location ranged from 41.4 in Florida to 51.8 in Newfoundland, and there 

were no detectable differences among sites (p = 0.84). Our sampling did not saturate 

species accumulation curves for either the geographic or temporal data sets (Figure 

A1.1). 

Table 2.2: Numbers of taxa observed at each timepoint. 

Timepoint Average rarefied OTUs observed standard deviation 
week 43.5 14.8 
month 28.6 14.6 
two months 23.1 11.3 
 
Table 2.3: ANOVA table for alpha diversity among timepoints. 

Source Degrees of freedom Sum of squares Mean squares F value p 
timepoint   2    2240  1120.0    4.488  0.03 
Residuals 18    4493    249.6   
 

Table 2.4: Numbers of taxa observed at each site. 

Site Average rarefied OTUs observed standard deviation 
British Columbia 46.0 16.5 
Newfoundland 51.8 17.9 
Massachusetts 50.1 21.0 
Georgia 50.3 13.1 
Florida 41.4 16.7 
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Table 2.5: ANOVA table for alpha diversity among geographic locations. 

Source Degrees of freedom Sum of squares Mean squares F value p 
Geographic 
location 

4     440    110.0    0.358   0.84 

Residuals 29    8909    307.2   
 
 
Community composition over space 

 Taxon compositions differed significantly across locations (ANOSIM R = 0.85, 

p < 0.001, Figure 2.2a). Each site contained a distinct fungal assemblage, except Florida 

and Georgia; assemblages in these two locations were not significantly different from one 

another (pairwise ANOSIM R = 0.22 p = 0.056; all other pairwise R > 0.86, p < 0.008). 

Sequence abundance data follow the same general pattern (Figure A1.2). Subsets of the 

data without Agaricomycete or unassigned sequences also follow the same general 

pattern (Figure A1.3). We observed a decay in assemblage similarity with distance 

(Mante’sl R = 0.47, p = 0.001), although whether or not two samples came from the same 

location explained assemblage similarity better than geographic distance did (Mantel’s 

R = 0.70, p = 0.001). When the effects of geographic distance were removed, assemblage 

similarity correlated with difference in average yearly temperature between sites 

(Mantel’s R = 0.59, p = 0.001), but not average yearly precipitation (Mantel’s R = -0.39, 

p = 1). Ascomycete taxa dominated at all sites, and were a larger component of southern 

sites than they were of northern sites (Figure 2.2b). 

 

Community composition over time 

 Taxon compositions differed significantly among timepoints (ANOSIM R = 0.41, 

p < 0.001; Figure 2.3a). Week old fungal communities had significantly different 

compositions from older fungal communities (pairwise ANOSIM R = 0.58, p < 0.001  
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between week and month timepoints, ANOSIM R = 0.70, p < 0.001 between week and 

two-month timepoints); month and two-month communities were not significantly 

different from each other (pairwise ANOSIM R = 0.08, p = 0.052). Sequence abundance 

data produced a similar trend, although in these data, month and two-month communities 

were significantly different from each other (pairwise ANOSIM R = 0.08, p = 0.037, 

Figure A1.4). Subsets without Agaricomycete or unassigned taxa showed the same trend 

when data were presence-absence transformed, except that the month and two-month 

timepoints were no longer significantly different from each other (pairwise ANOSIM 

R = 0.01, p = 0.40, Figure A1.5a). Subsets without Agaricomycetes or unassigned taxa 

were not significantly different when we used sequence abundance data (ANOSIM 

R = 0.06, p = 0.17, Figure A1.5b). We observed Basidiomycete taxa more frequently than 

taxa from other phyla at the week and month timepoints, and Ascomycete taxa more 

frequently at the two-month timepoint (Figure 2.3b). 

 

Widespread taxa over space and time 

Only Ascomycete taxa occupied all five locations, but both Basidiomycetes and 

Ascomycetes occupied all three timepoints (Figures 2.4b, 2.4d). Most taxa (63% of the 

geographic taxa and 65% of the temporal taxa, Figures 2.4a, 2.4c) occupied a single site 

or timepoint. Only 2% of geographic taxa occupied all five sites. Genera occupying all 

five sites included Cercospora, Cladosporium, Epicoccum, Phoma, Candida, Bionectria, 

Fusarium, and Lecanicillium.  

In contrast, 11% of temporal taxa occupied all three timepoints; these taxa 

included both Basidiomycetes and Ascomycetes (Figure 2.4d). Genera occupying all 
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three timepoints included Cladosporium, Pseudocercosporella, Ramichloridium, 

Aureobasidium, Kabatiella, Rhizosphaera, Epicoccum, Venturia, Candida, Sirococcus, 

Acremonium, Bionecria, Fusarium, Hypocrea, Taphrina, Resnicium, Ganoderma, 

Rhodotorula, Exobasidium, Malassezia, Sporidiobolus, Cryptococcus, Bulleromyces, 

Tremella, and Kriegeria.  

 

Discussion: 

Fungal community patterns over space 

 We observed four distinct fungal communities in the five sampled locations: 

assemblages grouped into southern (Florida and Georgia), Massachusetts, Newfoundland, 

and British Columbian communities. Fungal communities differentiated over thousands, 

but not hundreds, of kilometers (the Florida and Georgia sites are ~350 km from each 

other). Pitcher plant fungi have similar community structure on continental scales to 

endophytic and endolichenic fungi. For example, U’Ren et al. (2012) found that leaf 

endophytic and endolichenic fungal communities were distinct over thousands of 

kilometers, ranging from Alaska to Florida. In addition, Hoffman & Arnold (2008) found 

that endophyte communities are distinct between Arizona and North Carolina, and Davis 

& Shaw (2008) found that liverwort endophyte community similarity decays with 

distance on global scales in a study targeting North America, Europe, and Oceana.  

 Metacommunity theory predicts that competition, environmental filtering, and 

dispersal structure community composition in isolated patches like pitchers (isolated by 

centimeters to thousands of kilometers) and pitcher plant habitats (isolated by tens to 

thousands of kilometers); geographic distance, environmental variation, or both can 
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correlate with these ecological processes (Liebold et al. 2004, Cottenie 2005). 

Geographic distance is a proxy for historical and dispersal-related processes: distant 

communities can evolve in isolation from each other, and dispersal from patch to patch 

may be limited for individual taxa. In addition, environmental parameters can determine 

which taxa can or cannot survive or compete in a habitat patch. It is often difficult to 

distinguish spatial from environmental processes in the field because environmental 

differences correlate with distance.  

 Correlations among species composition, geographic distance, and environmental 

factors suggest that environmental processes structure pitcher fungal communities more 

than spatial processes do. Decay in assemblage similarity over space was driven by 

whether or not two plants were found in the same location, not distance from one plant to 

another. In addition, when we controlled for distance, temperature explained a large 

degree of variance in community similarity. We infer that decay in community similarity 

over distance is the result of local environmental conditions. The patterns we observe are 

congruent with patterns previously observed for endophytic and endolichenic fungi. 

U’Ren et al. (2012) concluded that climate and host type structured endophytic and 

endolichenic communities more than geography. Although both Hoffman & Arnold 

(2008) and Davis & Shaw (2008) found that geographic location explained endophyte 

community differences, neither explicitly documented environmental factors besides host 

identity and host phylogeny. We consider our analyses preliminary because we sampled 

few sites, our sites were on a latitudinal gradient where distance among sites correlates 

closely with difference in latitude (Mantel r=0.85, p=0.001, 999 permutations), and we 

used coarse-scale temperature and precipitation data. Future observations must focus on 
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local environmental factors and on environmental factors that might correlate with 

temperature or location, including substrate pH, nutrient concentrations, sunlight, or the 

presence of other pitcher-inhabiting organisms. In addition, experimental work 

specifically investigating metacommunity processes, including dispersal and competition, 

will complement our understanding of diversity over space. 

Fungal communities differentiate over broader spatial scales than pitcher plant 

bacterial communities do; we observed distinct fungal communities over thousands of 

kilometers, but other researchers observed distinct bacterial communities over tens to 

hundreds of kilometers. Peterson et al. (2008) assayed S. purpurea bacteria using tRFLP 

in Massachusetts bogs, and found distinct bacterial communities in bogs 28 to 123 km 

apart. Koopman & Carstens (2011) assayed bacteria in pitchers of S. alata, a southern 

species of Sarracenia, using 454 sequencing, and found distinct communities in 

populations spaced between 10 and 310 km in the US state of Louisiana. We speculate 

that bacterial species are sensitive to finer-grained environmental conditions than fungal 

species are, and that environmental sensitivity drives both bacterial and fungal 

community composition. For example, Buckley et al. (2010) found that pitcher bacterial 

mophospecies composition correlates with local-scale environmental factors including 

pitcher age, pitcher shape, plant size, and sphagnum and tree cover, while we found that 

fungal OTU composition correlates with average yearly temperature, a regional-scale 

environmental factor.  

 Pitcher fungal community structure also correlated with population structure of 

Wyeomyia smithii, the pitcher plant mosquito. Wyeomyia smithii only lives in pitcher 

plants, and ranges throughout the range of S. purpurea and S. rosea. It is a top predator, 
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and controls the abundance and diversity of other organisms in the food web, including 

pitcher bacteria. For example, pitchers with greater numbers of W. smithii larvae had 

higher bacterial alpha diversity (Peterson et al. 2008, Kneitel & Miller 2002), but lower 

bacterial abundance (Hoekman 2007) than pitchers with smaller numbers of or no 

W. smithii. Wyeomyia smithii has two population groups: northern and southern, with a 

division between the two in North Carolina (Emerson et al. 2010). Fungal community 

composition is also divided between northern and southern locations (Figure 2.2a). We 

speculate that W. smithii may directly shape fungal communities, or that similar processes 

structure W. smithii populations and fungal communities. Fungi also potentially interact 

with their Sarracenia host and with other pitcher-inhabiting organisms, and many of the 

widespread sequences we observed are from symbiotic taxa (e.g., Lecanicillium, an insect 

parasite genus; Fusarium, a plant pathogen genus). 

 Finally, fungi from the surrounding area may impact the assemblages we observe 

in pitchers. Fungal spores may arrive from forest or savanna that surrounds pitcher 

habitat, but not persist in pitchers. We consider this unlikely because subsets of our data 

set without Agaricomycete and unassigned fungi produced the same patterns as the full 

data set (Figure A1.3). By eliminating Agaricomycetes and unassigned fungi, we 

removed the taxa that we consider least likely to be true pitcher inhabitants and most 

likely to produce numerous spores outside of pitchers; we did not entirely eliminate the 

possibility that the community divisions we observed are the result of local spores. 

 The taxonomic identities of sequences give preliminary clues about fungal 

ecological functions in pitchers. For example, Ascomycetes were the most widespread 

fungi (Figure 2.4b). Widespread or frequently observed Ascomycete classes included the 
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Dothideomycetes, Leotiomycetes, and Sordariomycetes. All three of these classes include 

saprobic (e.g, Nectria, Kodsueb et al. 2008), plant pathogenic (e.g., Cladosporium, Rivas 

& Thomas 2005), plant epiphytic, and plant endophytic (e.g., Aureobasidium, Botella & 

Diez 2011) taxa. Notably, the Capnodiales are well represented in both data sets. 

Capnodiales is a fungal order in the class Dothideomycetes best known for housing the 

sooty molds, epiphytic fungi that consume honeydew (Crous et al. 2009). Sarracenia 

pitchers produce nectar to attract prey insects (Bennett & Ellison 2009), and nectar is a 

possible food source for these and other fungi. In addition, Basidiomycete yeast taxa 

including Rhodotorula, Sporobolomyces, and Cryptococcus were widespread or 

frequently observed in our data sets: each of these genera occupied at least two sites. 

Basidiomycete yeasts are often plant epiphytes that consume molecules diffused from 

intact or damaged leaf tissues including sugars, organic acids, and amino acids (Fonseca 

& Ignácio 2005). We also observed many insect associated taxa including Cordyceps and 

Verticillium (Evans 1982). Taxa such as these may associate with either pitcher-

inhabiting insects (inquilines) or prey insects as mutualists or pathogens. Finally, we were 

not able to assign taxonomic identities to 28% of geographic samples and 29% of 

temporal samples. These sequences may be from fungi that have yet to be described or 

characterized. 

 

Fungal community patterns over time 

 Fungal communities develop quickly early in pitchers’ lifespans, and continue to 

develop slowly for at least two months after pitchers open. We observed distinct young 

(week old) and old (month and two-month old) fungal communities; month and two-
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month communities were also slightly, but not significantly, different from each other. 

Pitchers are sterile before opening (Peterson et al. 2008). Once open, young pitchers 

contained the highest number of taxa, and taxon number declined over time.  

 Environmental changes within pitchers, differences in fungal dispersal over time, 

and interactions among organisms may shape fungal succession. Future observational and 

experimental work will tease these processes apart by tracking individual taxa over time 

and examining competitive interactions among taxa. Correlations among fungal 

community composition, pitcher chemistry, prey abundance, and inquiline abundance 

suggest hypotheses assigning ecological processes to observed patterns. 

 Available data on pitcher water pH correlate with our observations on fungal 

diversity over time, although we did not measure pitcher water pH for this study. Fish & 

Hall (1978) observed that S. purpurea pitcher fluid pH is least acidic when pitchers are 

~8 days old, and is most acidic from an age of ~35 days until at least 90 days. We 

observed significantly different fungal communities at the least acidic (week timepoint) 

and most acidic (month and two-month timepoints) pitcher ages; fungi observed at these 

timepoints may differ in their optimum pH for growth. 

 Fungal diversity also correlates with insect capture rate. Sarracenia purpurea 

insect capture rate peaks when pitchers are between 10 and 20 days old (Fish & Hall 

1978). We may have observed many fungi not transported by prey insect vectors at the 

week timepoint, and many fungi transported by prey insect vectors at the month and two-

month timepoints. Other potential insect vectors that are not prey include W. smithii, 

which oviposits in pitchers immediately after pitchers open (Fish & Hall 1978, Miller & 

Kneitel 2005). 
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 Changes in fungal assemblages over time may be the result of seasonal 

environmental changes. Koopman et al. (2010) observed that Sarracenia flava pitcher 

bacterial composition depends on the month in which the pitcher was collected; they did 

not explicitly examine pitcher age. We did not control for season in our sampling (i.e., all 

month old samples were collected in July; there were no month old samples collected in 

June or August, although month-old pitchers did exist in the field at these times), and so 

the changes we observed in fungal diversity may have reflected seasonal changes instead 

of or in addition to pitcher successional changes. Also, Koopman et al. observed that 

bacterial diversity increased over the first four months of the growing season, which 

contrasts with our observations of decreasing fungal diversity over the first two months 

of the growing season. 

 Dispersal may interact with competition to shape pitcher fungal diversity. 

Competition shapes fungal succession in other ephemeral habitats; for example, late-

successional fungi are superior competitors to early-successsional fungi on decomposing 

wood (Holmer & Stenlid 1997). Both antagonistic and resource competition shape fungal 

communities in cheese (reviewed in Irlinger & Mounier 2009), and competition interacts 

with dispersal by insect vectors in yeast communities on Amazon fruit (Morias et al. 

1995). Dispersal and competition often trade off with each other in ephemeral habitats 

(Leibold et al. 2004); we may have observed good fungal dispersers early in succession 

that were then outcompeted by good competitors late in succession. 
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Conclusions 

 Pitcher plant fungal communities are diverse: although we did not saturate our 

sampling curves, we observed tens of taxa at each location or timepoint, and hundreds of 

taxa in each data set. We observed changes in communities over both space and time. 

Correlations between community structure and environmental parameters suggest that 

both abiotic (temperature, pH, and correlated parameters) and biotic (interactions with 

W. smithii and insect prey including potential insect vectors) interactions shape fungal 

species diversity. Future observational and experimental work will identify the specific 

processes leading to observed patterns, and the relative influences of space and time on 

fungal diversity in pitchers. 
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CHAPTER 3 

Dispersal and competition structure microbial metacommunities in pitcher plants 
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Abstract 

Dispersal among communities is a key driver of metcommunity diversity. 

Microbial dispersal may be homogeneous within a metacommunity, or different species 

may disperse in greater or lesser numbers, at different times, or both. Here we report 

substantial differences in the timing of yeast species’ dispersals into carnivorous plant 

pitchers. We used a molecular assay to directly observe yeast dispersal into pitchers over 

two months, and found that three yeast species arrived in pitchers sequentially. In 

addition, we artificially manipulated yeast dispersal into natural pitchers and laboratory 

microcosms to test whether dispersal or environmental changes in pitchers led to the 

patterns observed in nature, and to understand how dispersal differences can alter 

competitive outcomes among yeasts. Appearances of yeasts in pitchers at different times 

in the growing season reflected dispersal, not changes in the pitcher environment over 

successional time. In microcosms, the three investigated yeast species were organized in 

a competitive hierarchy, but dispersal of greater numbers of propagules gave each yeast a 

competitive advantage. Our data show that different yeast species have different temporal 

patterns of dispersal and that dispersal limitation, contingency, and interactions between 

dispersal and competition can shape microbial diversity in the field. 
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Introduction 

Dispersal can link local communities into larger metacommunities (Leibold et al. 

2004). Metacommunities are groups of incompletely isolated communities: community 

processes like competition occur within each community, and individual communities are 

imperfectly linked through dispersal. Microbial metacommunities are ubiquitous, and 

include bacteria in rock pools (Langenheder et al. 2012), mycorrhizal fungi occupying 

tree “islands” (Peay et al. 2007), and bacteria in the lungs of cystic fibrosis patients (Van 

der Gast et al. 2011). Although dispersal appears to be a critical control of microbial 

diversity in communities and metacommunities (Martiny et al. 2006), the dynamics of 

microbial dispersal in nature remain poorly studied: we lack direct observations of 

microbial dispersal, especially over time. 

 The temporal dispersal of microbes in nature may range from saturating to 

limiting. In a group of discrete habitats, species with saturating dispersal will reach all 

habitats immediately after the habitats become available. Saturating dispersal can 

decrease species diversity by allowing good competitors to swamp out poor competitors 

(Kerr et al. 2002). If dispersal is saturating for every species in a spatially structured 

community, the species compositions of individual patches may not diverge; despite their 

spatial structure, such communities are single communities and not true 

metacommunities because individual patches have the same species composition as the 

broader community (Holyoak et al. 2005). At the other extreme, if every species in a 

metacommunity is dispersal limited, many otherwise suitable habitats will remain 

uncolonized for some length of time before a microbial species arrives. Dispersal 
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limitation can also reduce population resilience to local extinctions (Brown & Kodrick-

Brown 1977). 

 Different species may experience different degrees of saturation or dispersal 

limitation: for example, different species may colonize habitats at different times 

throughout each habitat’s history. Differences in the timing of dispersal are thought to 

influence metacommunity diversity as each local assemblage is influenced by tradeoffs 

between competitive and dispersal abilities (Leibold et al. 2004; Kennedy & Bruns 

2005). In contrast, metacommunities composed of species dispersing simultaneously are 

more likely to be shaped directly or exclusively by local deterministic processes or 

ecological drift.  

Microbial ecologists have challenged the long-standing assumption that dispersal 

has little influence on global microbial diversity (e.g., Whitaker et al. 2003), but previous 

research on microbial dispersal has focused on spatial patterns of diversity, not temporal 

differences in dispersal (e.g., Van der Gucht et al. 2007). Microbial succession, especially 

of biofilms, is well documented, but changes in biofilm communities over time may be 

caused by temporal differences in dispersal or environmental changes in the biofilm itself 

(e.g., Burmølle et al. 2007; Dang et al. 2008), and current research cannot distinguish 

between these two mechanisms.  

 We used yeasts inhabiting pitchers of the carnivorous plant Sarracenia purpurea 

as a model for experiments and observations to examine microbial dispersal and the 

influence of dispersal on competition among yeast species. This plant produces modified 

leaves, or pitchers (Figure 3.1), that fill with rainwater. Potential prey (ants and other 

small insects) are attracted to pitchers (Bennett & Ellison 2009); some of them fall into  
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pitchers and drown, and are then shredded, decomposed, and mineralized by a food web 

of microorganisms and invertebrates (reviewed in Ellison et al. 2003). Sarracenia 

purpurea hosts a number of yeast (single-celled fungal) species, some of which are easy 

to culture. A population of pitcher plants whose pitchers contain yeasts can form a 

metacommunity: if dispersal is not saturating for all yeast species, each pitcher will house 

a community of yeasts that is incompletely isolated from other pitchers. We hypothesize 

that yeasts disperse among pitchers with some dispersal limitation and that a population 

of pitcher plants houses a yeast metacommunity. The functions of yeasts within the 

pitchers are not clear, although bacteria appear to form the base of the invertebrate food 

web (Kneitel & Miller 2002). Pitchers are sterile before opening and therefore yeasts 

cannot colonize a pitcher until after it has opened (Peterson et al. 2008). We isolated 

three easily manipulated pitcher plant yeasts and developed molecular tools to identify 

and track these species in nature. 

 To confirm this system as a metacommunity, describe temporal dynamics of 

dispersal in nature, test whether microbial species experience different degrees of 

dispersal limitation, and understand how dispersal influences competition, we asked three 

questions: 1) Do yeasts appear in pitchers as soon as the pitchers open, and do all yeast 

species appear at the same time? 2) Are temporally different appearances due to different 

dispersal times or to successional changes within the pitcher habitat? 3) Can differences 

in dispersal among yeasts alter outcomes of yeast competition within pitchers? We used 

field observations, a field experiment, and laboratory microcosms to answer these 

questions. 
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Materials and Methods 

Study site  

Observations were made and the field experiment was conducted on isolated 

Sphagnum islands in Harvard Pond, adjacent to Tom Swamp, a 50 ha Sphagnum bog 

located in Petersham, Massachusetts at 42°30’N, 72°12’W (Figure 3.2a; Swan & Gill 

2007). The yeasts used in this study were collected from pitcher plants growing on these 

bog islands and at Swift River Bog, a 2 ha kettlehole bog located 75 km south of Tom 

Swamp in Belchertown, MA at 42°16’N, 72°20’W (Ellison et al. 2002). 

 

Yeast isolation and identification 

We collected yeast isolates from pitchers during the summer of 2006. We chose 

three target species that grow as morphologically distinct colonies, facilitating 

differentiation on Petri dishes. Candida glaebosa (which produces smooth white 

colonies) and Pseudozyma aphidis (wavy white colonies) were collected from Harvard 

Pond; Rhodotorula glutinis (smooth pink colonies) was collected from Swift River Bog. 

To isolate yeasts, water was collected from the inside of pitchers using sterile transfer 

pipettes, diluted, and plated onto solid media (1g/L yeast extract in tap water with 1.5% 

agar; 50 µg/ml streptomycin, penicillin, and ampicillin were added to prevent bacterial 

growth). Individual yeast colonies were streaked onto fresh plates when they became 

visible. We sequenced two ribosomal sequences for each isolate using the primer pairs 

ITS1F/ITS4 (Gardes & Bruns 1993, White et al. 1990) and LS1/LR5 (Hausner et al. 

1993, Vilgalys & Hester 1990, see PCR assay methods below). Sequences were 

identified to species using the NCBI BLAST database (Zhang et al. 2000, Table A2.1). 
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Field collections 

In May of 2009, we identified 43 unopened S. purpurea pitchers on 32 Sphagnum 

islands in Harvard Pond (Figure 3.2b) and recorded the location and opening date of each 

pitcher. Pitchers ranged from less than 1 m to 908 m in distance to other pitchers.  We 

collected water from each pitcher 4, 6-9 (hereafter referred to as one week), and 34-42 

days (one month) after it opened. We also collected water from pitchers after 66-74 days 

(two months), although by then insect herbivores, including moth larvae (Atwater et al. 

2006), had destroyed ten of the original 43 pitchers, and we could only sample water at 

this last date from 33 pitchers. We collected water from the bog itself within 0.5 m of 

each of 17 of the pitchers at the one-month timepoint to determine whether target species 

were also found in bog water. For each pitcher water collection, the water inside a pitcher 

was mixed by pipetting up and down with a sterile plastic transfer pipette. We removed 

about 0.25 ml pitcher water and mixed it with 0.25 ml CTAB buffer. To the best of our 

ability, we avoided collecting insect prey or macrofauna in these samples, although any 

protists and microscopic animals present in our samples were included; collected pitcher 

water contained no large animal parts and appeared as a cloudy liquid. Bog water 

samples consisted of 0.25 ml of water from just below the bog surface collected using a 

sterile transfer pipette and mixed with 0.25 ml CTAB buffer. All samples were flash-

frozen in liquid nitrogen within five hours of collection and stored at -20 or -80°C. 

 

Primer design and PCR assay 

Primers to selectively amplify portions of the Internal Transcribed Spacer (ITS) 

sequence and uniquely identify each of the three yeasts were designed using the NCBI 
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BLAST primer tool (Rozen & Skaletzky 2000; Table 3.1). We chose primer sequences to 

reliably amplify as much of the ITS sequence of each yeast species as possible, while not 

amplifying other sequences in the BLAST database. We tested each primer pair for 

sensitivity by 1) counting the number of colony-forming units (CFUs) of each yeast in 

five liquid cultures using plate counts and calculating the concentration of CFUs in each 

liquid culture; 2) extracting genomic DNA from each liquid culture; 3) amplifying serial 

dilutions of DNA extracts (see PCR conditions below); and 4) back-calculating the 

minimum numbers of CFUs detected based on the most dilute DNA extract that produced 

a detectable PCR product. Primers amplified DNA from a minimum of 159.4±183.0 

cells/ml (mean ± standard deviation) of C. glaebosa, 39.12±22.0 cells/ml of R. glutinis, 

and 43.9±45.1 cells/ml of P. aphidis (n=5). 

 

Table 3.1: Sequences of primers used to detect presence of each yeast in a pitcher. 

yeast primer forward sequence Tm product length 
C. glaebosa P21-17-F 5’-CTGCGGAAGGATCATTACAGT-3’ 54.6  
C. glaebosa P21-17-R 5’-TGTTCAGACAACACTGTTCA-3’ 51.8 466 
R. glutinis B11-4-F 5’-AAGTCGTAACAAGGTTTCCG-3’ 52.8  
R. glutinis B11-4-R 5’-CCCAACTCGGCTCTAGTAAA-3’ 53.9 527 
P. aphidis 46A-3-F 5’-GGTAATGCGGTCGTCTAAAA-3’ 52.6  
P. aphidis 46A-3-R 5’-CTCTTCCAAAGAAGCGAGG-3’ 53.1 467 
 

We tested each extract for the presence of each target yeast using the three yeast-

specific primer pairs. We also tested each extract for the presence of any amplifiable 

fungi using the ITS1F/ITS4 primer pair. DNA was extracted from samples as described 

in Chapter 2. Each PCR reaction was composed of 7.9 µL of water, 0.1 µL of GoTaq! 

polymerase (Promega), 5 µL of flexi buffer with green dye added, 5 µL of CES (Ralser et 

al. 2006), 5 µL of nucleotide mix, 2 µL of magnesium chloride, 1 µL of 10 µM of each 

primer, and 1 µL of template DNA extract. All reactions were cycled on a Biorad iCycler 



 

 55 

or myCycler using denaturing, annealing, and extension temperatures of 95, 55, and 

72 °C, respectively. We denatured for 85 s, then ran 13 cycles of 35 s denaturing, 55 s 

annealing, and 45 s extension, followed by 13 cycles that were identical but had a 2 min 

extension, and finally 9 cycles with a 3 min extension. We ran a subsequent 10 min 

extension. Two µL of each PCR product were visualized on 1% agarose gels stained with 

SYBR! Safe dye (Invitrogen) and photographed using a U:genius gel documenting 

system and a Stratagene transilluminator. Photographs of gels were scored for presence 

or absence of a band. Bands that were too faint to reliably score were run a second time 

with 6 µL of PCR product per well. Presence of a band on a gel indicated presence of that 

yeast (or of some detectable fungal DNA, in the case of the ITS1F/ITS4 primer pair) in a 

water sample. 

 To confirm that primers only amplified sequences from the target yeasts, we 

randomly selected nine PCR products generated from the C. glaebosa and R. glutinis 

primer pairs for sequencing. The primer pair that targets P. aphidis only amplified DNA 

from seven pitcher water extracts, and we sequenced all seven PCR products for this 

primer pair. Sequences were identical to or within one base of the reference sequences. 

 

Survival of P. aphidis in young pitchers and subsequent colonization observations 

To test whether the latest arriving yeast (P. aphidis) could survive in young 

pitchers, we inoculated it into newly opened pitchers the following year (late May, 2010), 

and monitored its subsequent survival. Survival of P. aphidis was compared with that of 

C. glaebosa, the earliest arriving yeast, and with uninoculated controls. We also 

monitored control pitchers for natural arrivals of both P. aphidis and C. glaebosa. To 
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achieve these goals, we selected 45 pitchers on bog islands at Harvard Pond that were 

either closed but mature or just barely open, and we manually opened closed pitchers. 

Once opened, we randomly assigned each pitcher to one of the following three 

treatments: a stationary phase liquid culture of P. aphidis (1.3 " 106 cells total); a 

stationary phase liquid culture of C. glaebosa (1.9 " 105 cells total); or filter-sterilized 

media on which P. aphidis had previously reached stationary phase (“control pitchers”). 

Because the goal of this experiment was to compare the latest colonizer P. aphidis to the 

earliest colonizer C. glaebsoa, R. glutinis was not inoculated into any treatments in this 

experiment. In total, we added 200 µL of liquid to each pitcher, and we inoculated 15 

pitchers for each treatment. After 4 and 22 days, water was removed from each surviving 

pitcher that contained rainwater (13 pitchers for each treatment after 4 days; 15 pitchers 

for C. glaebosa and control pitchers and 15 pitchers for P. aphidis after 22 days) and 

checked for the presence of each of the 2 inoculated yeasts using the methods described 

above. 

 

Competition assays 

To test whether interactions between dispersal and competition affect yeast 

coexistence, we prepared laboratory microcosms in which pairs of the three isolates 

competed. Microcosms mimicked pitchers in the field that were hypothetically colonized 

by different numbers of propagules of two yeast species. Each microcosm contained a 

target species and a competitor in 200 µL of liquid media (1 g yeast extract/1 L tap 

water). Each target species was inoculated with ~1000 cells per microcosm (medium  
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Table 3.2: Numbers of cells (with standard deviations) inoculated into microcosms. 

yeast low medium high 
C. glaebosa 64.8±9.8 647.8±98.0 6477.8±979.5 
R. glutinis 55.2±8.6 552±85.7 5520±857.3 
P. aphidis 126.7±22.1 1266.7±221.4 12666.7±2214.2 

 
 

inoculation), while each competitor was inoculated at zero, low, medium, and high 

inoculations (0 and ~100, 1000, and 10 000 cells; actual numbers of cells in Table 3.2). 

 Eighteen treatments of yeast mixtures were prepared, with 10 replicates each, for 

a total of 180 microcosms on 7 cell culture plates. Before being used to inoculate 

microcosms, yeasts were grown in liquid media for 48 hours to stationary phase. Optical 

density was used to estimate cell number, and cultures were diluted to inoculation 

concentrations using liquid media. Microcosms were arranged in sterile 96-well 

polystyrene flat bottom cell culture plates. As a control for splashing, we put 200 µL of 

uninoculated media into each edge well and every second central well. Treatments were 

randomized to the remaining wells (thirty remaining wells per plate). Microcosms 

neighboring uninoculated wells that showed signs of contamination by the end of the 

experiment were discarded. Microcosms were incubated between 25 and 27 °C, shaking 

at 700 rpm for 48 hours before assaying. At the same time that we prepared microcosms, 

we also prepared ten 100 " 15 mm Petri dishes of solid media (1 g yeast extract/1 L tap 

water; 1.5% agar added) for each yeast to determine precise numbers of CFUs inoculated. 

These were incubated for five days at room temperature before colonies were counted. 

 After 48 hours of incubation, each non-discarded microcosm (148 out of 180 

microcosms) was diluted 1:103 and 1:104 in sterile tap water. Fifty µL of each diluted 

microcosm were spread onto a 100 " 15 mm Petri dish containing solid media. Dishes 

were incubated at room temperature, and colonies counted after five days.  
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Statistical analyses 

We tested spatial clustering of each yeast within the bog at each timepoint using 

Mantel tests to identify correlations between the presence of each yeast and location. 

Mantel tests were conducted in R version 2.6.1 using the vegan library version 1.11-4 (R 

Development Core Team 2007; Oksanen et al. 2008).  

We explored the impact of competitor inoculum size on the growth of each yeast 

using linear regressions, also using R. For each yeast, we produced two regressions, one 

for its response to each of its competitors. The dependent variable for these regressions 

was relative yield, defined as the number of cells produced in the presence of the 

competitor divided by the average number of cells produced in controls (Harper 1977); 

the independent variable was number of competitor cells added. For each yeast, 

differences between the two competitor regressions were tested using a two-slope t-test 

and an ANCOVA for identical regression slopes and intercepts, respectively. The two 

competitors of P. aphidis produced regressions with the same slope and intercept, and so 

we produced a single regression for this target species using the response of P. aphidis to 

both competitors combined (Table A2.2).  

 

Results 

Time, not space, correlates with the order of yeast colonizations into S. purpurea pitchers 

 The yeasts C. glaebosa, R. glutinis, and P. aphidis appeared in pitchers 

sequentially. Candida glaebosa appeared in S. purpurea pitchers within four days after 

the pitchers opened; R. glutinis arrived between four days and one week after pitchers 
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opened; and P. aphidis arrived one week to one month after pitchers opened (Figure 

3.2c). Once each yeast had colonized a pitcher, it either persisted in or disappeared from 

that pitcher later in the season, but it did not disappear from the broader metacommunity. 

Fungal DNA was detectable using fungal specific primers (ITS1F/ITS4) starting from the 

first measured timepoint (in 33% of sampled plants), and was widespread after one week, 

one month, and two months (in 91%, 95%, and 73% of sampled plants, respectively). 

Spatial clustering of colonization was not evident (no significant spatial clustering by 

Mantel test; Table A2.3). None of the bog water samples contained C. glaebosa, 

R. glutinis, or P. aphidis, although 59% of the 17 samples contained fungal DNA 

detectable with the ITS1F/ITS4 primer pair. 

 

A late-arriving yeast survives in early successional pitchers 

We detected the inoculated yeasts P. aphidis and C. glaebosa in 100% of their 

respective inoculated pitchers containing rainwater after 4 and 22 days (pitchers not 

containing rainwater were not investigated). In addition, 9 control pitchers contained C. 

glaebosa and 0 contained P. aphidis after 4 days, whereas 14 control pitchers contained 

C. glaebosa and 7 contained P. aphidis after 22 days, confirming patterns observed the 

previous year. 

 

Dispersal differences alter yeast competitive outcomes 

In each yeast-competitor pairing, large competitor inoculum sizes decreased the 

growth of each target yeast (Table 3.3, Figure 3.3). Only R. glutinis, when challenged 

with C. glaebosa, experienced a negative effect at low competitor inoculum sizes 
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(y-intercept of 0.50, but y-intercept # 0.99 for every other pairing). The two possible 

competitors of each of C. glaebosa and R. glutinis decreased the relative yields of these 

yeasts to different extents, but the two possible competitors of P. aphidis decreased its 

relative yield by the same amount. In the face of competition, relative yield of P. aphidis 

also decreased less than that of other yeasts. In addition, competitor inoculum size 

explained less variation in P. aphidis growth than in any other pairing (adjusted r2=0.24; 

Table 3.3). In general, the presence of competitors reduced growth of heterospecific 

yeasts, and larger inoculations of competitors inhibited heterospecifics more than smaller 

inoculations did. Competitive ability calculated for equal inoculum sizes shows a 

competitive hierarchy of P. aphidis outcompeting C. glaebosa, and both of these 

outcompeting R. glutinis (Table 3.4). 

 

Table 3.3: regression equations and statistics for regressions of relative yield of each 

target yeast (relative yield = cells produced in the presence of a competitor / cells 

produced in the averages of controls; Harper, 1977) dependent on log10 (competitor 

inoculum size).  

target yeast competitor y-intercept slope adj r2 
p 

C. glaebosa R. glutinis 1.83 -0.44 0.65 3.96 " 10-7 
C. glaebosa P. aphidis 0.99 -0.23 0.53 0.0004 
R. glutinis C. glaebosa 0.50 -0.12 0.52 4.55 " 10-5 
R. glutinis P. aphidis 1.20 -0.27 0.75 4.19 " 10-9 
P. aphidis both 1.45 -0.17 0.24 0.0002 
 

 

Table 3.4: calculated relative yields of each yeast with 1:1 dispersal with each possible 

competitor 

species 1 species 2 relative 
yield (sp.1) 

95% CI  
(sp. 1) 

relative yield 
(sp. 2) 

95% CI (sp. 2) 

P. aphidis C. glaebosa 0.922 0.846-0.997 0.352 0.258-0.446 
C. glaebosa R. babjevae 0.589 0.481-0.697 0.157 0.115-0.198 
P. aphidis R. babjevae 0.922 0.846-0.997 0.472 0.418-0.525 
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Discussion 

To our knowledge, ours are the first direct observations of different degrees of 

microbial dispersal limitation in a natural system. Because yeast dispersal into pitchers is 

unequal, and because pitchers did not all contain the same yeasts at any timepoint, we 

confirm that this system is a metacommunity. Previous researchers have found indirect 

evidence of different dispersal abilities of fungi and bacteria, based on colonization and 

spatial patterns of ectomycorrhizal fungi, temporal variation in lichen diversity, and 

variation in concentrations of airborne microorganisms (Kennedy & Bruns 2005; Peay et 

al. 2007; Caruso et al. 2010; Fierer et al. 2008). Others have demonstrated the differential 

dispersal of protists in artificially assembled laboratory microcosms (Cadotte et al. 2006) 

and succession in microbial biofilms (e.g., Burmølle et al. 2007; Dang et al. 2008). 

However, it is not clear whether temporal differences in biofilm assemblages are due to 

different arrival times or to successional changes caused by biofilm development itself. 

Our data extend these studies by demonstrating that temporal patterns of microbial 

appearances can represent differences in the timing of dispersal. Although an analogous 

study in tree-hole assemblages has suggested that temporal differences in dispersal have 

only a minor influence on microbial communities (Bell 2010), our data and those cited 

above suggest that in fact there are widespread differences in dispersal abilities among 

microbes over time spans of weeks to months. 

 Sarracenia yeasts appear in pitcher habitats at different times; the three yeasts that 

we studied appear to disperse into pitchers sequentially. There are two alternative 

hypotheses that can explain the temporal sequence of appearance of these yeasts. First, 

the observed temporal sequence of yeast appearances could be due to successional and 
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environmental changes in the pitcher plant itself. The survival of P. aphidis (a late-

arriving yeast) in young pitchers does not support this latter hypothesis. Alternatively, 

distance to occupied pitchers could explain the temporal sequence, with nearby yeasts 

arriving before distant ones. However, we found no evidence of dispersal (distance) 

limitation at a 50-ha spatial scale, suggesting that dispersal through time was more 

limiting than dispersal over space on the temporal and spatial scales of one season and 

one bog. Finally, a supplementary hypothesis is that interactions among yeasts (e.g., 

competition) can sort out species once they arrive. We hypothesize that these interactions 

may enhance a pattern already produced by differently timed dispersals. The results of 

our microcosm experiment indeed suggest that large numbers of propagules of an initial 

colonist give it a potential competitive advantage in a given pitcher.  

How do yeasts get to pitchers in the first place?  Mechanisms of yeast dispersal 

into pitchers remain unclear. Yeasts are ubiquitous in nature (Kurtzman & Fell 1998), 

and potential sources of yeast inocula include: rainfall, older pitchers, the surfaces of 

other bog plants, surface or pore water of the bog itself, and surrounding forests and 

upland soils. Of these, our observations can only eliminate colonization directly from bog 

water splashing, because the surrounding bog water did not harbor the three yeasts we 

studied. Future work should explore spore deposition from air (Amend et al. 2010b) and 

transmission by arthropod prey or pitcher plant inquilines (Ellison et al. 2003; Gilbert 

1980). Different numbers of propagules produced by different yeasts, different population 

sizes in the surrounding matrix, interactions with insect vectors, and additional processes 

may also contribute to yeast dispersal. 
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Interactions between dispersal and within-pitcher processes alter metacommunity 

composition 

In microcosms, greater dispersal gave each yeast a competitive advantage, and 

different isolates had different competitive abilities. Because we do not yet know how 

yeasts disperse into pitchers, our inoculations into microcosms could represent one of two 

scenarios in the field: larger numbers of one species might arrive at the same time as 

smaller numbers of a competitor or early dispersers might grow rapidly and pre-empt 

later ones. In either case, our results suggest that a prolific or early disperser will have a 

competitive advantage. The variation in competitive and dispersal abilities that we 

observed also suggest that competition-dispersal tradeoffs exist in yeasts in nature, with 

early arriving yeasts gaining a temporary competitive advantage. Additional support for 

the existence of competition-dispersal tradeoffs in the Sarracenia system is provided by 

P. aphidis, which was the last yeast we observed in pitchers and was also the best 

competitor. Pseudozyma aphidis was negligibly influenced by greater numbers of 

competitors, and we speculate that it may have experienced selection for the ability to 

colonize patches that are already occupied. The term “patch dynamics” is sometimes used 

to describe metacommunities where tradeoffs between competition and dispersal 

dominate (Leibold et al. 2004). Patch dynamics metacommunities are frequently found in 

ephemeral habitats like Sarracenia pitchers, where uncolonized patches sometimes come 

into existence, while occupied patches sometimes disappear. 
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Conclusions 

Dispersal shapes the biodiversity of metacommunities, together with other 

ecological processes. For example, good dispersers are frequently pioneer species in 

ecological succession, and can either inhibit or facilitate subsequent arrivals (Connell & 

Slatyer 1977). Moreover, priority effects often determine the species composition of a 

community (Kennedy & Bruns 2005; Fukami et al. 2010). Peay et al. (2012) recently 

showed that yeasts experience priority effects in nectar metacommunities, and that the 

strength of priority effects was correlated with phylogenetic relatedness. Such 

interactions are also possible in pitcher plant systems. Processes like succession and 

priority effects are contingent on dispersal: future research is needed to elucidate the role 

of variation in microbial dispersal abilities on contingent processes like these in the field. 

 Sarracenia yeasts appear in pitchers at different times during the growing season, 

and these appearances are the result of different arrival times, not successional 

facilitation. In addition, early dispersal appears to give individual yeasts a potential 

competitive advantage. Together, the interaction between different dispersal times and 

competitive abilities can result in tradeoffs, which may shape microbial diversity in 

Sarracenia pitchers. The interaction between dispersal and other metacommunity 

processes may also lead to the observed variation in species compositions among 

pitchers; yeasts in Sarracenia pitchers form a metacommunity and not a single 

community with saturating dispersal among patches.  

 Dispersal is not a homogeneous process in microbial communities. Instead, 

Sarracenia yeasts behave like many plant and animal groups (e.g., Brunet & von Oheimb 
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1998). Not only do some microorganisms have smaller than global distributions (e.g., 

James et al. 1999); they also experience dispersal limitation in different ways. 



 

 67 

CHAPTER 4 

Population structure of a ubiquitous pitcher inhabiting fungus  
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Abstract 

Different genotypes within a fungal species occupy different niches and perform 

different functions. To complement observations on fungal communities, we observed 

population structure in the most widespread and abundant pitcher fungus observed in 

Chapter 2, Candia glaebosa, across the United States and Canada using AFLP. We 

observed three C. glaebosa populations in five sampled locations, and C. glaebosa 

population structure did not reflect fungal community structure. We propose processes 

that might shape C. glaebosa population structure and contrast C. glaebosa population 

and fungal community patterns and processes. 
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Introduction 

 Enumerating fungal species identities across time and space gives an incomplete 

picture of biodiversity: genotypes within a species can vary in their spatial and temporal 

niches, and they can perform different functions in an ecosystem (reviewed for 

ectomycorrhizal fungi by Cairney 1999). For example, fungal decomposer assemblages 

with different genetic compositions have different rates of CO2 evolution (Wilkinson et 

al. 2010). Here we describe population structure in a widespread pitcher plant fungus, 

and compare and contrast population structure with fungal community structure. 

We isolated and genotyped colonies of Candida glaebosa, an Ascomycete yeast 

related to Debaryomyces hansenii and Candida albicans (Figure A3.1). Candida 

glaebosa dominates pitcher fungal communities: it was present and abundant at all 

locations and timepoints in our 454 study (Chapter 2), in which it comprised 42% of all 

sequences in the geographic data set and 42% of all sequences in the temporal data set. It 

was also present in 35 of 38 plants in the geographic data set and 45 of 51 pitcher-

timepoint combinations in the temporal data set. Because of this abundance, we suspect 

that C. glaebosa heavily shapes ecological processes in pitchers. We genotyped C. 

glaebosa colonies using Amplified Fragment Length Polymorphism (AFLP, Vos et al. 

1995). AFLP produces a genetic fingerprint of restriction site associated fragments of 

different lengths, and is frequently used to generate a large number of loci to infer 

population structure (e.g., Herrera et al. 2011). We hypothesized that C. glaebosa 

population subdivision would reflect community divisions in the greater fungal 

community (described in Chapter 2) because the same processes often structure 

communities and populations (Vellend & Geber 2005).  
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Materials and methods 

 We isolated C. glaebosa colonies for AFLP genotyping from an arbitrary subset 

of the pitchers sampled for 454 sequencing in Chapter 2 (Table 4.1). Sampling covered 

all populations described in Chapter 2. Pitcher water was diluted with sterile water and 

spread onto solid media (1 g/L yeast extract in sterile tap water with 1.5% agar; 50 µg/ml 

streptomycin, penicillin, and ampicillin were added to prevent bacterial growth). 

Colonies resembling C. glaebosa in appearance (round and cream colored colonies) were 

streaked onto fresh plates. We confirmed the identities of isolates using the C. glaebosa 

specific PCR primers and protocol described in Chapter 3. After clustering AFLP 

genotypes into populations (see below), we chose sixteen isolates encompassing all 

studied genetic groups and locations, and confirmed the accuracy of the primer screen by 

sequencing their ITS regions using the ITS1F and ITS4 primer pair. All sequences were 

identical to or one base pair different from the C. glaebosa ITS sequence used to design 

the primer screen. In total, 87 isolates from 53 pitchers (28 plants) were isolated and 

genotyped using AFLP.  

 

Table 4.1: Numbers of C. glaebosa isolates from each site. 

Site # Candida glaebosa isolates used 
for genotyping 

# pitchers represented by 
C. glaebosa isolates 

British 
Columbia 

19 16 

Newfoundland 16 9 
Massachusetts 18 15 
Georgia 7 6 
Florida 17 11 
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AFLP analyses 

 We performed AFLP fingerprinting of C. glaebosa isolates based on the protocols 

followed by Vos et al. (1995). First, we grew each isolate in liquid culture (1% yeast 

extract in sterile tap water), pelleted each culture, and extracted DNA as in Chapter 2. 

Then, we performed a restriction digest using EcoRI and MseI at the same time as a T4 

ligation reaction (all enzymes from New England Biolabs). Each restriction-ligation 

reaction was composed of 50 ng of genomic DNA combined with 1x T4 ligase buffer, 

1 mg/ml bovine serum albumin, 0.05 M sodium chloride, 0.6 U EcoR1, 0.6 U Mse1, 

12 U T4 DNA ligase, and 0.9 µM of each EcoR1 and Mse1 adaptor (Vos et al. 1995), for 

a total of 6.6 µl. Restriction-ligation reactions were incubated at 37 °C for 2 hours.  

Next, we performed the first (preselective) PCR amplification of fragments on 

each restriction-ligation product diluted 1:10 in water. Each preselective amplification 

was composed of 9 µl AFLP Core mix (Applied Biosystems), 0.3 µl of 10 µM of each 

EcoR1+0 and Mse1+0 primer (no selective nucleotides were added to preselective 

primers), and 2.4 µl dilute restriction-ligation product. Preselective amplification 

reactions were cycled as follows: 72 °C for 2 min; 20 cycles of 94 °C for 20 s, 56 °C for 

30 s, and 72 °C for 2 min; and a final extension of 60 °C for 30 min.  

We then diluted each preselective amplification product 1:20 in water and 

performed selective amplifications on each dilute product. We used four sets of selective 

primers: EcoRI+TC/MseI+CT, EcoRI+TG/MseI+CT, EcoRI+TG/MseI+CC, and 

EcoRI+AT/MseI+CT. Each EcoR1 selective primer was labeled with the FAM 

fluorophore. Each selective amplification was composed of 7.5 µl of AFLP Core mix, 

0.5 µl of 1µM of the EcoR1 primer, 0.5 µl of 5 µM of the Mse1 primer, and 1.5 µl of the 
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dilute preselective amplification product. Selective amplifications were cycled as follows: 

94 °C for 2 min; 30 cycles of 94 °C for 20 s, the annealing temperature for 30 s, 72 °C for 

2 min; and a final extension of 60 °C for 30 min. The annealing temperature was 66 °C at 

the first cycle, and decreased by 1 °C each cycle for 10 cycles. It remained at 56 °C for 

the remaining 20 cycles.  

Selective amplification products were cleaned using Exosap-IT® (Affymetrix) 

according to the manufacturer’s instructions, and run on an ABI 3730xls (Applied 

Biosystems) by Genewiz®, Inc. Chromatograms were visualized using Genemapper 4.0 

(Applied Biosystems); peaks were first called by the software and then edited manually. 

We scored 72 total unambiguous, polymorphic peaks for the four primer pairs. We re-ran 

seven of the isolates from the restriction-ligation step to determine the error rate in peak 

calling. In re-run samples, 4.2% of base calls were different between runs. 

 

Statistical analyses 

 We conducted all analyses of C. glaebosa genotypes using a matrix of the 

presences and absences of each of the 72 scored peaks in each of 87 isolates. Because we 

do not know whether C. glaebosa is haploid or diploid, we conducted all analyses 

assuming both nuclear conditions. Analyses conducted assuming diploidy are reported in 

the text, and analyses conducted assuming haploidy, which did not differ qualitatively 

from diploid analyses, are reported in Appendix 3.  

We visualized population structure by constructing a neighbor-joining tree on 

Jaccard dissimilarities between genotypes using the vegan and APE 3.0-3 packages in R 

(Paradis et al. 2004). Populations of C. glaebosa genotypes were also partitioned using 
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STRUCTURE 2.3.3 (Falush et al. 2007). We ran STRUCTURE for 10 replicates each of 

K values from 1 to 7 using a burn-in of 50 000 and MCMC of 100 000 cycles. We 

assumed admixture and independent allele frequencies among populations. We inferred 

the number of populations using Evanno et al.’s (2005) delta K and the program 

STRUCTURE HARVESTER (Earl & vonHoldt, 2012), and visualized STRUCTURE 

output using Distruct (Rosenberg 2004). One of the populations predicted by 

STRUCTURE and SRUCTURE HARVESTER contained isolates from three locations 

(Newfoundland, Massachusetts, and Georgia); we re-ran STRUCTURE analyses with 

each of these three locations removed to see if any one of them drove modeled population 

assignments. 

We computed pairwise Fsts using AFLP-SURV (Vekemans et al. 2002). When 

assuming diploidy, we used the Bayesian method with uniform prior distribution of allele 

frequencies, and when assuming haploidy we used the method based on allele 

frequencies for estimating population and pairwise diversity. 

 

Results 

 A STRUCTURE analysis predicts three C. glaebosa populations: Evanno’s delta 

K peaked at K = 3 (Figure 4.1a), and STRUCTURE assigned isolates to Florida, British 

Columbia, and eastern (Massachusetts, Newfoundland, and Georgia) populations (Figure 

4.1b). When any of the three locations in the eastern population were removed from the 

analysis, STRUCTURE and STRUCTURE HARVESTER predicted the same three 

populations as for the full data set. A neighbor-joining tree of genetic similarities among 

all isolates also shows the same three genetic clusters (Figure 4.2). The Florida and  
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British Columbia populations had a higher Fst (0.46) than the eastern population did with 

either Florida or British Columbia (eastern-British Columbia Fst = 0.11, eastern-Florida 

Fst = 0.32). Both STRUCTURE analysis and Fsts produced the same qualitative result 

when we assumed that C. glaebosa is haploid instead of diploid (Figure A3.2, eastern-

British Columbia Fst = 0.39, eastern-Florida Fst = 0.45, Florida-British Columbia 

Fst = 0.71).  

 

Discussion 

 We observed three C. glaebosa populations in the five sampled locations: an 

eastern population (including isolates from Newfoundland, Massachusetts, and Georgia), 

and Floridian and British Columbian populations. British Columbia was the most remote 

of the five sampled sites (between ~3900 and ~4600 km from any other sampled site), 

and housed a distinct C. glaebosa population. Florida also housed a distinct population, 

although it was close to another sampled location (~350 km from Georgia). In contrast, a 

single population occupied the Newfoundland, Massachusetts, and Georgia sites, 

covering sites that were 3000 km apart. When we removed all Massachusetts isolates 

from the analysis, isolates from Newfoundland and Georgia continued to form a single 

population; we infer that C. glaebosa individuals freely mix in this population over at 

least the distance between Georgia and Newfoundland. 

  A lack of population structure between Newfoundland and Georgia suggests that 

C. glaebosa is not limited by dispersal on a scale of ~3000 km (the distance between the 

Newfoundland and Georgia sites). However, limited dispersal coupled with genetic drift 

most likely caused population divergence between the British Columbian and other 
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populations. The British Columbia site is at least ~3900 km from any other sampled site, 

which may be far enough to isolate the British Columbian and eastern populations. We 

expect further sampling between Newfoundland and British Columbia to reveal either 

gradual isolation by distance between eastern and western Canada or an allopatric barrier 

somewhere in Canada. 

 In contrast to the single large population covering ~3000 km between 

Newfoundland and Georgia, the Florida C. glaebosa population, which is only ~350 km 

from the southernmost eastern site, is distinct from all other populations. There are 

several hypotheses that may explain division in C. glaebosa populations over a short 

spatial scale. Historical factors may shape population divisions; for example, 

Bermingham & Avise (1986) observed that the Apalachicola basin divides different 

populations of freshwater fish species (note that our Florida site is located in the 

Apalachicola basin). They speculated that changes in sea level during the Pleistocene 

reduced freshwater fish habitat, and that observed population divisions are the result of 

subsequent contact of populations isolated during the Pleistocene. However, the presence 

of a large C. glaebosa population that covers thousands of kilometers suggests that C. 

glaebosa is not dispersal limited over hundreds to thousands of kilometers, and therefore 

we consider it unlikely that such a sea level change would limit C. glaebosa dispersal, or 

that isolated C. glaebosa populations would not quickly mix after contacting one another. 

For the same reasons, we do not think it is likely that a present-day allopatric barrier 

limits dispersal between the eastern and Floridian populations. 

 One or several present-day environmental factors may select different C. glaebosa 

genotypes in Florida and Georgia. Over the course of our sampling, we did not measure 



 

 78 

fine-scale local environmental conditions; Candida glaebosa genotypes may be locally 

adapted to soil chemistry, pitcher pH, or other environmental factors. We did obtain 

coarse-scale temperature and precipitation averages for each of the five sampled sites (see 

Chapter 2). Average yearly temperature differs by 0.1 °C between the Georgia and 

Florida sites, and we do not consider temperature to be a likely driver of population 

differences. However, the Florida site has the greatest amount of annual precipitation of 

all sampled sites, and we consider precipitation a candidate environmental factor that 

may select C. glaebosa genotypes. 

 Interactions between C. glaebosa and other organisms may also shape C. 

glaebosa population structure. We consider selection by Sarracenia hosts to be a 

plausible factor shaping population divergence between Florida and other populations. 

Despite the proximity of the Georgia and Florida sites, two different Sarracenia species 

occupy the two sites: S. purpurea in Georgia and S. rosea in Florida. Sarracenia rosea is 

genetically and morphologically divergent from S. purpurea (Naczi et al. 1999, Godt & 

Hamrick 1998, Neyland & Merchant 2006, Ellison et al. 2004, Ellison et al. 2012), and 

may produce different chemical or physical environments from S. purpurea from the 

point of view of C. glaebosa genotypes. Koopman & Carstens (2011) observed a similar 

pattern with bacteria inhabiting S. alata pitchers: different S. alata host populations 

contain different pitcher bacterial communities in Louisiana. Future work to test this 

hypothesis will sample C. glaebosa in more locations in the southern United States, and 

will test survival of C. glaebosa isolates from different locations in S. purpurea and S. 

rosea pitchers.  
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 While we expected the same processes to shape fungal communities and 

C. glaebosa populations, different population and community subdivisions do not support 

this hypothesis. Candida glaebosa population structure may correlate with host plant 

taxonomy, average annual precipitation, or other unmeasured environmental conditions, 

while fungal community structure correlates with average yearly temperature or a 

correlated environmental factor. If C. glaebosa genotypes continue to correlate with host 

taxonomy after other Sarracenia populations in the southern United States are sampled, it 

is possible that C. glaebosa shares a coevolutionary history with its host plants. Candida 

glaebosa is abundant in pitchers, which may indicate that it is adapted to its host. We 

further hypothesize that most observed fungal taxa in Chapter 2 are host generalists; the 

correlation between community composition and temperature, an environmental factor 

external to pitchers, supports this hypothesis. To test both hypotheses, future work should 

investigate both population patterns in other pitcher-inhabiting fungal species and 

physiological relationships among pitcher plants, C. glaebosa, and other fungi. 

 

Conclusions 

 Different ecological processes shape fungal assemblages at community and 

population scales. Candida glaebosa dominated fungal communities, and its population 

structure contrasted with fungal community structure: C. glaebosa population structure 

correlated with Sarracenia taxonomy and, to a lesser extent, geographic distance. Future 

sampling may reveal that C. glaebosa population structure correlates with other 

environmental factors, including precipitation. In contrast, fungal community 

composition correlated with temperature and W. smithii population structure over space, 
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and with pH and insect capture rate over time. By describing fungal diversity from both 

the population and community points of view, we suggest that all three processes (abiotic 

environmental filtering, interactions with host plant, and interactions with insects) shape 

fungal diversity in pitchers. Future experimental and observational work will confirm the 

ecological and evolutionary processes operating at each scale. 
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APPENDIX 1 

Supplemental figures for Chapter 2 
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APPENDIX 2 

Supplemental tables for Chapter 3 
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Table A2.1: Identities of the three yeasts used in this study and the accession numbers of 

sequences that match ITS and large ribosomal subunit sequences produced from our 

isolates. 

Yeast region matching accession number query 
coverage 

max 
identity 

Candida glaebosa ITS FM178351.1 100% 99% 
Candida glaebosa Large subunit FJ432670.1 67% 99% 
Rhodotorula glutinis ITS AB026018.1 99% 99% 
Rhodotorula glutinis Large subunit HM627115.1 100% 100% 
Pseudozyma aphidis ITS HQ662536.1, AB204896.1, 

AF294699.1 
100% 100% 

Pseudozyma aphidis Large subunit FN424100.1 67% 100% 
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Table A2.2: Statistics testing for identical slopes and intercepts of two regressions of 

number of co-inoculated competitor cells on the relative yield of each target yeast  (from 

two-slope t-test and ANCOVA, respectively). See Figure 3.3 and Table 3.3. 

target yeast slope t slope df slope p competitor 
" inoculum 
size t 

competitor 
" inoculum 
size df 

competitor 
" inoculum 
size p 

C. glaebosa -2.67 40 0.01 -- -- -- 
R. glutinis 3.6 48 7.6 " 10-4 -- -- -- 
P. aphidis 0.57 46 0.57 -0.552 46 0.58 
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 Table A2.3: Mantel test statistics of the presence of each yeast in a pitcher correlated 

with distance between pitchers. 

Yeast Time Mantel r p 

C. glaebosa 4 days 0.15 0.42 
C. glaebosa 1 week -0.04 0.81 
C. glaebosa 1 month -0.05 0.86 
C. glaebosa 2 months 0.07 0.07 
R. glutinis 1 week -0.09 0.93 
R. glutinis 1 month -0.10 0.99 
R. glutinis 2 months -0.03 0.70 
P. aphidis 2 months 0.01 0.44 
Fungal ITS 4 days 1.61 " 10-3 0.43 
Fungal ITS 1 week -0.04 0.73 
Fungal ITS 1 month -0.01 0.52 
Fungal ITS 2 months 3.77 " 10-5 0.47 
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APPENDIX 3 

Supplemental figures for Chapter 4 
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