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Exploring the Plasticity of Cellular Fate 

Using Defined-Factor Reprogramming 

 

 Abstract  

 

Cellular fate, once established, is usually stable for the lifetime of the cell. However, the 

mechanisms that restrict the developmental potential of differentiated cells are in 

principle reversible, as demonstrated by the success of animal cloning from a somatic 

genome through somatic cell nuclear transfer (SCNT). An increased understanding of the 

molecular determinants of cell fate has also enabled the reprogramming of cell fate using 

defined transcription factors; recently, these efforts have culminated in the discovery of 

four genes that convert somatic cells into induced pluripotent stem cells (iPSCs), which 

resemble embryonic stem cells (ESCs) and can give rise to all the cell types in the body.  

As a first step toward generating clinically useful iPSCs, we identified a small 

molecule, RepSox, that potently and simultaneously replaces two of the four exogenous 

reprogramming factors, Sox2 and cMyc. This activity was mediated by the inhibition of 

the Transforming Growth Factor-b (Tgf-b) signaling pathway in incompletely 

reprogrammed intermediate cells. By isolating these stable intermediates, we showed that 

RepSox acts on them to rapidly upregulate the endogenous pluripotency factor, Nanog, 

allowing full reprogramming to pluripotency in the absence of Sox2.  

We also explored lineage conversion as an alternative approach for producing a 

target cell type in a patient-specific manner, without first generating iPSCs. A 
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combination of pro-neural as well as motor neuron-selective factors could convert 

fibroblasts directly into spinal motor neurons, the cells that control all voluntary 

movement. The induced motor neurons (iMNs) displayed molecular and functional 

characteristics of bona fide motor neurons, actuating muscle contraction in vitro and even 

engrafting in the developing chick spinal cord when transplanted. Importantly, functional 

iMNs could be produced from fibroblasts of adult patients with the fatal motor neuron 

disease, amyotrophic lateral sclerosis (ALS). 

Given the therapeutic value of generating patient-specific cell types on demand, 

defined-factor reprogramming is likely to serve as an important tool in regenerative 

medicine. It is hoped that the different approaches presented here can complement 

existing technologies to facilitate the study and treatment of intractable human disorders. 

 

This dissertation includes a supplementary file (Movie 3.1. iMNs Induce Contraction of 

C2C12 Myotubes That Is Blocked by Curare Treatment).  
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Abstract 

 

The pioneering amphibian cloning experiments demonstrate that differentiated cells 

retain the genetic information necessary for the development of an entire organism, 

but heritable epigenetic modifications and stable gene regulatory networks 

constrain cells to their committed lineages. However, master regulator transcription 

factors have been discovered that not only establish and maintain their associated 

cell fate in normal development and homeostasis, but also impose it on cells of 

unrelated lineages when overexpressed. Advances in nuclear reprogramming using 

such defined factors have revealed some fundamental principles of cell fate, and 

resulted in cellular conversions of high clinical importance. 
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Introduction 

Our ability to survive and thrive depends on the function of a wide variety of cell types 

that are equipped for specific tasks. How this enormous cellular diversity is generated 

during development is a puzzle that still captivates developmental biologists. The genetic 

information for forming any cell type is contained in a single genome, such that a 

fertilized zygote gives rise to all the cells in the adult organism. As cells undergo 

successive stages of differentiation, they make a series of lineage commitment decisions 

that results in increased specialization and diversification. In nature, this is a 

unidirectional process that is rarely reversed. The progressive lineage restriction offers an 

obvious advantage: a cell stays committed to its past fate decisions to complete its 

developmental program and become a mature, functioning cell.  

Conrad Waddington, in his book The Strategy of the Genes (Waddington, 1957), 

proposed an intuitive metaphor to describe this phenomenon, where a differentiating cell 

is likened to a ball rolling down a rugged mountain range. The path formed by peaks and 

valleys is highly branched, and each bifurcation point represents a developmental 

decision the cell must make. At the foot of the mountain, the balls comes to rest at 

various points of minimum potential energy that are separated from each other by 

significant heights; this is analogous to the inertia of terminally differentiated cell states.  

Although this schema captures the tight link between cellular differentiation and 

the loss of developmental potential, it does not presuppose the nature of its valleys and 

hills – the molecular entities in or around the cell that instruct and restrict cell fate. 

Indeed, at the wake of the genetic revolution in the 1950s, the role of the nucleus during 

differentiation was still under debate (Briggs and King, 1952). One proposed mechanism 
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for ensuring that a cell does not aberrantly deviate from its lineage was to simply discard 

parts of the genome no longer necessary for the cell’s identity; thus coupled to the 

selective destruction of genetic information, each lineage decision would be essentially 

irreversible.  

In this opening chapter, I will outline how a dramatic refutation of this seemingly 

plausible model of differentiation laid the foundation for the field of regenerative biology 

and its promises for personalized medicine. Collectively, the body of work described 

below clearly demonstrates the possibility of manipulating cell fate, in particular by a 

remarkable process called nuclear reprogramming.  

 

Defining Waddington’s Landscape 

The Constancy of the Genome 

In order to answer this fundamental question on the mechanism of cellular differentiation, 

Briggs and King set up a heroic experimental system in the frog Rana pipiens (Briggs 

and King, 1952). Seeing that the egg cytoplasm normally supports the formation of an 

entire organism, they used it as a surrogate system in which to reveal the ability of a 

differentiated nucleus to direct development. In an approach called somatic cell nuclear 

transfer (SCNT), an enucleated egg cytoplasm was complemented by a donor nucleus 

whose potency they wished to test, and the embryo was allowed to develop. Strikingly, 

nuclei from the gastrula stage or earlier led to normal development of tadpoles in this 

assay, although success rate declined with increasing age of the donor (Briggs and King, 

1957).   
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John Gurdon took this approach further in Xenopus to show that even more 

developmentally advanced nuclei retained this capacity (Gurdon 1960; Gurdon, 1962). 

He took intestinal epithelial cells of feeding tadpoles, of which greater than 99 per cent 

were differentiated cells readily identifiable by their morphology, as nuclear donors. 

Notably, if transplantation of a nucleus only led to the development of a partial blastula, 

cells from that arrested blastula were used as donors in a second round of transplantation 

into new recipient eggs. Combining the success rates of single and serial transfers, 7 per 

cent of donor nuclei were deemed competent to drive the formation of feeding tadpoles – 

a conservative estimate given the failures attributed to technical difficulties. Therefore, a 

strong statistical argument could be made for the idea that the information for generating 

complete cellular diversity is present in differentiated nuclei. 

In more recent years, SCNT has been applied extensively to the cloning of 

mammals. Heralded by the birth of Dolly the sheep (Wilmut et al., 1997), whose genetic 

material derived from cultured mammary gland cells of a 6-year-old ewe, many other 

species including goats (Baguisi et al., 1999), pigs (Polejaeva et al., 2000), rabbits 

(Chesné et al., 2002), and cats (Shin et al., 2002) have been cloned. Although the 

existence of these cloned animals argues against the loss of genetic material as a 

widespread mechanism of differentiation, all of these cases lack a means to definitively 

trace the origin of the donor as a fully differentiated cell. A conclusive demonstration 

came when Hochedlinger and Jaenisch succeeded in cloning mice using lymphocytes as 

donors (Hochedlinger and Jaenisch, 2002). Each mouse clone contained an identical 

genetic rearrangement at the immunoglobulin or T cell receptor loci, definitively proving 

their derivation from a terminally differentiated, mature B cell or a T cell, respectively.  



 6	  

It is now thought that, barring a small number of cell types and somatic mutations, 

most somatic cells do not physically lose any of the genetic information first present in 

the zygote. One ramification of this conclusion is the theoretical possibility of reversing 

the developmental clock on cells – or, more broadly speaking, arbitrarily lifting or 

imposing cell fate restrictions independently of natural developmental processes.  

 

Epigenetic Barriers 

However, Waddington’s hills are formidable barriers. As cells differentiate, the distinct 

states they adopt are highly resistant to perturbation, except in extreme, non-

physiological situations such as during SCNT; spontaneous conversion of cell types is 

rarely observed in nature. An important mechanism for lineage restriction involves extra-

genetic, or epigenetic, changes that are nonetheless abiding and heritable (Goldberg et al., 

2007). Originally intended to loosely describe the interactions of genes that produce a 

stable phenotype (Waddington, 1942), the term ‘epigenetics’ now encompasses a number 

of highly conserved processes that help to establish and maintain stable cellular 

phenotypes without causing changes in the DNA sequence.  

A well-characterized epigenetic mark is found at the level of the DNA molecule 

itself. Methylation of cytosine residues at CpG dinucleotides is associated with 

transcriptional repression, with stably silenced, heterochromatic regions being highly 

enriched in 5-methylcytosine (5mC) (Suzuki and Bird, 2008). Tissue-specific patterns of 

DNA methylation are established during development by de novo DNA 

methyltransferases (Dnmt3a and Dnmt3b), and are propagated by Dnmt1, the 

maintenance methyltransferase, to subsequent generations. Knocking out these enzymes 
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leads to early embryonic lethality (Li et al., 1992; Okano et al., 1999), and their 

knockdown is not tolerated in somatic cells types (Jackson-Grusby et al., 2001), 

indicating the importance of maintaining global DNA methylation pattern in cellular 

differentiation and identity. 

Histone octamers that help compact DNA into nucleosomes are targets of a great 

variety of covalent modifications that also contribute to cell identity (Wang et al., 2004). 

The N- and C-terminal tails of histones, especially of histone H3, are extensively 

acetylated, methylated, phosphorylated and ubiquinated in a complex manner reflective 

of the transcriptional status at the region. In an informative study, Lander, Bernstein and 

colleagues used single-molecule based sequencing of chromatin-immunoprecipitated 

(ChIP) DNA to sample the genome-wide distribution of key histone marks at different 

stages of differentiation (Mikkelsen et al., 2007). Interestingly, in pluripotent embryonic 

stem cells (ESCs), promoters of developmentally important genes possess ‘bivalent’ 

histone marks – that is, enriched for both activating (H3 lysine 4 trimethylation, 

H3K4me3) and repressive (H3K27me3) modifications. In more differentiated cells, these 

‘bivalent’ marks often resolved to monovalent H3K27me3 in genes specifying unrelated 

lineages; genes important for the lineage of choice either remained bivalent or retained 

H3K4me3 only. These results are consistent with the involvement of these epigenetic 

modifications in globally orchestrating cell fate. 

An important class of molecules, the ATP-dependent chromatin remodeling 

complexes, helps to impose lineage restriction by modulating the structure of the 

chromatin. In vitro studies indicate that all four families of vertebrate chromatin 

remodeling complexes increase the mobility of histone octamers along the DNA and 
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cause their repositioning (Côté et al., 1994). However, their biological roles are far from 

uniform, ranging from maintaining euchromatin (Gaspar-Maia et al., 2009) to 

transcriptional activation and repression, as well as facilitating chromosomal segregation 

(Dirscherl et al., 2004). Each multimeric complex is assembled combinatorially with 

more than one choice for many of the subunits; this molecular diversity translates to their 

functional non-redundancy and tissue- and stage-specific requirement. For instance, for 

the family of mammalian SWI/SNF complexes, BRG1 but not BRM is the necessary 

ATPase subunit in the pluripotent state (Ho et al., 2009; Yan et al., 2008); and the 

transition from neural progenitors to post-mitotic neurons requires the switching of 

another subunit, from BAF45A to BAF45B/C (Lessard et al., 2007).  

As would be expected, there seem to be close molecular interactions among these 

epigenetic processes. One example is found in NuRD complexes of chromatin remodelers 

that allow cells to initiate differentiation by silencing pluripotency genes (Feng et al., 

2001; Zhang et al., 1998). Interestingly, their subunits include methyl-CpG-binding 

domain (MBD) proteins that recognize methylated DNA, as well as histone deacetylases 

(HDACs) that remove activating histone marks. This provides a mechanistic link between 

DNA methylation and histone modifications associated with repressed transcription, as 

well as higher-order structural changes in the chromatin that further silence the region; 

satisfyingly, genome-wide patterns of DNA methylation and histone marks correlate well 

with each other (Meissner et al., 2008). Although much more remains to be discovered in 

the way of the intersection of epigenetic processes – including non-coding RNAs whose 

roles as phenotypic regulators are only beginning to be appreciated (Bernstein and Allis, 
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2005) – the existence of molecular platforms for crosstalk highlights how distinct types 

of epigenetic modifications can give rise to a coherent phenotypic output.  

If the epigenome is not merely a passive descriptor of the status quo, but actively 

endows stability to cell fate, then attempts to convert cellular identity would be resisted 

by the mechanisms described above; conversely, inhibition of epigenetic processes might 

make such a conversion more likely. Indeed, inhibition of HDACs by trichostatin A 

(TSA) was shown to increase the efficiency of bovine and murine SCNT (Enright et al., 

2003; Rybouchkin et al. 2006). This underscores the idea that modifications modulated 

by these enzymes guard against perturbations that can compromise a cell’s identity; 

furthermore, it suggests that lowering epigenetic barriers, pharmacologically or 

genetically, can aid nuclear reprogramming.  

Of course, for any reprogramming event to materialize, the epigenetic state of a 

differentiated cell must not be immutable, despite its stability even over cell divisions. 

Profound changes that occur during development, such as the rapid demethylation of 

sperm DNA following fertilization (Mayer et al., 2000; Osward et al., 2000; Santos et al., 

2002), suggest that the epigenome can be highly responsive to signaling cues. The recent 

discovery of histone demethylases (Chang et al., 2007; Shi et al., 2004) and pathways for 

demethylating DNA (Bhutani et al., 2010; Cortellino et al., 2011; Guo et al., 2011; He et 

al., 2011) provides active mechanisms by which epigenetic modifications may be 

reversed. In fact, the possibility of SCNT is itself an argument for the dynamic nature of 

epigenetic regulation that does not preclude opportunities for a dramatic and global shift 

in cell state.  
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A Systems Approach and Gene Regulatory Networks 

Do these epigenetic processes constitute the entirety of Waddington’s barriers? In 

answering this question, let us consider the concept of cellular identity, or cell state. We 

may describe the state of a cell in terms of its suite of molecular features, such as the 

cohort of mRNAs and proteins it expresses. For example, the 20,000-25,000 putative 

protein-coding genes in the human genome can be considered independent variables 

whose expression levels collectively inform us of a cell’s identity. Thus, the cell types we 

find in the body actually represent only a small subset of all theoretically possible cell 

states. In this framework, an intriguing question is this: why do certain states, or 

molecular configurations, manifest as stable cell types, while others are disallowed under 

physiological conditions? In other words, what are the constraints that render particular 

states accessible (minima in Waddington’s landscape) or forbidden (maxima)? 

The properties of epigenetic barriers – their stability and cell-type specific 

patterns – suggest that they are reliable indicators, and even stabilizers, of cell state. 

However, the question here is not one of mere correlation or maintenance, but of initial 

establishment. Orchestrating the genome-wide imposition of lineage-relevant restrictions 

would require recognition of specific genomic loci, especially given the erasure of 

epigenetic memory during early development (Mayer et al., 2000; Osward et al., 2000; 

Santos et al., 2002). The molecular machinery responsible for epigenetic regulation 

seems to lack intrinsic sequence specificity (Côté et al., 1998; Quinn et al., 1996), instead 

relying largely on their interaction partners to bind their correct targets (Armstrong et al., 

1998; Cho et al., 1998; Fryer and Archer, 1998; Prochasson et al., 2003; Sullivan et al., 
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2001; Wilson et al., 1996); therefore, they are unlikely to be the sole instructive force that 

defines the shape of Waddington’s landscape.  

Through the development of high-throughput experimental methods (Chen et al., 

2008; Hinsby et al., 2004; Kidder et al., 2008; Lo et al., 2006; Spooncer et al., 2008), a 

systems perspective on cell state has begun to take shape (Kitano et al., 2002). Here, the 

cell is seen as an integrated system whose properties are a function of all of its 

component interactions. In essence, it is a description of cell state as a network consisting 

of nodes (cellular components) and their connections, known as edges (their interactions) 

(Ma’ayan et al., 2008; Tyson et al., 2001).  

There have been efforts to construct networks around a key molecular component, 

known for its central role in that particular cell type, that serves as an entry point. Wang 

and colleagues, for example, constructed a network of protein-protein interactions in 

mouse ESCs, starting from the pluripotency transcription factor Nanog: by an iterative 

use of affinity purification followed by mass spectrometry (AP-MS), they first identified 

proteins that bind Nanog, then in turn found their interaction partners (Wang et al., 2006). 

Transcriptional targets of ESC transcription factors such as Nanog (Chambers et al., 

2003; Mitsui et al., 2003), as well as Oct4 (Nichols et al., 1998) and Sox2 (Avilion et al., 

2003) have been mapped by several groups using chromatin immunoprecipitation (ChIP), 

revealing circuits rich in ESC-related genes (Boyer et al., 2005; Cole et al., 2008; Jiang et 

al., 2008; Kim et al., 2008; Liu et al., 2008; Loh et al., 2006; Sing et al., 2008) and 

reaffirming many of the findings from low-throughput studies. Other groups have pooled 

these datasets, each representing partial pictures, to derive more comprehensive networks 

representing the ES cell state (MacArthur et al., 2009; Muller et al., 2008).  
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Despite the current caveats, such as false positives and the question of 

directionality in an interaction (Ji et al., 2006; Mackay et al., 2007), the expectation is 

that these networks are not simply a birds-eye view of what traditional approaches offer, 

which are often linear chains of cause and effect concerning a small number of 

components. Mathematical analyses indicate that there are novel network properties that 

only emerge at the systems level (Hasty et al., 2001; Mogilner et al., 2006; Wilkinson et 

al., 2009) and which offer an explanation for how cellular fates are determined (Enver et 

al., 2009; Huang, 2009; MacArthur et al., 2009). Intuitively, the interrelationships within 

a network can render certain molecular configurations untenable, thus marking the high 

points on Waddington’s landscape at which cells are never found; the low points, 

corresponding to allowed cell states, may be similarly defined. In this way, the landscape 

of cell fate is shaped by the sum of regulatory interactions that impose global constraints 

on the molecular configuration of the cell.  

However, the real power of the systems approach is in predicting the evolution of 

cell state in time. A regulatory network that describes a cell state is a dynamic one, in 

which the individual components (such as gene expression levels) fluctuate in time. The 

labyrinth of cause-and-effect relationships that exist between components (such as 

transcriptional activation or repression) places restrictions on these local fluctuations and, 

by extension, on how the system as a whole may evolve over time (McAdams and Arkin, 

1997; Thomas, 1998). This means that, if the state of the system at time t, or F(t), is 

known, one can predict how it will have changed a short time after, i.e. F(t + Dt), and so 

on – thereby delineating the temporal trajectory of the cell’s internal state . If a sufficient 

understanding of the complete regulatory network, consisting of all the significant players 
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that contribute to cell state, could be achieved, it would be possible to rationalize the fate 

decisions that cells make during development and beyond. 

The intrinsic inertia of physiological cell types is, by necessity, a time-dependent 

trait. At local minima in the cell fate landscape, not only are all individual interactions 

exactly balanced, but displacing the system by a small amount will generate forces that 

tend to restore it to the original point (Kauffman, 1969; Kauffman, 1993). These points of 

stability are termed ‘attractors’ in dynamic systems (Milnor, 1985; Strogatz, 2000), and 

their self-perpetuating character arises from features of the underlying circuitry, such as 

cross-antagonism and feed-forward loops (Laiosa et al., 2006; Lee et al., 2002; Shen-Orr 

et al., 2002; Swiers et al., 2006).  

In fact, these features are frequently observed in simple circuits involving 

transcription factors of competing lineages. For example, Oct4 and Cdx2 specify two 

mutually exclusive populations in the early embryo: one that gives rise to the embryo and 

the other the placenta, respectively (Nichols et al., 1998; Niwa et al., 2000; Strumpf et 

al., 2005). Before making this lineage decision, cells of the pre-implantation embryo co-

express both factors for a brief period of time. However, the precarious balance between 

the two factors quickly tips in favor of one when its expression, likely due to 

stochasticity, becomes dominant over the other. This is because each factor is capable of 

activating its own transcription in a feed-forward loop, as well as extinguishing the 

expression of the other (Niwa et al., 2005) – thereby effectively establishing and 

stabilizing its own expression at the expense of the other.  

A strong attractor state, corresponding to a stable cell type, would require many 

such self-enforcing circuits interwoven into a prominent central network. Consistent with 
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this idea, transcriptional networks constructed for the ES cell state are characterized by a 

core group of key molecular components, typically transcription factors, that strengthen 

each other’s expression and repress antagonistic factors (Boyer et al., 2005; Cole et al., 

2008; Jiang et al., 2008; Kim et al., 2008; Liu et al., 2008; Loh et al., 2006; Sing et al., 

2008). There is also direct experimental evidence which indicates that stable cell types 

possess properties of attractor states. Huang and colleagues showed that the 

differentiation of human HL60 promyelocytic progenitors into neutrophils using 

chemicals can take two distinct mechanistic routes (Huang et al., 2005), suggesting the 

latter cell type is an intrinsic attractor state discoverable through multiple trajectories. 

Moreover, the starting progenitor state itself may be an attractor state resistant to small 

perturbations: following insufficient chemical treatment, the cells that have begun to 

differentiate return to the original state (Huang et al., 2009). 

In summary, Waddington’s heights consist not only of epigenetic regulators but a 

host of other molecules whose collective interdependency constrains and guides the fate 

of a cell. Here is a deterministic picture of the cellular landscape, where the peaks and 

valleys are essentially encoded in the genome in the form of cellular components and 

their interactions; development, then, is the natural, stochastic unfolding of allowed 

cellular trajectories in this landscape that contains multiple, self-stabilizing attractor 

states.   
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Hopping Between Cell States 

Master Regulators and Transdifferentiation 

Having examined the nature of the barriers in Waddington’s metaphor, some of the key 

implications are encouraging from the perspective of nuclear reprogramming. First, the 

heritable epigenomic stability is maintained dynamically and may lend itself to drastic 

changes. Second, intrinsically stable attractor states exist in the cell state landscape and 

can be discovered by multiple independent trajectories. We can further extend the latter 

claim: if a very strong perturbation forces cells out of their original attractor state and into 

the vicinity of another, they will gravitate toward the new attractor and eventually assume 

the identity of the new cell type accurately.  

This idea reduces the challenge of cellular conversion significantly. Rather than 

precisely manipulating each molecular variable in the cell, we may only need to provide a 

sizable perturbation in the desired direction; the system would then be led toward a 

nearby self-propagating state by the inherent regulatory network interactions. 

Specifically, the right type of perturbation must be large enough to overcome the 

epigenetic barriers and disrupt the existing core gene regulatory network. It must also be 

directional; that is, it must bring the cell into close proximity of the intended target state.  

The prime candidates for fulfilling these criteria are transcription factors, the class 

of genes that control the expression of other genes. Since gene expression is immediately 

related to phenotypic output, multiple pathways that control cell state converge at the 

level of transcription factor activity (Brivanlou and Darnell, 2002; Osborne et al., 2001; 

Pawson, 1993). Naturally, they are found at the core of gene regulatory networks (Boyer 

et al., 2005; Cole et al., 2008; Jiang et al., 2008; Kim et al., 2008; Liu et al., 2008; Loh et 
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al., 2006; Sing et al., 2008) and are often necessary and sufficient for specifying lineages 

in vivo (Jessell, 2002; Lobe, 1992; Nichols et al., 1998; Niwa et al., 2000). At the 

molecular level, their intrinsic specificity for target DNA sequences allows them, as well 

as their interaction partners that include epigenetic regulators, to bind select regions 

throughout the genome and coordinate global patterns of gene expression. These 

properties makes transcription factors better suited to actuate arbitrary cell fate transitions 

than are other agents also associated with profound changes in cell state: including 

epigenetic regulators (that largely lack sequence specificity) and extrinsic cell signaling 

molecules (that require the presence of appropriate receptors and downstream effectors in 

the cell). 

 

MyoD and the Skeletal Muscle Lineage 

The first demonstration that a transcription factor can function outside its normal cellular 

context to mediate a cell fate conversion came from Harold Weintraub’s group. 

Weintraub and colleague set out to identify the gene responsible for the conversion of 

mouse C3H10T1/2 embryonic fibroblasts into muscle precursors, or myoblasts (Davis et 

al., 1987), induced by the DNMT inhibitor 5-azacytidine (Aza). This phenomenon of 

transdifferentiation, where a differentiated cell is converted to another type, occurred at a 

high efficiency (25-50%), and they reasoned that a small number of powerful muscle-

inducing genes became de-repressed due to demethylation of DNA. To clone these genes, 

they screened a phage library using radiolabeled cDNA probes prepared from myogenic 

cell populations, and chose three candidates based on their specific expression in 

differentiating myoblasts and not in fibroblasts or in terminally differentiated myotubes.  
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Strikingly, introducing one of the cloned genes, MyoD, into C3H10T1/2 

fibroblasts phenocopied the muscle-inducing effect of Aza treatment, demonstrating the 

ability of a single gene to induce a fate change in a stable cell type. MyoD is a basic 

helix-loop-helix transcription factor that has a skeletal muscle-specific expression pattern 

in vivo. Along with another helix-loop-helix factor, Myf5, it forms a core network that is 

required for muscle specification (Buckingham et al., 2003). In this sense, MyoD is a 

prototypical ‘master regulator’ of the skeletal muscle state during development. However, 

Weintraub’s discovery showed that MyoD can exert its full effect beyond its natural 

developmental setting. In the language of cellular landscapes, it serves the role of a 

directional perturbation that is strong enough to drive fibroblasts out of their attractor 

state and onto myoblast-bound trajectories that are inaccessible under physiological 

conditions. 

An interesting comparison can be drawn with another method for inducing a 

myogenic fate in non-muscle cells, developed by Blau and colleagues, where human 

amniocytes are fused with differentiated mouse muscle cells (Blau et al., 1983). The 

resulting interspecies, non-dividing heterokaryons express human myosin heavy and light 

chains, as well as a human muscle-specific antigen, and downregulate fibroblast markers, 

indicating that the human fibroblast nuclei has adopted a muscle-specific gene expression 

program. 

 Unlike MyoD, which can induce a myogenic transcriptional program in 

fibroblasts but not hepatocytes (Choi et al., 1990; Weintraub et al., 1989), heterokaryon 

formation can activate muscle-specific gene expression in both cell types (Schafer et al., 

1990). One possible explanation is that the the action of MyoD, such as its binding to 
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critical target promoters, requires additional factors that are not present in hepatocytes; in 

hepatocyte-muscle heterokaryons, the complete set of these factors would be derived 

from the muscle. Consistent with this hypothesis, fusing a MyoD-overexpressing 

hepatocyte (which is not reprogrammed) to an untransduced fibroblast (which does not 

express MyoD but can convert in response to MyoD) reprograms both cells, likely 

ascribed to a complementation effect (Schafer et al., 1990).  

The differential response of different cell types to MyoD may also be related to 

their epigenetic status. It is conceivable that in certain cell types, genes whose activation 

is essential for myogenic conversion are stably repressed by one or more epigenetic 

mechanisms (Goldberg et al., 2007). Cells whose fates have diverged early from the 

myogenic lineage are more likely to have accumulated DNA methylation at muscle-

specific promoters and lost activating H3K4me3 marks at key developmental genes that 

determine the myogenic fate; these loci may even have condensed into heterochromatin, 

effectively occluding the access of reprogramming factors and blocking fate conversion. 

Thus, the difficulty of conversion may correlate with the ‘distance’ between the two cell 

types in the cell state landscape; reprogramming to a more distant lineage may be less 

efficient, perhaps requiring a more complex strategy.  

 

The Hematopoietic Lineages 

The developmental lineages in the hematopoietic system have been thoroughly 

characterized over the years, from the long- and short-term hematopoietic stem cells 

(HSCs) through progenitor cells at various intermediate stages to the mature cell types 

(Orkin and Zon, 2008). At one of many binary decision points, a common myeloid 
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progenitor (CMP) commits to become either a megakaryocyte/erythroid progenitor 

(MEP) or a granulocyte/macrophage progenitor (GMP). Graf and colleagues showed that 

these closely related competing lineages can interconvert by ectopic expression of 

transcription factors: GATA-1, a central erythroid transcription factor, causes 

myeloblasts of the GMP lineage to convert to MEPs (Kulessa et al., 1995); conversely, 

PU.1, a myeloid transcription factor, turns MEPs into myeloblasts (Nerlov and Graf, 

1998).  

Significantly, GATA-1 and PU.1 not only regulate many downstream target 

genes, but each activates its own expression and inhibits the other’s (Graf 2002; Orkin, 

1990). These circuitry features – positive autoregulation and mutual repression – that 

help make up the core transcriptional network of a stable cell state seem to be the 

hallmarks of master regulator transcription factors (Arinobu et al., 2007; Boyer et al., 

2005; Niwa et al., 2005; Zhang et al., 1999). In the context of transdifferentiation, they 

allow each of these factors to effectively downregulate the existing transcriptional 

program, as well as establish the new state it is associated with.   

Using yet another factor associated with the granulocyte/macrophage lineage, 

C/EBPa, the same group converted primary B lymphocytes into macrophages (Xie et al., 

2004). In particular, terminally differentiated, antibody-producing B cells could give rise 

to phagocytosing macrophages whose origin was marked by immunoglobulin 

rearrangements. It is interesting that, while the less mature pro- and pre-B cells convert at 

100% efficiency, mature B cells convert at one third the efficiency. This is reminiscent of 

Gurdon’s Xenopus experiments in which the success of SCNT declined with the age of 
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the donor nuclei (Gurdon, 1960), likely due to the build-up of epigenetic mechanisms that 

are difficult to reverse.  

The age-related decline in transdifferentiation efficiency may also be attributed to 

epigenetic regulation; but as MyoD- and heterokaryon-mediated conversion to muscle 

suggests, the repertoire of proteins expressed in the starting cell type may be another 

factor. Notably, PU.1 is expressed early in the lymphoid lineage as well as in 

myeloblasts, and can synergize with C/EBPa to enhance the reprogramming of CD19+ 

bone marrow cells to macrophages, likely by facilitating the conversion of a more 

recalcitrant cells in the population population (Xie et al., 2004). Therefore, within closely 

related lineages, less differentiated cells (such as pro- and pre-B cells) may share a 

greater portion of their protein repertoire with the target cell type, increasing the 

likelihood of having the components necessary for the action of the reprogramming gene; 

in contrast, the proteome of more advanced cells (such as mature B cells) may have 

further diverged and lack those enabling components, thus requiring additional factors for 

conversion.  

In another study that highlighted the necessity of transcription factors in the 

acquisition and consolidation of cell fate, Busslinger and colleagues found that Pax5-/- 

pro-B cells lacking the B cell-specific factor could generate a host of hematopoietic cell 

types, such as macrophages, dendritic cells and granulocytes, given the right culture 

conditions (Nutt et al., 1999). Moreover, when transplanted into immunodeficient mice, 

Pax5-/- pro-B cells, as well as mature B cells in which Pax5 was deleted, gave rise to T 

cells (Cobaleda et al., 2007; Rolink et al., 1999). These results suggest that pro-B cells 

are unable to consolidate a mature B cell identity in the absence of the master regulator of 
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the B cell state. In effect, loss of Pax5 from the genome alters the cell state landscape into 

one where the B cell attractor state is deleted; therefore, a cell traveling down the valley 

of B cell lineage is eventually forced to choose from alternative fates that are most easily 

accessible to them.  

 

Insights from Early Transdifferentiation Efforts 

The first transdifferentiation studies, which also include attempts to convert between 

hepatic and pancreatic lineages (Ferber et al., 2000; Shen and Slack, 2000; Zaret, 2008), 

demonstrate these important concepts: the existence of master regulators of cell fate, 

typically in the form of transcription factors; and the plasticity of cell fate that can be 

revealed by those master regulators. In rationalizing the experimental observations, the 

analogy of Waddington’s landscape appropriately describes many complex phenomena 

relating to cellular fate.  

Broadly speaking, there seem to be two interrelated factors that contribute to the 

difficulty of reprogramming. First is the stability of the starting cell type (the depth of the 

original attractor state), which may have a significant epigenetic contribution. Secondly, 

the molecular differences between the starting and target cell types (the distance between 

the two attractor states) can facilitate or hinder the activity of reprogramming agents. 

Although the usefulness of the systems approach to cell fate remains to be fully explored, 

its bold prediction is that cellular reprogramming by defined factors is a generalizable 

phenomenon. 
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The Stem Cell Revolution 

The Quest for the Pluripotent Cell 

From a clinical as well as scientific standpoint, a critically desired cell state is one of 

maximum developmental potency, as in the totipotent zygote or in the pluripotent inner 

cell mass (ICM) of the pre-implantation embryo, poised to form any cell type of interest. 

For this reason, embryonic stem cells (ESCs) – the in vitro derivatives of the ICM that 

can be cultured and expanded indefinitely – are an ideal cell type to obtain in the 

laboratory. Following the derivation of ESCs from mouse blastocysts in 1981 (Evans and 

Kaufman, 1981; Martin, 1981), the first report of human ESC lines came in 1998, with 

functional demonstrations of their pluripotency in vivo (ability to form teratomas when 

injected into immunodeficient mice) and in vitro (ability to spontaneously generate cells 

of all three germ layers) (Thomson et al., 1998).  In principle, human ESCs could be 

engineered into any cell type of interest to replace damaged or lost tissues, realizing one 

of the ultimate goals of regenerative medicine.  

Since generating patient-specific ESCs is central to this process, there have been 

efforts to clone blastocysts from patients’ somatic cells by SCNT (Cibelli et al., 2002; 

Egli et al., 2011a). But deriving an ESC line for every patient as an autologous source of 

replacement cells is challenging on multiple levels: including the scarcity of donated eggs 

that can be used as recipients in nuclear transfer (Egli et al., 2011b), as well as ethical 

concerns regarding the destruction of human embryos after the harvest of their ICM 

(Lanza et al., 2000). Moreover, in part due to technical difficulties, successful SCNT in 

human has yet to be reported, despite some well-guided efforts using oocytes and even in 

vitro-fertilized (IVF) zygotes at mitosis (Egli et al., 2011a). Nonetheless, these studies 
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hint at the existence of elusive yet powerful trans-acting factors that mediate this 

dramatic nuclear reprogramming. The fact that mitotic mouse zygotes, but not those at 

interphase, could mediate nuclear reprogramming (Egli et al., 2007; Egli and Eggan, 

2010) suggests that these factors localize to the nucleus after fertilization and are 

inadvertently removed if enucleation is performed at interphase.  

Fusion of pluripotent and differentiated cells has provided additional insight into 

the mechanism of nuclear reprogramming to pluripotency. Tada, Surani and colleagues 

demonstrated that fusing adult murine thymocytes to embryonic germ cells (EGCs) or 

ESCs produces tetraploid hybrids that are pluripotent by one of the most stringent 

criteria: contribution to chimeric embryos after injection into a blastocyst (Tada et al., 

1997; Tada et al., 2001). The rapid timescale of molecular changes – activation of the 

Oct4::GFP transgene in thymocytes occurs within 48 hours of ESC-thymocyte fusion – 

suggests that ESCs contain reprogramming agents similar to those in the egg cytoplasm 

and the fertilized zygote.  

Using a similar approach, Eggan and colleagues generated human somatic cell 

hybrids by fusing human BJ fibroblasts with HUES6, a human ESC line (Cowan et al., 

2005). The resulting hybrids resembled ESCs in their growth characteristics, marker 

expression and global gene expression pattern, as well as developmental potential judged 

by their differentiation in vitro and in vivo. When an ESC reporter, Rex1::GFP, was 

introduced to BJ fibroblasts before fusion, the activation of this reporter was observed in 

hybrids, indicating that the differentiated nucleus had indeed undergone reprogramming. 

Since the ability to form pluripotent hybrids was not restricted to the particular pair of 
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cells, it is conceivable to reprogram human patient somatic cells in this way, albeit of 

limited therapeutic use due to the tetraploidy of the hybrids.  

 

Induced Pluripotent Stem Cells (iPSCs) 

Reports of factor-mediated transdifferentiation raised the possibility that reprogramming 

to an ESC state may also be accomplished by a small number of defined factors, in a 

manner that overcomes the limitations of SCNT and cell fusion approaches. But, though 

encouraging, these transitions had been between closely related lineages – from fibroblast 

to muscle (both of mesodermal origin) (Davis et al, 1987), or within the hematopoietic 

system (Kulessa et al., 1995; Nerlov and Graf, 1998;	  Xie et al., 2004), or between 

endodermal lineages (Shen and Slack, 2000) – that share significant developmental 

history. Reprogramming a somatic cell to a pluripotent state, on the other hand, entails a 

complete reversal of differentiation. It would be reasonable to suspect that the complex 

environment provided by the cytoplasm of an egg or an ESC is indispensible for resetting 

the nucleus to a primitive state, and cannot be reduced to the action of a few defined 

genes. 	  

A groundbreaking discovery came in 2006, when Takahashi and Yamanaka 

achieved the improbable conversion of mouse fibroblasts into ESC-like cells by 

overexpressing just four genes: Oct4, Sox2, Klf4, and cMyc (Takahashi and Yamanaka, 

2006). They reasoned that factors that maintain the ESC state could also establish the 

pluripotent state in the context of an already differentiated cell, and retrovirally 

overexpressed a combination of 24 candidate factors in mouse embryonic fibroblasts 

(MEFs) that report on the activation of the Fbx15 promoter – a locus associated with, but 
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not required for, the ESC state. Upon discovering that rare ESC-like colonies appear in 

the culture, they narrowed down the reprogramming activity to the four transcription 

factors.  

These first-generation induced pluripotent stem cells (iPSCs) exhibited many 

molecular and functional characteristics of ESCs, although they did not fulfill what are 

arguably the most stringent molecular and functional criteria: they showed incomplete 

demethylation of the promoters of core ESC factors such as Oct4 and Nanog, and were 

unable to give rise to live chimeric pups (Takahashi and Yamanaka, 2006). Several 

groups soon showed that the use of essential ESC promoters to drive reporter expression 

allows the isolation of more completely reprogrammed murine iPSCs that contribute to a 

wide range of tissues in chimeric animals, including the germ line (Wernig et al., 2007; 

Okita et al., 2007). Most importantly, the technology translated to the human system: 

Yamanaka’s and Thomson’s groups were the first to independently report the generation 

of human iPSCs that closely resemble human ESCs (Takahashi et al., 2007; Yu et al., 

2007). 

A flood of studies have since improved the relevance iPSCs to regenerative 

medicine and deepened our understanding of the reprogramming process. Owing to the 

robustness of the approach, a variety of starting cell types could be used, including 

terminally differentiated cells (mature B lymphocytes (Hanna et al., 2008) and pancreatic 

b-cells (Stadtfeld et al., 2008a)) and those requiring fewer reprogramming factors but 

having different accessibility in patients (neural progenitor cells (Kim et al., 2009b) and 

keratinocytes (Aasen et al., 2008)).  
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In addition, safety concerns over the use of integrating viruses and the 

reprogramming genes, which possess varying oncogenic capacity (Hacein-Bey-Abina et 

al., 2003; Okita et al, 2007), were addressed in multiple ways. First, it was shown that 

iPSCs could be generated in the absence of the most potent proto-oncogene, cMyc, 

suspected of causing a high incidence of tumorigenesis in chimeras made with cMyc-

harboring iPSCs (Nakagawa et al., 2008; Wernig et al., 2008). Secondly, alternative 

methods for delivering the reprogramming factors were developed: these include the use 

of non-integrating viruses (Ferber et al., 2000; Stadtfeld et al., 2008b), transient plasmid 

transfection (Okita et al., 2008), protein transduction (Kim et al., 2009a; Zhou et al., 

2009), and transposons (Woltjen et al., 2009). The use of small molecules has also been 

explored, both to replace one or more of the factors and to boost the efficiency of 

reprogramming (Huangfu et al., 2008a, b; Ichida et al., 2009). More recently, 

reprogramming factors delivered in the form of modified RNA were shown to not only 

generate transgene-free iPSCs, but do so at a high efficiency (Warren et al., 2010), 

raising the hope of large-scale production of transgene-free, patient-specific iPSCs. 

 

Using Patient-Specific iPSCs 

It has become clear that define-factor reprogramming to pluripotency is not an artifactual 

phenomenon, but one that could have a broad impact in the laboratory and in the clinic. 

Compared with SCNT or ESC fusion, it is the most scalable approach for producing 

patient-specific pluripotent stem cells that, due to their self-renewing nature, can serve as 

a limitless cellular source for downstream applications. With this major breakthrough at 
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hand, the necessary next step is to take advantage of their pluripotential and derive cell 

types that are clinically relevant.  

The process of guiding the differentiation of ESCs or iPSCs, termed directed 

differentiation, is essentially a simulation of natural development in a dish through 

successive stages of cell fate specification (Gaspard and Vanderhaeghen, 2010; Murry 

and Keller, 2008; Peljto and Wichterle, 2011; Schwartz et al., 2008). In this case, the 

perturbation that propels them from one intermediate state to another can be provided by 

extracellular signaling molecules – the same agents that mediate the corresponding 

transitions in vivo – since the appropriate receptors and effectors should be present in the 

cells at each stage.  

From an understanding of developmental signals, protocols have been developed 

for turning ESCs into a number of cell types representative of all three embryonic germ 

layers. For example, BMP4, which directs mesodermal specification in the embryo 

(Dosch et al., 1997) also induces a similar fate in ESCs (Murry and Keller, 2008; Zhang 

et al., 2008). Further manipulations allow many mesodermal cell types – including blood 

cell types (Lengerke and Daley, 2010), cardiomyocytes (Dambrot et al., 2011), skeletal 

myoblasts (Barberi et al., 2007), and chondrocytes (Oldershaw et al., 2010; Toh et al., 

2010) – to be derived.  

Similarly, to produce cells of the endodermal lineage, Activin A is first used to 

direct ESCs toward definitive endoderm. By subsequently taking these cells through 

developmental landmarks in a stepwise fashion, it is possible to generate hepatocytes, 

albeit with a fetal, rather than a mature, character (Basma et al., 2009; Hay et al., 2008; 

Touboul et al., 2010). Progress has also been made in directing the definitive endoderm-
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fated cells through a pancreatic progenitor state (Borowiak and Melton, 2009; Kroon et 

al., 2008), then to a pancreatic endocrine cell fate (Chen et al., 2009) – and it is hoped 

that the final transition to insulin-producing b-cells, the cell type lost in type I diabetes, 

can be achieved. 

On the other hand, ectodermal fate is considered the default differentiation path 

taken by pluripotent cells in the absence of mesoderm- and endoderm-inducing signals 

(Levine and Brivanlou, 2007). Accordingly, in vitro differentiation into neural cell types 

is efficiently initiated by blocking both Activin/Nodal/Tgf-b and BMP signaling to induce 

a neuroectodermal fate (Chambers et al., 2009). Dopaminergic neurons, which are lost in 

Parkinson’s disease, can then be produced using Sonic Hedgehog (SHH) and FGF8 to 

generate neural progenitor cells (NPCs) with a mid-hindbrain character (Perrier et al., 

2004). Motor neurons, whose loss in disease or injury leads to paralysis, possess a ventral 

spinal character which can be induced by the same signals, retinoic acid (RA) and SHH 

(Wichterle et al., 2002), that specify these spatial identities along the embryonic 

rostrocaudal and dorsoventral axes, respectively (Jessell, 2000).  

Already, numerous groups have coupled these differentiation strategies with iPSC 

generation to produce patient-specific, disease-relevant cell types (Boulting et al., 2011; 

Brennand et al., 2011; Dimos et al., 2008; Ebert et al., 2009; Ku et al., 2010; Lee et al. 

2009; Liu et al., 2010; Marchetto et al., 2010; Maehr et al., 2009; Park et al., 2008; 

Rashid et al., 2010; Seibler et al., 2011; Soldner et al., 2009; Zhang et al., 2010). 

Although transplantation is an attractive goal (Ilieva et al., 2009; Kroon et al., 2008; 

Lengerke and Daley, 2010), given the issues of safety, the immediate uses of these cells 

have been predominantly in the laboratory. Specifically, this approach provides 
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unprecedented opportunities for studying human disease in vitro, as well as platforms for 

testing and discovering drugs in the most relevant cellular context.  

Initial attempts at setting up in vitro model systems of disease have been 

encouraging, in particular, for disorders of the nervous system (Han et al., 2011). This 

class of human disorder has been difficult to study, primarily due to the inaccessibility of 

the diseased tissue from live patients. There is limited insight to be gained from the study 

of post-mortem materials that do not reveal much in the way of disease initiation and 

progression, and animal models, which can only be established if the disease has a known 

genetic cause, have not led to potential therapies that translate well to the human system. 

Using iPSC-derived neurons offers the advantage of capturing patients’ own genetic 

background in the cells that are born in the dish, so that even idiopathic disease processes 

might be recapitulated from their early stages. 

Some of the first patient-specific iPSC-derived neurons were from fibroblasts of 

patients with spinal muscular atrophy (SMA) (Ebert et al., 2009), an early-onset disease 

of spinal motor neurons most often caused by the deletion of a ubiquitously expressed 

protein, Survival of Motor Neuron-1 (SMN1) (Monani, 2005). Interestingly, after six 

weeks of culture, a motor neuron-specific survival deficit was observed in the SMA-iPS-

derived neuronal cultures relative to control (Ebert et al., 2009); moreover, tobramycin 

and valproic acid (Brichta et al., 2003; Sumner et al., 2003), known to increase the level 

of full-length SMN transcripts from the SMN2 locus, could each ameliorate molecular 

and morphological phenotypes associated with the disease (Ebert et al., 2009).  

Another neurodevelopmental disorder, Rett Syndrome (RTT), is the result of an 

X-linked mutation in methyl-CpG binding protein-2 (MeCP2) (Amir, 1999). 
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Interestingly, RTT-iPSC-derived neurons have a decreased number of glutamatergic 

synapses and abnormal electrophysiological properties relative to control. Significantly, 

the ability to produce these cells on demand enabled a screen of possible therapeutics 

discovered in the mouse model of RTT, and two of them, IGF1 and gentamicin (Tropea 

et al., 2009), were found to increase glutamatergic synapse numbers in the human context 

(Marchetto et al., 2010). 

These and other studies, targeting neurological disorders (Brennand et al., 2011; 

Ku et al., 2010; Liu et al, 2010) as well as diseases of other systems, such as the liver 

(Rashid et al., 2010), provide a proof of concept for the utility of patient iPSC-derived 

cells as substrates for studying human disease. Of note, not all reported cases displayed 

important disease phenotypes as expected (Park et al, 2008; Seibler et al., 2011; Soldner 

et al., 2009; Zhang et al., 2010). This may be due to the inherent limitations of the 

approach, such as the contracted timescale of the experiments and the removal from the 

complex in vivo environment necessary for the unfolding of the pathology. Nonetheless, 

given the advantages, the use of iPSC-derived cells is likely to complement the existing 

methods for elucidating disease mechanisms and identifying therapies. Notably, human 

iPSC-derived cardiomyocytes can be used as a screening tool for assessing the 

cardiotoxicity of pre-clinical drugs (Braam et al., 2010), and iPSC-derived hepatocytes 

may similarly be used to evaluate their metabolic toxicity (Sullivan et al., 2010). 

Altogether, these early efforts demonstrate that using iPSCs is a promising approach for 

regenerative medicine. 
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A Second Look at Transdifferentiation 

Conversion to Clinically Important Cell Types 

A bottleneck in applying iPSC technology to a wide range of clinical settings may be the 

development of directed differentiation protocols for each new cell type of interest. This 

is no small feat, often requiring extensive knowledge of its development, as well as fine-

tuning of the precise level of each signaling molecule (Gaspard and Vanderhaeghen, 

2010; Murry and Keller, 2008; Peljto and Wichterle, 2011; Schwartz et al., 2008). In fact, 

many existing protocols suffer from poor efficiency and produce highly heterogeneous 

populations; for cell therapy applications in particular, this would necessitate not only the 

enrichment of the precise target cell type, but also a thorough removal of contaminating 

stem or progenitor cells that may become tumorigenic in vivo. 

This clinical impetus, fueled by the success of defined-factor reprogramming in 

achieving what had appeared to be the most challenging conversion, has revived a strong 

interest in transdifferentiation. Arguably, it may be easier to identify the transcription 

factors important for a given cell fate, than it is to characterize the diffusive signaling 

molecules that induce it during development. Moreover, evidence indicates that a mere 

high-level expression of factors, rather than subtle tuning, may be adequate for causing 

drastic cell state transitions (Davis et al., 1987; Kulessa et al., 1995; Nerlov and Graf, 

1998). Bypassing the iPSC stage and generating target cells directly from an easily 

accessible cell type, such as skin fibroblasts, could save a significant amount of time and 

resources, as well as mitigate concerns of residual proliferative cells in the population. 

The series of transdifferentiation studies that shortly followed the discovery of 

iPSCs were of particularly high clinical relevance. In 2008, Melton and colleagues 
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reported the in vivo conversion of exocrine cells into induced b-cells (ib-cells), which 

could ameliorate hypoglycemic phenotypes in a diabetic mouse model (Zhou et al., 

2008). Then, in 2010, Wernig’s laboratory succeeded in reprogramming fibroblasts into 

induced neuronal (iN) cells, albeit with unclear subtype specificity, capable of forming 

functional synapses in vitro (Vierbuchen et al., 2010). That same year, fibroblast-derived 

cardiomyocytes (iCMs) were also reported by Srivastava and colleagues (Ieda et al., 

2010). Although demonstration of the in vivo functionality of the reprogrammed cells 

was lacking or limited, there are important parallels that can guide us in approaching the 

question: can any cell turn into any other? 

 

Finding the Right Cocktail 

Earlier efforts in transdifferentiation have tended to highlight the role of a single master 

regulator of a cell fate, such as the basic helix-loop-helix factor, MyoD, that specifies 

skeletal muscle cells (Davis et al., 1987). In contrast, the new lineage reprogramming 

studies each identified a combination of multiple defined factors as reprogramming 

agents, perhaps reflecting the increased difficulty of the transitions being attempted. The 

identity of the factors is informative and offers some logic to the selection of 

reprogramming genes.  

The b-cell-inducing cocktail of Pdx1, Ngn3 and Mafa (Zhou et al., 2008) 

collectively can govern all the stages of b-cell specification and maturation. The earliest 

marker of the pancreatic lineage in the foregut endoderm (Gu et al., 2002), Pdx1 is a 

homeodomain transcription factor indispensible for pancreas formation (Jonsson et al., 

1994), and is also required for the function of differentiated b-cells later on (Ahlgren et 
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al., 1998). Ngn3 is a basic helix-loop-helix factor necessary for the specification of 

endocrine lineages (Desgraz et al., 2009; Gu et al., 2002), and may have an additional 

role in mature b-cell function (Wang et al., 2009); its ectopic expression is sufficient to 

induce an endocrine fate in a number of endodermal settings, including the chick 

endoderm (Grapin-Botton et al., 2001) and adult hepatic progenitor cells (Yechoor et al., 

2009).  Mafa, on the other hand, specifically marks b-cells and is important for their 

terminal differentiation; unlike Pdx1 or Ngn3, it is able to induce insulin expression in 

early gut epithelium (Grapin-Botton et al., 2001) as well as in a pancreatic a-cell line 

(Zhang et al., 2005), and is known to directly bind the insulin promoter and activate 

transcription (Kataoka et al., 2002; Matsuoka et al., 2003; Olbrot et al., 2002).  

Gata4, Tbx5 and Mef2c, which reprogram fibroblasts into cardiomyocytes (Ieda et 

al., 2010), form a core transcriptional network that controls cardiac differentiation 

(Olson, 2006; Srivastava, 2006). In particular, Gata4 is considered a ‘pioneer factor’, 

able to bind repressed promoters of cardiac-associated genes, thereby allowing other 

factors to also gain access (Cirillo et al., 2002; Smale, 2010). Interestingly, Gata4 and 

Tbx5, along with a component of chromatin remodeling complexes, Baf60c, could cause 

the induction of cardiomyocytes at ectopic sites during early stages of development 

(Olson, 2006; Srivastava, 2006), and there is evidence of physical interaction of the gene 

products in vitro (Lickert et al., 2004).  

The conversion of fibroblasts into iN cells – mediated by Ascl1, Brn2 and Myt1l – 

is particularly impressive (Vierbuchen et al,. 2010), in that it involves the crossing of the 

boundaries between embryonic germ layers (mesoderm to endoderm) that have diverged 

at the beginning of embryonic development. Ascl1, also known as Mash1, seems to be a 
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mater regulator of the neuronal state, regulating the neuronal versus glial fate decision of 

multipotent neural progenitor cells (Lo et al., 1997; Nieto et al., 2001), as well as guiding 

the terminal differentiation of several neuronal types in various contexts (Casarosa et al., 

1999; Fode et al., 2000; Parras et al., 2002). Brn2 is expressed at multiple locations in the 

central nervous system, and often with Ascl1 (Castro et al., 2006), suggesting their 

cooperation in neuronal differentiation; interestingly, Brn1 and Brn2 double knockout has 

a strong effect on the glutamatergic upper layer cortical neurons (McEvilly et al., 2002; 

Sugitni et al., 2002), and could explain the glutamatergic phenotype of the majority of the 

iN cells. Myt1l is expressed in all central and peripheral neurons as they exit mitosis 

during terminal differntiation (Cahoy et al., 2008; Weiner et al., 1997); although direct 

evidence of its cooperation with Ascl1 is lacking, its close family member Myt1 is known 

to act synergistically with other pro-neural basic helix-loop-helix factors in neural 

induction in Xenopus (Bellefroid et al., 1996; Wang et al., 2008).  

We may thus attempt to rationalize the reprogramming cocktail of genes 

retrospectively, but the difficulty in identifying them a priori is that the outcome of novel 

physical or functional interactions between the factors in non-physiological settings 

cannot easily be predicted. In all of the above examples, as well as in iPS reprogramming, 

the working combination of factors was determined empirically by trial and error, starting 

from a larger pool of candidate factors and iteratively narrowing down the source of 

reprogramming activity. It remains to be seen whether an improved ability to simulate 

factor interactions could help automate this process with algorithms for in silico 

prediction.  
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Nonetheless, the selection of an initial test set of factors can be guided by some 

general principles. Prototypical master regulators of the target state – such as Oct4, Pdx1, 

Ascl1 and Tbx5 for the respective cell types they control – are prime candidates, as are 

factors that cooperate with them to form a core regulatory network. A target cell type-

specific expression pattern and a strong knockout phenotype in the tissue of interest are 

criteria that can help narrow down the list of factors. Finally, pioneer factors, such as 

Gata4, that can access heterochromatic regions (Cirillo et al., 2002; Smale, 2010) may 

greatly facilitate the desired conversion, as well as those that can interact with chromatin 

remodeling complexes.   

 

Tracing the Reprogramming Trajectories 

The stability and fidelity of the reprogrammed state appear to be common features that 

mark these transdifferentiation paradigms as well as induced pluripotency. Consistent 

with the establishment of the endogenous transcriptional network, the reprogrammed 

cells persist long after the exogenous viral gene expression is extinguished. In addition, 

molecular hallmarks of the new cell state are accurately displayed: for example, ib-cells 

express a wide range of b-cell markers, but not exocrine markers or hormones secreted by 

other endocrine cell types in the islet, indicating that the b-cell state has been established 

faithfully (Zhou et al., 2008).  

However, in contrast to iPS reprogramming (Takahashi and Yamanaka, 2006), the 

in vivo conversion to b-cells is rapid, with the extra-islet insulin+ cells emerging at day 3 

and reaching maximum insulin expression by day 10; it is also efficient, with one fifth of 

the infected cells converting after one month (Zhou et al., 2008). Comparable efficiencies 
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and speed of conversion are reported for the formation of iCMs and iN cells (Ieda et al., 

2010; Vierbuchen et al., 2010), suggesting that this is a general feature of 

transdifferentiation. As demonstrated by lineage tracing, the ib-cells originated from 

Cpa1-expressing differentiated exocrine cells, which also belong to the pancreatic lineage 

and share a significant portion of their developmental history with b-cells (Zhou et al., 

2008). Hence, the trajectories between the two stable states, one might imagine, is much 

shorter and easier to navigate than in the case of iPSC generation. Similar argument 

might be made for the reprogramming of fibroblasts to cardiomyocytes – both 

mesodermal cell types – where, incidentally, the majority of iCMs do not arise from the 

c-kit+ stem-like cell population (Ieda et al., 2010).  

Somewhat surprisingly, the fibroblast-to-neuron transition is also marked by an 

efficiency approaching 20%, although with the caveat that it may be a liberal estimate 

that uses Tuj1 expression to designate neurons (Vierbuchen et al., 2010). It may be that 

conversion between differentiated cell types is fundamentally easier than reversal to a 

primitive epigenetic state; even if the two somatic lineages have diverged early in 

development, they may be related to each other by a comparatively short distance in the 

cell state landscape. Accordingly, following the transdifferentiation-inducing 

perturbation, the cells would have a reasonably high chance of finding the target cell state 

and stably adopting it.  

Since shared developmental history may be a facilitating factor in cellular 

conversion, and since many reprogramming factors are associated with an immature 

precursor state, it is conceivable that developmental paths are utilized during 

transdifferentiation. For instance, pancreatic exocrine cells might first be driven to a 
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progenitor state then differentiate into b-cells. However, neither Sox9 nor Hnf6, markers 

of the common progenitor between the two lineages, was detected during 

reprogramming, and the majority of ib-cells had not gone through a BrdU-labeling 

proliferative stage characteristic of progenitors (Zhou et al., 2008). Similarly, lineage 

tracing during iCM generation demonstrated that many cells do not go through a Mesp1- 

or Isl1-expressing cardiac progenitor states (Ieda et al., 2010). Thus, these conversions 

seem to involve a direct imposition of the new cell fate, rather than dedifferentiation 

followed by partial recapitulation of development – a model also consistent with the rapid 

kinetics of reprogramming. 

It may reasonably be argued that factor-mediated reprogramming is 

predominantly driven by transcriptional changes – where the non-physiologically high 

expression of the factors overrides the existing system by directly activating their 

downstream targets associated with the new state – and that epigenetic changes follow as 

a consequence. In this light, it is interesting that the enrichment levels of H3K4me3, 

H3K27me3 and DNA methylation at cardiac promoters in iCMs approach, but do not 

reach, those of neonatal cardiac cells (Ieda et al., 2010). The precise reason for this is 

unclear, but may be related to the ability of the reprogramming factors to interact with 

epigenetic remodeling machinery; certain factors, such as MyoD, that can recruit 

chromatin remodelers to some of its targets may be more potent in this regard (Albini et 

al., 2010; Berkes et al., 2004; Gerber  et al., 1997). The lack of cell division that 

characterizes these transdifferentiation events may also contribute to incomplete 

epigenetic reprogramming, since cell division presents an opportunity for erasing old 

epigenetic marks and adding new ones (Egli et al., 2008). It is also tempting to speculate 
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that if developmental processes had been recapitulated, lineage conversion might have 

yielded better epigenetically reprogrammed cells.  

It is interesting that certain factor combinations are specific to the starting cell 

type. Pdx1, Ngn3 and Mafa were unable to generate ib-cells from skeletal muscle in vivo 

or fibroblasts in vitro (Zhou et al., 2008), reinforcing the idea that greater developmental 

distance increases the difficulty of achieving a particular conversion. More intriguingly, 

different cocktails induce cardiomyocytes from the embryonic mesoderm (Gata4, Tbx5 

and Baf60c) and from fibroblasts (Gata4, Tbx5 and Mef2c) (Olson, 2006; Srivastava, 

2006; Vierbuchen et al., 2010). These observations suggest that the precise 

transcriptional and epigenetic state of the starting cell dictates the optimum trajectory 

toward the target state and the set of factors that can provide the appropriate perturbation.  

Overall, the mechanism of transdifferentiation reveals important insights into the 

cell state landscape. If normal differentiation and iPS reprogramming can be considered 

transitions that are more or less ‘vertical’ but in opposite directions, then it seems that 

transdifferentiation takes ‘horizontal’ shortcuts. Put differently, in the context of the 

entire cell state landscape, the distance between two somatic cell types might be shorter 

than expected based on their phenotypic differences, resulting in a surprisingly efficient 

conversion.  
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Summary 

It has been over half a century since the first amphibian cloning experiments enabled the 

crucial conceptual advance, that genetic information is conserved during development. 

Unlocking this latent potential in somatic cells has proved to be far from trivial, due to 

highly conserved epigenetic mechanisms and regulatory networks inherent in our genetic 

makeup. However, significant progress has been made in converting cellular fate with 

master regulator transcription factors, culminating in the generation of a number of 

clinically interesting cell types that include pluripotent stem cells and neuronal cells, 

starting from unrelated somatic cell types. It now seems plausible that conditions for any 

arbitrary cell fate transition may be found.  

Though only in its infancy, regenerative medicine enabled by nuclear 

reprogramming technologies holds promises for many human conditions that are 

currently untreatable. In this regard, we note that there is limited functional data for the 

reported reprogrammed cell types, especially in the context of a live organism. Continued 

efforts to produce clinical-grade, patient-specific cells are needed to realize the potential 

therapeutic value of this approach.  

Importantly, a consistent picture of the cell state landscape is beginning to emerge 

from reprogramming studies and system-wide analyses of cell fate. It will now be 

interesting to explore additional aspects of this space: for example, can we produce 

highly specialized cell types, such as a specific neuronal subtype, by transdifferentiation? 

Are there isolatable intermediate states during reprogramming? And can other agents, 

such as signaling molecules or chemicals, play important roles in this process? Our future 

efforts to navigate the cell state landscape may benefit from answers to these questions. 
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Chapter 2 

 

A Small Molecule Inhibitor of Tgf-b  Signaling Replaces Sox2 in 
Reprogramming by Inducing Nanog  
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Abstract 

 

The combined activity of three transcription factors can reprogram adult cells into 

induced pluripotent stem (iPS) cells. However, the transgenic methods used to 

deliver reprogramming factors have raised concerns regarding the future utility of 

the resulting stem cells. These uncertainties could be overcome if each transgenic 

factor were replaced with a small molecule that either directly activated its 

expression from the somatic genome or in some way compensated for its activity. To 

this end, we have used high-content chemical screening to identify small molecules 

that can replace Sox2 in reprogramming. We show that one of these molecules 

functions in reprogramming by inhibiting Tgf-b  signaling in a stable and trapped 

intermediate cell type that forms during the process. We find that this inhibition 

promotes the completion of reprogramming through induction of the transcription 

factor Nanog. 
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Introduction 

Retroviral transduction with three genes: Sox2, Oct4, and Klf4, can directly reprogram 

somatic cells to a pluripotent stem cell state (Okita et al., 2007; Takahashi et al., 2007b). 

Unfortunately, the resulting induced pluripotent stem (iPS) cells are suboptimal for 

applications in transplantation medicine and disease modeling because both the viral 

vectors used for gene transfer and the reprogramming factors they encode are oncogenic 

(Hacein-Bey-Abina et al., 2003; Nakagawa et al., 2008; Thrasher, 2007).  

 One potential solution is to identify small molecules that can efficiently 

reprogram cells, producing unmodified iPS cell lines better suited for downstream 

applications. Identification of such compounds would allow reprogramming that would 

not be impeded by the laborious nature of protein transduction or the safety concerns 

surrounding transgenic approaches (Kaji et al., 2009; Kim, 2009; Okita et al., 2008).  

Several small molecules that catalyze reprogramming have already been 

described. Compounds that alter chromatin structure, including the DNA 

methyltransferase inhibitor 5-aza-cytidine (Aza) and the histone deacetylase (HDAC) 

inhibitor valproic acid (VPA), can increase reprogramming efficiency and even reduce 

the number of factors required for reprogramming (Huangfu et al., 2008a; Huangfu et al., 

2008b; Mikkelsen et al., 2008; Shi et al., 2008b) . Treatment with these inhibitors 

presumably lowers the barrier to activation of endogenous pluripotency-associated genes. 

However, Oct4 and Sox2 not only activate genes required for pluripotency, they also 

function to repress genes promoting differentiation. It is therefore unlikely that this class 

of small molecules would be sufficient to completely replace the transgenic factors. As a 
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result, there remains a need to identify novel small molecules that can function in 

reprogramming. 

Here, we report the discovery of compounds that can replace the central 

reprogramming factor Sox2. We demonstrate that one of these chemicals specifically acts 

by inhibiting Tgf-b signaling. Interestingly, this compound does not act by inducing Sox2 

expression in the target fibroblasts. Instead, we show that it enables reprogramming 

through the induction of Nanog transcription in a stable, partially reprogrammed cell type 

that accumulates in the absence of Sox2. 

 

Results 

A Screen for Chemical Mediators of Reprogramming 

To identify small molecules that function in reprogramming, we transduced fibroblasts 

with viral vectors encoding Oct4, Klf4, and cMyc and then screened for compounds that 

allowed for reprogramming in the absence of Sox2. We favored this approach because it 

was unbiased with respect to the mechanism by which a given chemical could function 

and would not only deliver chemical compounds with translational utility but also 

provide novel insights into the mechanisms controlling reprogramming.  

Activation of an Oct4::GFP reporter gene in colonies with an ES cell morphology 

has been shown to be a stringent assay for reprogramming (Meissner et al., 2007). In 

mouse embryonic stem (mES) cell culture medium supplemented with VPA, retroviral 

transduction of 7,500 Oct4::GFP transgenic mouse embryonic fibroblasts (MEFs) with 

Oct4, Klf4, cMyc, and Sox2 (Boiani et al., 2004) routinely generated 100-200 GFP+ 

colonies  (Figure 2.1A). In contrast, we observed no GFP+ colonies when Sox2 was 
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omitted  (Figure 2.1A). We used this robust difference to identify small molecules that 

can replace Sox2.  

To facilitate the identification of cellular targets and signaling pathways affected 

by any compounds we discovered, we utilized a library of molecules with known 

pharmacological targets. We transduced Oct4::GFP MEFs with Oct4, Klf4, and cMyc, 

and then plated 2000 cells per well in 96-well format. To each well we added one of 200 

distinct compounds for 7-11 days, while also treating with 2 mM VPA for the first 7 days  

(Figure 2.1B). It was our hope that this approach would allow us to identify both 

compounds that required chromatin remodeling to induce reprogramming (Huangfu et al., 

2008a) and compounds that did not. After 16 days, we scored each well for the presence 

of GFP+ colonies with a mES-like morphology  (Figure 2.1C) and identified 3 

independent hit compounds (Table 2.1). Two of these compounds were distinct 

Transforming Growth Factor-b Receptor 1 (Tgfbr1) kinase inhibitors (E-616452 and E-

616451  (Figure 2.1D-E) (Gellibert et al., 2004)), while the third was a Src-family kinase 

inhibitor (EI-275  (Figure 2.1F) (Hanke et al., 1996)). 

 

Efficient Small Molecule Replacement of Sox2 

Next, we optimized the effective concentration for each hit molecule  (Figure 2.1G-I) and 

quantified the efficiency at which it synergized with VPA to replace Sox2. When 1500 

MEFs were transduced with only Oct4, Klf4, and cMyc and then treated with VPA, we 

did not observe GFP+ colonies (Figure 2.1J). However, the addition of E-616452 (25 

mM), E-616451 (3 mM), or EI-275 (3 mM), led to the formation of GFP+ colonies with an  
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Figure 2.1 
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Figure 2.1. (Continued) 
Identification of Small Molecules That Replace Sox2. (A) Oct4::GFP+ colonies form readily in Oct4, 
Klf4, cMyc, and Sox2-infected MEF cultures and do not form in Oct4, Klf4, and cMyc-infected MEF 
cultures. Scale bars represent 500 mm. (B) Overview of chemical screen for replacement of Sox2. (C) A P0 
colony from Oct4, Klf4, and cMyc-infected MEFs + RepSox that displays a mES-like morphology and is 
Oct4::GFP+. Scale bars represent 200 mm. (D-F) Chemical structures and optimal reprogramming 
concentrations for each hit molecule. (D) E-616452 (RepSox). (E) E-616451. (F) EI-275 (F). (G-I) 
Oct4::GFP+ colony formation in Oct4, Klf4, cMyc-infected MEFs as a function of compound 
concentration. 2 mM VPA was used in all wells. (G) RepSox. (H) E-616451. (I) EI-275. (J) Quantification 
of small molecule replacement of Sox2 in Oct4, Klf4, and cMyc-infected MEFs with and without VPA 
treatment. Colonies were counted at 30 days post-infection. (K) Sox2 replacement by RepSox is not 
dependent on cMyc (no VPA treatment). (L-M) RepSox can replace Sox2 in defined factor reprogramming 
of adult tail tip fibroblasts. (L) Oct4::GFP+ P0 colony derived from Oct4, Klf4, cMyc-infected tail tip 
fibroblasts treated with RepSox for 14 days. Scale bars represent 200 mm. (M) Passage 5 Oct4::GFP+ cell 
line derived from a P0 colony. Scale bars represent 500 mm. 
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 E-616452 

(RepSox) 

E-616451 EI-275 

7-day treatment 11 8 0 

11-day treatment 9 10 3 

 
 
Table 2.1. 
Preliminary Validation of Hit Molecules. Number of Oct4::GFP colonies detected for each chemical in 
the primary screen after transduction of Oct4, Klf4, and cMyc and VPA treatment. 
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ES cell morphology at a rate that was comparable to transduction with Sox2  (Figure 

2.1F).  

Since the three compounds were identified in the presence of VPA, we next 

determined whether these molecules were dependent on this HDAC inhibitor for their 

reprogramming activities. We found that E-616451 and EI-275 could not induce the 

appearance of GFP+ colonies in the absence of VPA  (Figure 2.1J), while E-616452 

could do so and at a rate that was similar to a positive control transduced with the Sox2 

retrovirus  (Figure 2.1J).  

Although cMyc does increase the efficiency of reprogramming, it is not required 

for the generation of iPS cells (Nakagawa et al., 2008). Since the elimination of cMyc is 

an important step towards reducing the risk of tumor formation, we tested whether E-

616452 could function in the absence of this oncogene. When added to MEFs transduced 

with only Oct4 and Klf4, E-616452 induced the formation of GFP+ colonies with an 

efficiency similar to viral Sox2  (Figure 2.1G).  

Previous reports on small molecules that affect reprogramming have focused on 

MEFs or neural stem cells (NSCs). These cells may be reprogrammed more easily due to 

either their proliferative capacity or their expression of iPS factors (Huangfu et al., 

2008a; Shi et al., 2008a; Shi et al., 2008b). However, it may be that chemical modulation 

of gene expression is cell-type specific and we therefore determined if the 

reprogramming compound we identified functioned in a more patient-relevant cell type. 

When we infected adult tail tip fibroblasts with Oct4, Klf4, and cMyc alone, we did not 

observe Oct4::GFP+ colonies. However, when we added E-616452, we readily observed 

reprogramming  (Figure 2.1L). The resulting Oct4::GFP+ colonies could be expanded 
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into cell lines that maintained homogeneous Oct4::GFP expression and self-renewed 

similarly to mES and 4-factor control iPS lines (Figure 2.1M). Because it could 

efficiently replace transgenic Sox2 in the absence of VPA and cMyc, as well as in both 

embryonic and adult fibroblasts, we chose to further characterize E-616452 and named it 

RepSox, for Replacement of Sox2. 

 

RepSox-Reprogrammed Cells Are iPS Cells 

Investigation of self-renewal capacity (Figure 2.2A), gene expression program, and 

pluripotency demonstrated that Oct4::GFP+ cells induced by the RepSox replacement of 

Sox2 were bona fide iPS cells. PCR with primers specific to the Oct4, Klf4, cMyc, and 

Sox2 transgenes confirmed that this cell line did not harbor transgenic Sox2  (Figure 

2.2B). Chromosomal analysis indicated it was karyotypically normal  (Figure 2.2C).  

The Oct4::GFP+ cells co-expressed alkaline phosphatase  (Figure 2.2D) and the 

endogenous alleles of the Nanog and Sox2 genes, suggesting pluripotency had been 

established  (Figure 2.2E).  The global transcriptional profile of cells reprogrammed with 

RepSox was similar to that of an iPS cell line produced with all four transgenes and as 

similar to those of mES cells (Pearson correlation coefficient = 0.95-0.97) as two distinct 

mES cell lines profiles were to each other (Pearson correlation coefficient = 0.96) 

(Figures 2.2F-H and Table 2). The profile differed significantly from that of the somatic 

MEFs  (Figure 2.2F).  

Cells produced with RepSox could readily form both embryoid bodies and 

teratomas that contained differentiated cell types of the three distinct embryonic germ 

layers  (Figure 2.3B). In addition, we observed that these cells could respond to directed  
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Figure 2.2.  
Self-Renewal and Gene Expression of RepSox-Reprogrammed Cells. (A) An Oct4::GFP+ iPS line that 
was derived from a culture of RepSox-treated Oct4, Klf4, and cMyc-infected MEFs (OKM + RepSox Line 
1) displays the characteristic mES-like morphology and self-renewal properties. Passage 11. Scale bars 
represent 500 mm. (B) PCR for viral transgenes using genomic DNA isolated from a control iPS cell line 
generated with Oct4, Klf4, cMyc, and Sox2 and a RepSox-reprogrammed cell line generated with Oct4, 
Klf4, and cMyc + RepSox. (C) Normal karyotype of a passage 8 cell from Oct4, Klf4, and cMyc + RepSox 
line 1. 20 cells were counted and 5 cells were karyotyped by GTL banding. ll cells were karyotypically 
normal 40, XY. (D) Oct4, Klf4, and cMyc + RepSox Line 1 at Passage 5. Red color indicates alkaline 
phosphatase activity. Scale bar represents 500 mm. (E) Antibody staining of OKM + RepSox line 1 cells 
shows that they express markers of pluripotent stem cells Sox2 and Nanog. Scale bars represent 100 mm. 
(F-H) Microarray scatter plots showing correlation of global gene expression profiles. (F) OKM + RepSox 
Line 1 is transcriptionally very different from somatic MEFs, and (G) highly similar to the mES line V6.5, 
as well as (H) to an iPS line generated with Oct4, Klf4, cMyc, and Sox2 (OKMS-iPS). 



 69 

 

 

 

 

 

 

 

 
   

 mES1 

(R1) 

mES2 

(V6.5) 

OKMS-

iPS 

OKM + 

RepSox 

MEF 

mES1 (R1) 1.00 0.96 0.98 0.96 0.80 

mES2 (V6.5)  1.00 0.99 0.97 0.81 

OKMS-iPS   1.00 0.97 0.82 

OKM+RepSox    1.00 0.79 

MEF     1.00 

 
 
Table 2.2.  
Pearson Correlation Coefficients of Global Gene Expression. The following cell types were compared 
pairwise: two mES cell lines (R1 and V6.5); Oct4, Klf4, cMyc, and Sox2 iPS line 1 (OKMS-iPS); Oct4, 
Klf4, and cMyc + RepSox iPS line 1 (OKM + RepSox); and Oct4::GFP MEFs (MEF). 
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differentiation signals in vitro and robustly differentiate into Hb9+/Tuj1+ motor neurons  

(Figure 2.3A). 

In order to more definitively confirm the pluripotency of cells reprogrammed with 

RepSox, we tested their ability to contribute to chimeric embryos in vivo. We labeled 

cells with a lentiviral transgene encoding the red fluorescent Tomato-protein and injected 

them into blastocysts. Both embryos and adult mice with significant contribution from 

the iPS cells were obtained (Figures 2.3C-D). Although adult mice with high contribution 

from the iPS cells were observed, we found it difficult to assess the contribution of these 

cells to the germ-line, as the majority of animals developed tumors at or before the time 

of sexual maturity. However, we did observe that the reprogrammed cells could 

contribute Oct4::GFP+ cells to the genital ridges of embryonic chimeras, demonstrating 

contribution of these pluripotent cells to the germ-line  (Figure 2.3E). Together, these 

results demonstrate that the RepSox-reprogrammed cells are indeed iPS cells. 

 

RepSox Can Replace Sox2 and c-Myc by Inhibiting Tgf-b  Signaling 

Previous studies with RepSox suggest that it can act as an inhibitor of the Tgfbr1 kinase 

(Gellibert et al., 2004). Therefore, we investigated whether the mechanism by which 

RepSox functions to replace Sox2 is through the inhibition of Tgf-b signaling. If Tgfbr1 is 

the functional target of RepSox, then a structurally unrelated inhibitor of Tgf-b signaling 

or depletion of Tgf-b ligands from the culture medium might also replace Sox2. The small 

molecule SB431542  (Figure 2.4A) is known to inhibit Tgfbr1 kinase and is structurally 

distinct from RepSox (Inman et al., 2002). When we treated fibroblasts 
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Figure 2.3.  
RepSox-Reprogrammed Cells Are Pluripotent. (A) Motor neurons differentiated in vitro from OKM + 
RepSox line 1. Scale bar represents 200 mm. (B) Teratomas containing cells of allthe three germ layers 
formed by injection of OKM + RepSox line 1 cells into nude mice. (C) E12.5 chimeric mouse embryo (left, 
vs. non-chimeric littermate on the right) showing a high amount of contribution from OKM + RepSox line 
1 cells constitutively expressing the dTomato red fluorescent protein. (D) 8 week-old chimeric mouse 
formed by injection of OK + RepSox line 1 cells (C57BL6 genetic background) into an ICR blastocyst. (E) 
Oct4::GFP+ cells derived from an OKM + RepSox cell line are present in the genital ridge of a male 
embryo at 13.5 d.p.c. 
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transduced with Oct4, Klf4, and cMyc with 25 mM SB431542, we observed ~10 GFP+ 

colonies per 7500 cells plated  (Figure 2.4B). Likewise, when we transduced fibroblasts 

in the presence of either an antibody that neutralized a variety of Tgf-b ligands (R&D 

Systems, AB-100-NA) or an antibody specific to Tgf-b II (R&D Systems, AB-12-NA), 

Oct4::GFP+ colonies were generated  (Figure 2.4B). In contrast, we observed no GFP+ 

colonies in transductions without these Tgf-b inhibitors. These results are consistent with 

the notion that at least part of the mechanism by which RepSox replaces Sox2 in 

reprogramming is through the inhibition of Tgf-b signaling.  

Our goal was to identify molecules that specifically replace Sox2 instead of 

generally increasing reprogramming efficiency. If RepSox acts specifically to replace 

Sox2, then we would not expect it to stimulate reprogramming in the presence of 

transgenic Sox2. When RepSox- or Tgf-β antibody-treated MEFs were transduced with 

Oct4, Klf4, cMyc and Sox2, we observed less than a 2-fold increase in the number of 

GFP+ colonies over the untreated controls (Figures 2.4C-D). The magnitude by which 

RepSox stimulated reprogramming in this context was significantly less than the 10-fold 

increase that we observed following treatment with VPA, a compound thought to 

increase reprogramming efficiency  (Figure 2.1J).  

In order to further investigate the specificity of Sox2 replacement by RepSox, we 

tested the ability of this molecule to individually replace Oct4, Klf4, and cMyc in 

reprogramming. We found that RepSox could not induce GFP+ colonies in the absence 

of either Oct4 or Klf4, even in the presence of VPA  (Figure 2.4E). In contrast, we found 

that RepSox did increase the number of Oct4::GFP+ colonies by 20-fold in the absence 

of cMyc, thereby fully replacing it in reprogramming  (Figure 2.4F). In addition, the  
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Figure 2.4.  
 

 



 74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4. (Continued) 
RepSox Specifically Replaces Sox2 by Inhibiting Tgf-b  Signaling. (A) Chemical structure of SB431542, 
an inhibitor of Tgfbr1 activity. , with the optimal concentration for Sox2 replacement listed. (B) Inhibition 
of Tgf-b signaling by treatment of Oct4, cMyc, and Sox2-infected MEFs with SB431542 or Tgf-b 
neutralizing antibodies replaces Sox2. Colonies were counted at 30 days post-infection. (C) RepSox does 
not increase the efficiency of Oct4::GFP+ colony induction in Oct4, Klf4, cMyc, and Sox2-infected MEFs. 
Shown are the numbers of colonies per 7500 infected cells plated. Colonies were counted at 30 days post-
infection. (D) Inhibition of Tgf-b signaling by Tgf-b neutralizing antibodies does not increase the efficiency 
of Oct4::GFP+ colony induction in Oct4, Klf4, cMyc, and Sox2-infected MEFs. Shown are the numbers of 
colonies per 7500 infected cells plated. Colonies were counted at 30 days post-infection. (E) RepSox does 
not replace transgenic Oct4 or transgenic Klf4 in reprogramming. We observed no Oct4::GFP+ colonies in 
RepSox-treated Klf4, cMyc, Sox2-infected MEFs or Oct4, cMyc, Sox2-infected MEFs out of 30,000 cells 
plated both with and without VPA treatment. We routinely observe 30-40 Oct4::GFP+ colonies when we 
plate the same number of Oct4, Klf4, cMyc-infected MEFs and treat with RepSox. Colonies were counted 
at 30 days post-infection.(F) RepSox can replace cMyc in reprogramming. Cells were transduced with 
Oct4, Klf4, and cMyc and treated with RepSox continuously starting at day 5 post-infection. Colonies were 
counted at 30 days post-infection. (G) Inhibition of Tgf-b signaling can replace cMyc in reprogramming. 
Cells were transduced with Oct4, Klf4, and cMyc and treated with inhibitors of Tgf-b signaling 
continuously starting at day 5 post-infection. Colonies were counted at 30 days post-infection. 
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structurally distinct Tgf-b inhibitor SB431542 and a Tgf-b-specific neutralizing antibody 

both increased reprogramming efficiency in the absence of cMyc  (Figure 2.4G). From 

these experiments, we conclude that RepSox enables the replacement of the 

reprogramming activities provided by both transgenic Sox2 and cMyc. In both cases, 

these complementing activities seem to be mediated through the inhibition of Tgf-b 

signaling. 

 

RepSox Replace Sox2 by Acting on Intermediates Formed during the Reprogramming 

Process  

The development of cocktails of small molecules that can effectively reprogram somatic 

cells may require a detailed knowledge of the mechanism and kinetics by which each 

compound acts. Therefore, we determined the optimal duration of time by which 

inhibition of Tgf-b signaling using RepSox can help induce reprogramming. 

Initially, we pretreated MEFs with RepSox, applying the chemical for three days, 

and then removed it at the time of transduction with Oct4, Klf4, and cMyc. In these 

experiments, no Oct4::GFP+ colonies were formed  (Figure 2.5A), suggesting that 

RepSox does not act on the initial somatic cells to replace Sox2. Consistent with this 

result, we did not detect a significant increase in the expression of endogenous Sox2 or 

closely related Sox family members upon RepSox treatment  (Figure 2.5B). In addition, 

RepSox treatment did not decrease the expression of the mesenchymal gene Snai1  

(Figure 2.5C), which is downregulated 5-40-fold by transduction of the 4 reprogramming 

factors (Mikkelsen et al., 2008). Thus, RepSox does not destabilize the pre-existing MEF 

transcriptional program.  
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Figure 2.5.  
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Figure 2.5. (Continued)  
A Short Pulse of RepSox Is Sufficient for Sox2 Replacement and Most Effective at Later Time Points. 
(A) Time course of RepSox treatmentGraph showing the number of Oct4::GFP+ colonies induced by 
various timings of RepSox treatment of Oct4, cMyc, and Sox2-infected MEFs in mES medium. Colonies 
were counted at 24 days post-infection. (B-D) RepSox treatment in Oct4, Klf4, and cMyc-transduced MEFs 
does not induce the expression of Sox-family members or decrease the expression of fibroblast-specific 
genes, but it does increases L-Myc mRNA expression in MEFs. (B) Sox-family gene expression. Note that 
Sox3 expression did not change significantly. Shown are changes relative to untreated controls. (C) 
Fibroblast-specific gene expression. (D) L-Myc expression analysis. Untransduced MEFs were treated with 
25 mM RepSox for 7 days and mRNA expression was determined by microarray analysis. Fold-induction is 
relative to untreated control samples. (E) Timecourse of RepSox treatment showing the number of 
Oct4::GFP+ colonies induced by a 24-hr pulse of RepSox on Oct4, cMyc, and Sox2-infected MEFs in 
serum-free mES medium with knockout serum replacement (KSR mES). Colonies were counted at 24 days 
post-infection. Shown are average colony numbers +/- the standard deviation. (F) Oct4::GFP+ colonies 
appear at day 14 regardless of whether RepSox treatment is initiated at day 7 or day 10 post-transduction.  
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In contrast, we found that RepSox did increase by 5-fold the expression of L-Myc, 

a close homolog of cMyc that can functionally replace it in reprogramming (Nakagawa et 

al., 2008)  (Figure 2.5D). Together these data suggest that although RepSox likely 

functions at the level of the initial somatic cell population to replace cMyc, it does not act 

on the starting MEF population to replace Sox2. 

Because RepSox did not seem to act directly on the fibroblasts to replace Sox2, 

we investigated whether or not it functioned on intermediates that arose during 

reprogramming. To address this question, we varied both the duration and timing of 

RepSox treatment in order to determine when it was most effective. First, we transduced 

7,500 MEFs with Oct4, Klf4, and cMyc, waited for 4 days, and then treated cultures with 

RepSox for either 3, 6, 9, or 18 additional days. Although a short 3-day treatment from 

days 4-7 induced a small number of Oct4::GFP+ colonies, the 9-day treatment from days 

4-13 yielded the most Oct4::GFP+ colonies  (Figure 2.5A).  

Next, we varied the timing at which we initiated RepSox treatment, administering 

the compound beginning at day 4, 7, 10, 13, or 16 after transduction. We found that 

delaying the start of RepSox treatment increased its reprogramming potency, with 

optimal treatment beginning at 10 days post-transduction  (Figure 2.5A). Together these 

results suggest that RepSox treatment is most effective between days 7-12 post-

transduction.  

To more precisely define the optimal treatment window, we determined the 

minimal duration of treatment required to induce reprogramming. We found that a 

treatment as short as only one day was sufficient to induce detectable reprogramming  

(Figure 2.5E). Delaying this short treatment yielded more reprogrammed colonies, with a 
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sharp increase at day 11  (Figure 2.5E). These results indicate that RepSox is most 

effective at replacing Sox2 during days 10-11 after transduction and that therefore 

cultures of Oct4, Klf4, and cMyc-transduced MEFs give rise to intermediates capable of 

responding to RepSox treatment. These intermediates appear at day 4 post-transduction 

and peak at days 10-11. 

Interestingly, when we tracked the timing of the initial appearance of 

reprogrammed colonies as a function of the timing of RepSox administration, we found 

that regardless of whether we began treatment at day 7 or day 10 post-transduction, 

Oct4::GFP+ colonies first appeared at day 14  (Figure 2.5F). This suggests that RepSox 

may not always be the rate-limiting step in this reprogramming process and that other, 

RepSox-independent events take place during the formation of the RepSox-responsive 

intermediates. 

 

RepSox-Responsive Cell Lines 

Our finding that a 24-hr pulse of RepSox can replace Sox2  (Figure 2.5E) differs 

strikingly from the 5-10 day period of transgene expression normally required (Sridharan 

et al., 2009; Wernig et al., 2007) and suggests that RepSox could trigger a switch 

activating reprogramming. If RepSox acts to flip a switch in semi-stable intermediate cell 

types that accumulate in the absence of retroviral Sox2 expression, we reasoned that it 

might also be possible to culture these responsive intermediates for prolonged periods of 

time. On the other hand, if RepSox acts during a critical window on very transient 

intermediates, this might not be possible. To distinguish between these models, we 

transduced Oct4::GFP MEFs with Oct4, Klf4, and cMyc, waited 10-14 days, and then 
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clonally expanded 10 iPS-like, GFP-negative colonies  (Figure 2.6A). These cell lines 

continued to proliferate for at least 4 passages and often maintained an iPS-like 

morphology  (Figure 2.6A) but never further activated expression of Oct4::GFP. 

However, when we treated these cell lines with a 48-hour pulse of RepSox, 5-10% of the 

colonies in 2 of the 10 lines became Oct4::GFP+  (Figure 2.6A-B). These results 

demonstrate that partially reprogrammed cells can accumulate in the absence of Sox2 and 

that some, but not all, of these cells can be clonally expanded and cultured for prolonged 

periods while maintaining responsiveness to RepSox.  

As we had shown that this particular reprogramming molecule seems to replace 

Sox2 through the inhibition of Tgf-b signaling, we sought to determine whether RepSox 

treatment affected Tgf-b signal transduction pathways in these responsive cell lines. To 

this end, we determined the levels of phosphorylated Smad3 by western blot in cell line 

OKM 10 both with and without RepSox treatment. Without RepSox treatment, we 

detected relatively high levels of phosphorylated Smad3, suggesting that Tgf-b signaling 

was active  (Figure 2.6C). In contrast, treatment with 25 mM RepSox almost completely 

eliminated Smad3 phosphorylation  (Figure 2.6C), indicating that RepSox strongly 

inhibited Tgf-b signaling in these cells.  

Because an increase in cell proliferation can also increase reprogramming 

efficiency (Hong et al., 2009) and possibly contribute to the replacement of transgenic 

Sox2, we measured the proliferation rate of partially reprogrammed OKM 10 cells both 

with and without RepSox. Treatment with RepSox decreased the proportion of cells in 

G2/M phase of the cell cycle  (Figure 2.6D), indicating it does not increase the 

proliferation rate of these partially reprogrammed cells. 
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Figure 2.6.  
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Figure 2.6. (Continued) 
Stable Intermediates Can Be Reprogrammed by RepSox. (A) Stable Oct4::GFP-negative cell lines 
derived from Oct4::GFP-negative colonies in Oct4, Klf4, and cMyc-infected MEF cultures can be 
reprogrammed by RepSox. Oct4::GFP-negative colonies were picked at day 14 post-infection, propagated, 
treated with 25 mM RepSox for 48 hours at passage 4, and scored for Oct4::GFP+ colonies 12 days after 
RepSox treatment. Scale bars in “OKM line 10 + RepSox” panels represent 500 mm; all other scale bars 
represent 200 mm. (B) Two of 10 stable, non-pluripotent intermediate cell lines derived from MEFs 
transduced with Oct4, Klf4, and cMyc can be reprogrammed with RepSox treatment but none can be 
reprogrammed with Aza treatment. (C) Western blot for phospho-Smad3 showing that RepSox inhibits 
Tgf-b signaling in line OKM 10 (OKM 10) cells. Lysates were generated from cells treated with 25 
 RepSox for 48 hours in mES media. (D) RepSox does not increase the proliferation of OKM 10 cells. (E) 
Stable Oct4::GFP-negative cell lines derived from Oct4::GFP negative colonies in Oct4, Klf4, cMyc and 
Sox2-infected MEF cultures can be reprogrammed by RepSox. Scale bars in “P4 line + RepSox” panels 
represent 500 mm; all other scale bars represent 200 mm.  RepSox in mES media without feeders for 72 
hours and subjected to cell cycle analysis by propidium iodide staining and flow cytometry. (F) Stable 
Oct4::GFP-negative cell lines derived from Oct4::GFP-negative colonies in Oct4, Klf4, cMyc and Sox2-
infected MEF cultures can be reprogrammed by RepSox or by Aza, but lines responsive to RepSox are not 
responsive to Aza alone and lines responsive to Aza are not responsive to RepSox alone, indicating the 
presence of two different types of stable intermediates in the reprogramming cultures.  
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Cells That Respond to RepSox Treatment Are Distinct from Previously Described 

Intermediates 

It has been shown that certain non-pluripotent, partially reprogrammed cell lines derived 

from MEFs transduced with Oct4, Klf4, cMyc, and Sox2 can be fully reprogrammed with 

Aza or a combination of chemical inhibitors of Glycogen Synthase Kinase 3b (GSK-3b) 

and the Mek signaling pathway (2i conditions) (Mikkelsen et al., 2008; Silva et al., 

2008). If the RepSox-responsive cell lines generated by overexpression of Oct4, Klf4, and 

cMyc were similar to these 4-factor cell lines, then they should also be reprogrammed by 

Aza or 2i. However, when we treated the 10 stable intermediate lines with either Aza or 

2i for 48 hours, we found that none became reprogrammed  (Figure 2.6B), indicating that 

the RepSox-responsive stable intermediates are distinct from partially reprogrammed cell 

lines described previously (Mikkelsen et al., 2008; Silva et al., 2009). Consistent with 

these results, in vitro assays of kinase activity revealed that RepSox does not inhibit the 

targets of the 2i cocktail (Table 2.3).  

It occurred to us that some non-pluripotent cells derived from MEFs transduced 

with Oct4, Klf4, cMyc, and Sox2 could potentially be held in a non-pluripotent state due 

to inappropriate levels of transgene expression and therefore might also be responsive to 

RepSox treatment. To test this hypothesis, we transduced Oct4::GFP MEFs with Oct4, 

Klf4, cMyc, and Sox2, then picked and clonally expanded 9 GFP-negative colonies at day 

14 after transduction  (Figure 2.6E). After treatment with RepSox, 5 of the 9 cell lines 

yielded reprogrammed colonies, with 2-33% of the colonies in each line becoming 

Oct4::GFP+ (Figures 2.6E-F). These results indicate that like the stable intermediate 
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 Average 

% inhibition 

Standard 

error 

Mek1 3 1 

Mek2 -4 1 

Erk1 7 0 

Erk2 -2 2 

GSK-3b 1 0 

 
 
Table 2.3.  
In Vitro Profiling of Kinase Inhibition Activities of RepSox. RepSox does not inhibit the kinase targets 
of the 2i cocktail. Assays were performed in duplicate using the Z’-LYTE system (Invitrogen). 
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cells generated with only Oct4, Klf4, and cMyc, certain incompletely reprogrammed cells 

generated by Oct4, Klf4, cMyc, and Sox2 transduction can also be reprogrammed by 

RepSox.  

Next, in order to determine if these RepSox-responsive intermediate cell lines 

derived after Oct4, Klf4, cMyc, and Sox2 transduction were similar to or distinct from 

previously described partially reprogrammed cell lines (Mikkelsen et al., 2008), we 

applied Aza to all 9 lines. After 48 hours of Aza treatment and 12 subsequent days in 

culture, none of the RepSox-responsive cell lines expressed Oct4::GFP  (Figure 2.6F). 

However, one of the lines that had been refractory to RepSox treatment did express 

Oct4::GFP after Aza treatment, indicating that it had undergone complete reprogramming  

(Figure 2.6F). Together, these results show that there are a variety of intermediates that 

can form following retroviral transduction and that they vary in their responsiveness to 

reprogramming molecules. 

 

RepSox Replaces Sox2 by Inducing Nanog Expression 

The causal molecular events that drive reprogramming are difficult to detect because of 

the low efficiency at which somatic cells are successfully reprogrammed (Amabile and 

Meissner, 2009). However, when we administered RepSox to cell lines that had been 

partially reprogrammed by retroviral transduction, Oct4::GFP expression was induced in 

up to 33% of the resulting colonies  (Figure 2.6F). We used this more efficient 

reprogramming system to identify the changes in gene expression induced by RepSox 

that enable it to bypass the requirement for transgenic Sox2 expression. 



 86 

 We treated an Oct4::GFP-negative, partially reprogrammed cell line (OKMS 6) 

with RepSox and performed global gene expression analysis at 10, 24, and 48 hours 

following the initiation of treatment. To confirm that RepSox was inhibiting Tgf-b 

signaling in this intermediate cell line, we investigated expression changes in known Tgf-

b-responsive genes after RepSox treatment. The Inhibition of Differentiation genes Id1, 

Id2, and Id3 are repressed by Tgf-b signaling in mES cells (Ying et al., 2003). After 

treating the RepSox-responsive intermediate line OKM 10 with RepSox for 24 hours, we 

observed increased expression of Id1, Id2, and Id3  (Figure 2.7A). 

One way that RepSox could function to replace transgenic Sox2 would be to 

induce the expression of endogenous Sox2 or a Sox-family member, such as Sox1 or 

Sox3, that can substitute for it in reprogramming (Nakagawa et al., 2008). However, we 

again did not observe a significant increase in the expression of Sox1, Sox2, Sox3, or any 

of the remaining Sox-family transcription factors within the first 48 hours of RepSox 

treatment  (Figure 2.7B). Additionally, short-hairpin RNA (shRNA)-mediated depletion 

of Sox1, the most potent Sox-family member other than Sox2 itself (Nakagawa et al., 

2008), did not affect the rate of reprogramming in the presence of RepSox  (Figure 2.7C). 

These results show that RepSox does not replace Sox2 by directly activating endogenous 

Sox2 or other closely related genes. 

Next, we more broadly investigated changes in transcription factor expression 

following chemical treatment. We did not observe an increase in endogenous Oct4 or 

Klf4 expression at early time points following RepSox treatment. However, we found that 

the expression of the homeodomain factor Nanog was among the most increased 

following RepSox treatment. Relative to untreated controls, Nanog transcription  
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Figure 2.7.  
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Figure 2.7. (Continued) 
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Figure 2.7. (Continued) 
Induction of Nanog by RepSox Is Necessary for Its Reprogramming Activity. (A-B) RepSox-induced 
gene expression changes in in RepSox-responsive intermediate line OKMS 6 relative to untreated, time-
matched controls. Cells were treated with 0 or 25 mM RepSox for 48 hours before RNA was harvested and 
analyzed by microarray. (A) Id gene expression increases. (B) Sox-family gene expression does not 
increase. Levels of Sox3, 4, 6, 8, and 17 did not change significantly. (C) shRNA-mediated knockdown of 
Sox1 does not inhibit reprogramming with RepSox. Oct4, Klf4, cMyc-transduced MEFs were transduced 
once or twice with lentiviral particles encoding 5 different Sox1-specific shRNA constructs or an empty 
vector control and subjected to RepSox treatment (25 mM) in KSR mES media. KSOM MEFs = Klf4, Sox2, 
Oct4, and cMyc-transduced MEFs. (D) RepSox treatment of RepSox-responsive line OKMS 6 strongly 
increases Nanog mRNA levels. Data wereas generated by microarray analysis and are relative to untreated 
controls. Nanog is induced faster and more significantly than Sox2, indicating it is upregulated before fully 
reprogrammed cells form. (E) RT-PCR analysis showing that Iinhibition of Tgf-b signaling increases 
Nanog expression in the RepSox-responsive intermediate line OKMS 7. (F) RepSox does not increase 
Nanog expression in non-RepSox-responsive intermediate lines OKMS 9 and OKM 9. Cells were treated 
with RepSox for 2 days in KSR mES media before RNA was harvested. Treatment was performed in KSR 
mES media. (G) A pulse of RepSox induces a persistent increase in Nanog expression in the RepSox-
responsive intermediate line OKM 10. OKM 10 cells were treated with 25 mM RepSox for 48 hours and 
RNA samples were taken at 0, 48, and 96 hours (48 hours after removal of RepSox) and analyzed by RT-
PCR for Nanog expression. (H-I) Bmp signaling increases in response to RepSox treatment. (H) Western 
blot for phospho-Smad1/5/8 shows an increase in the amount of the phosphorylated protein after a 48-hr 
RepSox treatment. (H) mRNA expression analysis shows that Bmp-3 levels increase upon RepSox 
treatment. Data are relative to untreated controls. (J-K) mRNA Expression analysis shows that non-
pluripotent stable intermediate cell lines express the LIF receptor at the same level as mES cells, but freshly 
transduced MEFs do not, and MEFs do not upregulate Nanog significantly after RepSox treatment. (J) 
MEFs freshly infected with Oct4, Klf4, and cMyc (OKM MEFs day 7) express lower levels of the LIF 
receptor. (K) Nanog mRNA levels in MEFs freshly transduced with Oct4, Klf4, and cMyc (within 7 days) 
do not increase upon RepSox treatment. (L) shRNA-mediated knockdown of Nanog in OKM 10 cells 
inhibits replacement of Sox2 by RepSox. 



 90 

increased 4-fold within 24 hours and 10-fold after 48 hours of RepSox treatment  (Figure 

2.7D-E). In contrast, we did not observe a rapid increase in Nanog expression in 2 

Oct4::GFP-negative intermediate cell lines that could not be fully reprogrammed using 

RepSox  (Figure 2.7F). Therefore, we hypothesized that RepSox might replace Sox2 by 

inducing Nanog expression.  

Because we had determined that inhibition of Tgf-b signaling by several different 

small molecules and antibodies can replace Sox2, we reasoned that if the increase in 

Nanog expression was critical for Sox2 replacement, the alternative inhibitors of Tgf-b 

signaling should also upregulate Nanog. To test this hypothesis, we treated the RepSox-

responsive cell lines with RepSox, SB431542, or neutralizing antibodies and analyzed 

Nanog expression after 48 hours. In all cases, Nanog expression was strongly induced 

within 48-96 hours  (Figure 2.7E).  

If RepSox functions by increasing Nanog expression, then a short pulse of 

RepSox should induce a persistent increase in Nanog expression. To test this, we treated 

the RepSox-responsive intermediate cell line OKM 10 with RepSox for 48 hours, 

withdrew RepSox and then analyzed Nanog expression 48 hours later. A control time 

point taken just before RepSox withdrawal showed a significant increase in Nanog 

transcription  (Figure 2.7G). 48 hours after RepSox removal (96 hours after the initiation 

of treatment), Nanog expression continued to increase  (Figure 2.7G).  

Previous reports have shown that chemical inhibition of Tgf-b signaling by 

SB431542 increases Bone Morphogenetic Protein (Bmp) signaling in embryonic stem 

cells (Xu et al., 2008). It has separately been shown that Bmp signaling in the presence of 

Stat3 induces Nanog expression in mES cells (Suzuki et al., 2006). The cross-talk 
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between the Tgf-b and Bmp signaling pathways may be the result of a common 

requirement for Smad 4, which mediates transcriptional events in the nucleus (Attisano 

and Wrana, 2002). Similarly, we observed an increase in the levels of phosphorylated 

Smad1 protein and Bmp-3 mRNA in incompletely reprogrammed intermediates 

following RepSox treatment  (Figure 2.7H-I). Furthermore, the stable, partially 

reprogrammed cells that responded to RepSox expressed the LIF receptor at levels 

equivalent to those found in mES cells  (Figure 2.7J). Expression of this receptor suggests 

that its downstream signal transduction pathway could be active in these cells, resulting 

in the presence of activated Stat3, which is known to induce Nanog expression in 

conjunction with Bmp signaling.  

If Nanog upregulation is the mechanism by which RepSox replaces Sox2, we 

would not expect Nanog to be upregulated in RepSox-treated MEFs, since RepSox does 

not act on the initial population of fibroblasts in this capacity. Indeed, within 7 days of 

transduction of MEFs with Oct4, Klf4, and cMyc, we did not observe an increase in 

Nanog expression upon RepSox treatment  (Figure 2.7K). This may be explained in part 

by the observation that the LIF receptor, and thus activated Stat3, were not highly 

expressed in these cells  (Figure 2.7J).  

We decided to investigate whether Nanog upregulation is a necessary event 

during RepSox-mediated reprogramming. If RepSox replaces Sox2 by increasing Nanog 

expression, then a forced reduction of Nanog expression should inhibit or even prevent 

reprogramming by RepSox. To test this hypothesis, we transduced the RepSox-

responsive cell line with a lentivirus encoding an shRNA specific for Nanog. The Nanog-

knockdown cells reprogrammed at a frequency that was 50-fold lower than cells 
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transduced with an empty control vector (Figure 2.7L). This effect was not due to a 

general decrease in reprogramming efficiency or differentiation of reprogrammed cells 

due to Nanog depletion because MEFs transduced with Oct4, Klf4, cMyc, Sox2, and the 

Nanog shRNA construct only suffered a 50% loss in reprogramming efficiency (Figure 

2.7D). These results demonstrate that increased Nanog expression in this context was 

only necessary for the replacement of Sox2 by RepSox. 

If RepSox replaces Sox2 by inducing Nanog expression, then retroviral 

transduction of RepSox-responsive intermediate cells (line OKM 10, Figures 2.6A-B) 

with Nanog should reprogram them. When we transduced line OKM 10 with Sox2 as a 

control, .2% of the colonies expressed Oct4::GFP after 10 days, indicating that 

reprogramming could be induced in this cell line by Sox2 (Figures 2.8A-B). When we 

transduced the same stable intermediate cell line with Nanog, it could also be 

reprogrammed, with .3% of the colonies expressing Oct4::GFP+ after 10 days (Figures 

2.8A-B). In contrast, transductions with Oct4 or Klf4 resulted in only .04% and 0% 

reprogramming efficiencies  (Figure 2.8B). These results suggest that Nanog can indeed 

functionally replace Sox2 and induce reprogramming in these stable intermediates formed 

from Oct4, Klf4, and cMyc-transduced MEFs. 

Because Nanog plays a key role in maintaining ES cells in an undifferentiated 

state (Chambers et al., 2003) and has been shown to enhance the efficiency of 

reprogramming (Silva et al., 2006; Silva et al., 2009; Yu et al., 2007), we decided to test 

whether Nanog could directly replace Sox2 in reprogramming. If Nanog can indeed 

complement for the omission of Sox2 in defined factor reprogramming, then MEFs 

transduced with Oct4, Klf4, cMyc, and Nanog might be as efficiently reprogrammed as  
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Figure 2.8. 
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Figure 2.8. (Continued) 
Nanog Replaces Sox2 in iPS Reprogramming. (A) Pictures of reprogrammed Oct4::GFP+ colonies 
induced by Sox2 (top panels) or Nanog (bottom panels) transduction of line OKM 10. . Cells were grown in 
KSR mES media. Scale bars represent 200 mm. (B) Nanog transduction can reprogram line OKM 10 at a 
similar efficiency as Sox2 transduction. Cells were grown in KSR mES media and Oct4::GFP+ colonies 
were counted at 9 days post transduction.(C) Nanog can substitute for Sox2 in defined-factor 
reprogramming of somatic fibroblasts. (D-H) Cells were grown in KSR mES media. Oct4::GFP+ colonies 
were counted at 9 days post-transduction.MEF-derived, Oct4, Klf4, cMyc and Nanog (MONK)-induced 
Oct4::GFP+ cells exhibit characteristics of iPS cells. (D) A P0 colony (top panels), isolated and expanded 
(bottom panels, at Passage 5). Scale bars represent 100 mm. (E) Immunocytochemistry showing strong 
expression of Sox2 from the endogenous allele. Scale bars represent 200 mm. (F) qPCR analysis shows 
activation of the endogenous Sox2, Oct4, Nanog, and Rex1 in these cells. (G) qPCR analysis showing viral 
Oct4, Klf4, and cMyc are silenced but leaky expression from the Nanog transgene remains in MONK Line 
1. (H) MONK Line 1 cells readily form embryoid bodies after 3 days in culture. Scale bar represents 500 
mm. 
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MEFs transduced with Oct4, Klf4, cMyc, and Sox2. When we transduced MEFs with 

Oct4, Klf4, cMyc, and Sox2 then scored cultures 9 days later, an average of 7 Oct4::GFP+ 

colonies appeared for every 7500 cells plated  (Figure 2.8C). A control transduction with 

only Oct4, Klf4, and cMyc yielded no Oct4::GFP+ colonies  (Figure 2.8C). Similar to the 

positive control transduction, MEFs transduced with Oct4, Klf4, cMyc, and Nanog gave 

rise to an average of 5 Oct4::GFP+ colonies for every 7500 cells plated (Figures 2.8C-D). 

These colonies could be picked and expanded and remained Oct4::GFP+ for at least 5 

passages  (Figure 2.8D). Immunocytochemistry indicated that these cells strongly 

activated Sox2 expression from the endogenous allele  (Figure 2.8E). Importantly, qPCR 

analysis demonstrated that they also transcribed endogenous Oct4, Klf4, Nanog, and Rex1  

(Figure 2.8F), indicating that a pluripotent gene expression program had been established. 

Furthermore, transgene-specific qPCR analysis showed that these cells had silenced the 

retroviral Oct4, Klf4, and cMyc transgenes,  (Figure 2.8G). Additionally, Oct4, Klf4, 

cMyc, and Nanog-reprogrammed cells could readily form embryoid bodies in vitro  

(Figure 2.8H). However, we found that leaky expression of transgenic Nanog, which is a 

potent inhibitor of embryonic stem cell differentiation (Chambers et al., 2003; Chambers 

et al., 2007), reduced the amount of differentiation in vitro  (Figure 2.8G). We anticipate 

that efficient differentiation of cells created with Oct4, Klf4, cMyc, and Nanog will 

eventually require the use of an excisable transgenic Nanog cassette to completely 

remove ectopic Nanog expression.  Although definitive proof of the pluripotency of these 

cells will be required to conclude that Nanog expression is sufficient to replace Sox2 in 

defined factor reprogramming, our results suggest this may be the case. Taken together, 
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our results demonstrate that RepSox inhibition of Tgf-b signaling bypasses the need for 

Sox2 in defined-factor reprogramming through the induction of Nanog. 

 

Discussion 

We have used a phenotypic chemical screen to identify compounds that can replace the 

reprogramming transcription factor Sox2 and have confirmed the mechanism by which 

the most potent compound acts: RepSox replaces Sox2 by inhibiting the broadly 

expressed Tgf-b signaling pathway (Attisano and Wrana, 2002) in cultures containing 

stable intermediate cells that are trapped in a partially reprogrammed state. This 

inhibition in turn leads to sustained transcription of Nanog, through which 

reprogramming is achieved in the absence of Sox2. These results demonstrate the 

feasibility of replacing the central reprogramming transgenes with small molecules that 

modulate discrete cellular pathways or processes rather than by globally altering 

chromatin structure. Furthermore, they show that the mechanisms by which these 

molecules act in reprogramming can be distinct from those of the factor(s) that they 

replace. 

Importantly, and unlike many other studies (Mikkelsen et al., 2008; Shi et al., 

2008a; Shi et al., 2008b; Utikal et al., 2009), the approach that we report here for 

replacing Sox2 did not rely on procurement of a highly specialized or rare cell type that 

already expresses Sox2. Furthermore, treatment with RepSox allowed the generation of 

iPS cells from both adult and embryonic fibroblasts with a frequency comparable to that 

of transduction with Sox2. Thus, reprogramming efficiency does not need to be 

compromised by small molecule replacement of transgenic factors.  
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We observed that instead of working on the initial fibroblast population to replace 

Sox2, RepSox acts on cellular intermediates formed by overexpression of Oct4, Klf4, and 

cMyc. Without RepSox treatment, these intermediates are trapped in an unproductive 

state. Unlike previously described partially reprogrammed cells (Mikkelsen et al., 2008; 

Silva et al., 2009), the RepSox-responsive intermediates could not be reprogrammed with 

Aza or 2i treatment, suggesting that they are distinct. In addition, we found that RepSox 

does not target any of the kinases inhibited by the 2i cocktail, indicating that it works 

through a different mechanism. Furthermore, 4-factor intermediates that reprogram with 

RepSox treatment are not responsive to Aza, indicating that they also are distinct.  

These findings demonstrate that reprogramming can proceed in a step-wise 

fashion through different intermediates. Just as in a geographical setting where there are 

multiple routes to travel from point A to point B, there exist different intermediate states 

or “way stations” that somatic cells can transit through on the way to complete 

reprogramming. Interestingly, although our results indicate that defined-factor 

reprogramming with Oct4, Klf4, cMyc, and Sox2 can occur in the absence of Nanog, its 

induction is required for chemical reprogramming of both our RepSox-responsive 

intermediates and the recently described 2i-responsive intermediates made from Oct4, 

Klf4 and cMyc transduction of cells that express Sox2 endogenously (Silva et al., 2009). 

This indicates that commonalities can exist in the reprogramming routes used by some 

sets of distinct intermediates. 

Originally, we found it surprising that Nanog was not included in the initial set of 

defined reprogramming factors (Takahashi and Yamanaka, 2006) given its critical role in 

maintaining pluripotency in ES cells (Boyer et al., 2005; Chambers et al., 2003) and its 
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ability to stimulate reprogramming by cell-fusion (Silva et al., 2006). However, 

Takahashi and Yamanaka reported that a combination of 9 factors that included Oct4, 

Klf4, cMyc, and Nanog, but not Sox2, generated iPS colonies at a detectable rate 

(Takahashi and Yamanaka, 2006). This combination of factors included other genes that 

may have inadvertently lowered the rate of reprogramming, causing the combination of 

Oct4, Klf4, cMyc, and Nanog to be overlooked. Consistent with these data, work by Niwa 

and co-workers using inducible Sox2-null mES cells demonstrated that Sox2 is 

dispensable for modulation of the Oct-Sox enhancers that regulate pluripotent-specific 

gene expression and instead mainly governs pluripotency in ES cells by regulating the 

expression of Oct4 through other factors (Masui et al., 2007). Therefore, it is possible that 

Nanog may alleviate the requirement for Sox2 in reprogramming by stimulating or 

maintaining Oct4 expression. Indeed, Nanog is capable of maintaining Oct4 expression in 

mES cells (Chambers et al., 2003). Thompson and co-workers also reported that NANOG 

expression enhanced the reprogramming of human fibroblasts, but that it was not able to 

replace SOX2 in the presence of only OCT4 and LIN-28 (Yu et al., 2007). This may 

indicate that Klf4 is required for Nanog to function optimally in reprogramming and 

suggests that either they or the genes they modulate interact during the reprogramming 

process. 

It is well known that approximately 90% of genes with promoters bound by 

OCT4 and SOX2 in human ES cells are also bound by NANOG (Boyer et al., 2005). Our 

result suggests that either Nanog or Sox2 may be sufficient to collaborate with Oct4 to 

modulate these genes and drive reprogramming. Although Nanog is not required for 

pluripotency, it safeguards ES cells against neuroectodermal and, to a more limited 
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extent, mesodermal differentiation (Chambers et al., 2007; Vallier et al., 2009). 

Therefore, it is possible that Nanog functions in reprogramming by repressing 

differentiation signals, assisting in the transition to an undifferentiated state.  

Interestingly, we found that RepSox is also able to functionally replace cMyc in 

reprogramming. Together, these observations highlight the fact that small molecules may 

functionally replace reprogramming transcription factors at either early or late stages of 

the process and that they can act by different mechanisms – by inducing the expression of 

the gene itself, or a closely related family member, or an unrelated gene that can 

functionally rescue the omission of the reprogramming transcription factor. 

Our observation that a one-day treatment with RepSox can relieve the 

requirement for transgenic Sox2 indicates that unlike reprogramming using transgenic 

Oct4, Klf4, and Sox2, where each transgene must be expressed for several days 

(Sridharan et al., 2009; Stadtfeld et al., 2008), small molecules can act as switches to 

induce stable changes in gene expression that promote the completion of reprogramming. 

This could be an important concept for achieving purely chemical reprogramming since 

our data show that chemicals such as RepSox can affect cellular processes differently 

depending on the timing of administration. 

As we have shown here, there need not always be a discrete, one-to-one mapping 

between the functions of the reprogramming factors and their chemical replacements. 

Thus it may be that reiterative screening in the presence of Sox2 replacement molecules 

will be required to identify compounds that can act in concert to replace Oct4 and Klf4. 

However, it will be of significant interest to determine whether the novel reprogramming 

compounds we have identified can collaborate with those previously described (Marson 
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et al., 2008; Shi et al., 2008a; Silva et al., 2008) to replace the remaining reprogramming 

genes, opening a route to purely chemical reprogramming.   
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Materials and Methods 

Derivation of MEFs, Cell Culture, and Retroviral Infection 

MEFs were derived as previously described (Takahashi et al., 2007a). Retroviral 

infections were performed as previously described using the pMXs vector (Takahashi et 

al., 2007a). MEFs were infected with two to three pools of viral supernatant during a 72-

hour period. The first day that viral supernatant was added was termed “day 1 post-

infection.” For quantification, Oct4::GFP+ colonies were counted at day 30 post-

infection unless otherwise stated. 

 

Derivation of Tail Tip Fibroblasts, Cell Culture, and Retroviral Infection 

Adult tail tip fibroblasts were isolated from tails of 8-week old Oct4::GFP mice and 

cultured in DMEM supplemented with 40% fetal bovine serum and 

penicillin/streptomycin. For reprogramming experiments, P2 fibroblasts were infected by 

the same method as described for MEFs. 

 

Small Molecule Screens 

On day 4 post-infection, infected MEFs were trypsinized and re-seeded on irradiated 

feeders in 96-well plates at 2000 cells/well and cultured in mouse ES cell media 

(Knockout DMEM,15% Hyclone FBS, L-glutamine, penicillin/streptomycin, 

nonessential amino acids, β-mercaptoethanol, and 1000 U/ml LIF). The next day, 

compound stock solutions diluted in DMSO and VPA (Sigma) were added at a final 

concentration of 1 mM and 2 mM, respectively. VPA was removed after 1 week, and 
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compound was re-applied every other day with each media change. Plates were scored 

for GFP+ colonies after 11 days of compound treatment. 

 

Quantification of Oct4::GFP+ iPS Cells Generated with Small Molecule Hit 

Compounds, SB431542, and Tgf-b  Antibodies 

Retroviral infection and compound or antibody treatment was performed as in the 

original chemical screen. To quantify the numbers of GFP+ colonies produced in 

different conditions, the number of colonies in each well was counted and at least 2 

different wells were counted and averaged. Concentrations of compounds and antibodies 

were the following: VPA (Sigma)- 2 mM, RepSox (Calbiochem)- 25 mM or 1 mM as 

noted, E-616451 (Calbiochem)- 3 mM, EI-275 (Biomol)- 3 mM, SB431542 (Sigma)- 25 

mM or 2 mM as noted, Tgf-bII-specific antibody (R&D Systems, AB-12-NA)- 10 mg/ml, 

pan-Tgf-b antibody (R&D Systems, AB-100-NA)- 10 mg/ml. Unless otherwise noted, all 

chemical treatments were continuous from initial administration at day 4-5 post-infection 

until GFP+ colonies were scored at day 30 post-transduction. Fresh chemical was added 

at each media change. 

 

Lead Compound Titrations to Determine Optimal Dosage 

Infections and VPA/compound addition was done as in the original chemical screen, and 

wells were scored for GFP+ colonies on day 25 after compound addition. 

 

Generation of iPS Cells 



 103 

GFP+ P0 colonies were picked manually and incubated in .25% trypsin (Gibco) for 20 

minutes at room temperature before plating on a feeder layer in mES cell media. This 

process was repeated until passage 3, at which time colonies were trypsinized and 

passaged in bulk and maintained on feeders in mES cell media. 

 

Karyotyping 

Karyotype analysis was performed at Cell Line Genetics. 

 

Antibody Staining for Sox2 and Nanog and Alkaline Phosphatase Staining 

iPS cells were cultured on irradiated MEF feeders in chamber slides, fixed with 4% 

paraformaldehyde (PFA) and stained with primary antibodies against mSox2 (Santa 

Cruz, sc-17320), mNanog (CosmoBio, REC-RCAB0002PF), followed by staining with 

the appropriate secondary antibodies conjugated to Alexa Fluor 546 (Invitrogen). Nuclei 

were counterstained with Hoechst33342 (Sigma). iPS cells were assayed for alkaline 

phosphatase activity using the Vector Red alkaline phosphatase assay kit from Vector 

Laboratories. 

 

Spontaneous Differentiation of iPS Cells in Vitro 

iPS cells were grown to 70–80% confluence in 10-cm plates (Falcon) in mES cell 

medium. To form embryoid bodies, cells were washed once with PBS to eliminate mES 

cell medium and then incubated with 1 ml of 0.25% trypsin (GIBCO) for 5–10 min at 

room temperature (21-25 °C). Cells were then resuspended in 10 ml of DM1 medium 

(DMEM-F12, GIBCO), 10% knockout serum (GIBCO), penicillin, streptomycin, 
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glutamine (GIBCO) and 2-mercaptoethanol (GIBCO), counted, and plated at a 

concentration of 200,000 cells per ml in Petri dishes (Falcon). Two days later, embryoid 

bodies were split from one dish into four Petri dishes containing DM1 medium and the 

medium was changed after 3–4 d. On day 10 the embryoid bodies were collected in a 15-

ml Falcon tube, washed once with PBS and then fixed in PFA 4% at 4 degrees C for 1 

hour. The EBs were then washed 4 times in PBS to remove the residual PFA and 

incubated overnight in a solution of 30% of sucrose. The next day, the cells were 

embedded in OCT and frozen at -80 degrees C. The block containing EBs were then 

sectioned with a cryostat into 10 mm sections. The sections were stained with primary 

antibodies against Alpha-fetoprotein (AFP)(Dakocytomation, A0008), Skeletal Myosin 

(MF20)(Developmental Studies Hybridoma Bank, MF20), or Beta-III-tubulin 

(TUJ1)(Sigma, T2200), and visualized by staining with a secondary antibody conjugated 

to Alexa Fluor 546 (Invitrogen). 

 

Directed Differentiation of iPS Cells into Motor Neurons 

iPS and mES (V6.5) cells were differentiated into motor neurons according to methods 

previously described for mouse ES cells differentiation [27]. The iPS and mES cells were 

grown to 70–80% confluence in 10-cm plates (Falcon) in mES cell medium. To form 

embryoid bodies, cells were washed once with PBS to eliminate mES cell medium and 

then incubated with 1 ml of 0.25% trypsin (GIBCO) for 5–10 min at room temperature 

(21-25 °C). Cells were then resuspended in 10 ml of DM1 medium (DMEM-F12, 

GIBCO), 10% knockout serum (GIBCO), penicillin, streptomycin, glutamine (GIBCO) 

and 2-mercaptoethanol (GIBCO), counted and plated at a concentration of 200,000 cells 
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per ml in Petri dishes (Falcon). Two days later, embryoid bodies were split from one dish 

into four Petri dishes containing DM1 medium supplemented with RAc (100 nM; stock: 

1 mM in DMSO, Sigma) and Shh (300 nM, R&D Systems). Medium was changed after 

3–4 d. On day 7, the embryoid bodies were dissociated into single-cell suspensions. The 

suspensions were pelleted in a 15-ml Falcon tube, washed once with PBS, and incubated 

in Earle's balanced salt solution with 20 units of papain and 1,000 units of DNase I 

(Worthington Biochemical) for 30–60 min at 37 °C. The mixture was then triturated with 

a 10-ml pipette and centrifuged for 5 min at 300 x g. The resulting cell pellet was washed 

with PBS and resuspended in F12 medium (F12 medium, GIBCO) with 5% horse serum 

(GIBCO), B-27 supplement (GIBCO), N2 supplement (GIBCO) with neurotrophic 

factors (GDNF and BDNF, 10 ng ml-1, R&D Systems). The cells were counted and plated 

on poly-D-lysine/laminin culture slides (BD Biosciences) or on a layer of primary glial 

cells. 3-5 days later, the cultures were fixed with PFA and stained with primary 

antibodies against TUJ1 (Sigma, T2200) and HB9 (Developmental Studies Hybridoma 

Bank, 81.5C10), and visualized by staining with secondary antibodies conjugated to 

Alexa Fluor 488 and Alexa Fluor 546 (Invitrogen). For counting HB9+ cells, motor 

neurons were differentiated as above except in embryoid body culture without 

dissociation and plating. Embryoid bodies were sectioned as above and stained with the 

TUJ1 and HB9 antibodies along with the Alexa Fluor 488 and Alexa Fluor 546 secondary 

antibodies. Cultures were counterstained with Hoechst 33342 and HB9+ and total nuclei 

were counted. Numbers were derived from at least 3 different embryoid bodies per cell 

line. 
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Teratoma Production and Analysis 

A confluent 10 cm dish of iPS cells was trypsinized, pelleted, resuspended in .2 mls of 

mES media, and injected subcutaneously into a CD1-Nude mouse. 3-4 weeks later, 

teratomas were harvested, fixed overnight with 4% paraformaldehyde, embedded in 

paraffin, sectioned, HE stained, and analyzed. 

 

Production of Chimeric Mice 

Female ICR mice were superovulated with PMS and hCG and mated to ICR stud males. 

24-hours after hCG injection, zygotes were isolated from vaginally plugged females. 

After culture in KSOM media for 3 days, the resulting blastocysts were injected with ~5-

10 iPS cells from a C57BL6 background pre-labeled with a lentivirus constitutively 

expressing the red fluorescent protein tdTomato and transferred into pseudopregnant 

females. Embryos were either harvested at day E13.5 or allowed to develop to term. 

Chimeric embryos were visualized on a Leica MZ16FA dissecting microscope using RFP 

and bright field channels. For 8-cell stage injections, zygotes were developed in vitro to 

the 8-cell stage, injected with iPS cells, further developed in vitro to the blastocyst stage, 

and visualized. 

 

Genital Ridge Isolation and Visualization 

The genital ridges of E13.5 embryos were mechanically isolated and visualized using a 

Leica dissection microscope. 

 

Chemical Reprogramming of Stable Intermediate Cell Lines  
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Oct4::GFP-negative colonies in Oct4, Klf4, and cMyc or Oct4, Klf4, cMyc, and Sox2-

infected MEF cultures were picked, plated on irradiated feeders, and single colonies were 

picked after 1 week. The resulting cell lines were passaged with trypsin and grown in 

mES media on feeders until passage 4, at which time they were treated with RepSox (25 

mM), Aza (500 mM), or both for 48 hours. For 2i treatment, CHIR99021 (Stemgent) was 

used at 3 mM and PD0325901 (Stemgent) was used at 1 mM. Oct4::GFP+ colonies were 

scored 12 days after the beginning of chemical treatment. Treatments were performed in 

mES media containing FBS unless otherwise noted. 

 

Whole-Genome Expression Analysis 

For comparison to mES and iPS cells, cells reprogrammed with RepSox were grown to 

near confluence on an irradiated layer and RNA was isolated with Trizol (Invitrogen). In 

other experiments analyzing the effect of RepSox treatment, cells were harvested at less 

than 60% confluence. RNA was amplified and labeled with biotin using the Illumina 

Total Prep RNA Amplification Kit from Ambion, hybridized to Illumina Whole-Genome 

Expression BeadChips (MouseRef-8), and analyzed by an Illumina Beadstation 500. All 

lines were analyzed in biological duplicate or triplicate. Data were processed using 

Resolver software. 

 

Western Blots 

Lysates were generated from cells treated with 25 mM RepSox for 48 hours in mES 

media. Cells were harvested using a cell scraper into lysis buffer containing protease 
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inhibitors. For analysis of phospho-Smads, an anti-phospho-Smad2/3-specifc antibody 

(Epitomics) and an anti-phospho-Smad1/5/8-specific antibody (R&D) were used. 

 

Cell Cyle Analysis 

Cells were treated with 25 mM RepSox in mES media without feeders for 72 hours and 

subjected to cell cycle analysis by propidium iodide staining and flow cytometry. Cells 

were harvested with .25% trypsin and fixed with 70% ethanol overnight. Following at 

least one hour of incubation with propidium iodide staining solution (50 mg/ml propidium 

iodide in PBS, .1% BSA, .1% Rnase A) in the dark, samples were analyzed on a BD 

LRSII Flow Cytometer (BD Biosciences). 

 

RT-PCR  

For experiments measuring Nanog induction, cells were treated with 25 mM RepSox in 

KSR mES media. RNA was harvested with Trizol (Invitrogen) and treated with Turbo-

free (Ambion) to remove DNA contamination. RNA was reverse transcribed using 

random hexamer primers and superscript III reverse transcriptase (Invitrogen). Primer 

sequences for endogenous genes were the following: Nanog (5’- 

CAGGTGTTTGAGGGTAGCTC and 5’- CGGTTCATCATGGTACAGTC), Sox2 (5’- 

TAGAGCTAGACTCCGGGCGATGA and 5’- TTGCCTTAAACAAGACCACGAAA), 

Oct4 (5’- TCTTTCCACCAGGCCCCCGGCTC and 5’- 

TGCGGGCGGACATGGGGAGATCC), Rex1 (5’- 

ACGAGTGGCAGTTTCTTCTTGGGA and 5’- 

TATGACTCACTTCCAGGGGGCACT). The reverse primer (5’- 
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TTTCTACAAGAAAGCTGGGT) was used for all transgenes, plus the following 

forward primers: Nanog (5’- TTGGAATGCTGCTCCGCTCC), Sox2 (5’- 

CTACAGCATGTCCTACTCGC), Oct4 (5’- GCTATGGAAGCCCCCACTTC), and 

Klf4 (5’- TGACTATGCAGGCTGTGGCA). qPCR was performed using these primers 

and SYBR green (Bio-Rad). 

 

shRNA-mediated Knockdown of Nanog and Sox2 

OKM 10 cells or MEFs transduced 4 days earlier with Oct4, Klf4, cMyc, and Sox2 

(OKMS-MEFs) were transduced with shRNA constructs in the lentiviral vector pLKO.1 

that were specific to murine Nanog (5’- 

CCGGCCTGAGCTATAAGCAGGTTAACTCGAGTTAACCTGCTTATAGCTCAGGTTTTTG

) or Sox2 (5’-

CCGGCGAGATAAACATGGCAATCAACTCGAGTTGATTGCCATGTTTATCTCGTTTTTG

) (Open Biosystems). Lentiviruses were packaged by co-transfection of pLKO.1-shRNA 

plasmids with VSVG envelope and delta 8.9 plasmids into 293T cells using Fugene 6. 

Starting two days after infection, the population was enriched for transduced cells by 

selection with 4 mg/ml puromycin for three days. For OKM 10 cells, RepSox treatment 

(25 mM) was initiated after puromycin selection. RepSox treatment was performed in 

KSR mES media for 9 days before GFP+ colonies were scored. 

 

Reprogramming of Stable Intermediate Cell Lines by Viral Transduction 

Oct4::GFP-negative cell lines were transduced using the same methodology and reagents 

as MEFs were in the original screen. Cells were infected with three rounds of viral 
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supernatant diluted 1:8 in MEF media in a 48-hour period on gelatin. Two days after the 

last viral supernatant was added, the cells were trypsinized and replated onto feeders. The 

media was changed to mES media containing knockout serum replacement (KSR) instead 

of FBS on the following day. Oct4::GFP+ colonies were counted at 9 days post-

transduction. 

 

Reprogramming of MEFs Using Nanog 

MEFs were infected as described for the original screen, except that murine Nanog 

cDNA was cloned into the pMXs retroviral vector and used instead of pMXs-Sox2. Two 

days after the last viral supernatant was added, the cells were trypsinized and replated 

onto feeders. The media was changed to mES media containing knockout serum 

replacement (KSR) instead of FBS on the following day, and Oct4::GFP+ colonies were 

counted on day 9 post-transduction. 
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Chapter 3 

 

Conversion of Mouse and Human Fibroblasts into Functional Spinal 
Motor Neurons  
 
 
 
 
 
 
  
 
 
 
Addendum 
 
A portion of this chapter is published as: 
Esther Y. Son*, Justin K. Ichida*, Brian J. Wainger, Jeremy S. Toma, Victor F. Rafuase, Clifford J. Woolf, 
and Kevin Eggan (2011). Conversion of Mouse and Human Fibroblasts into Functional Spinal Motor 
Neurons. Cell Stem Cell 9: 205-218. 
 
EYS, JKI and KE conceived the study and designed the experiments. EYS and JKI collaborated equally on 
all experiments and generated all iMNs (see below). BJW and CJW performed electrophysiological 
recordings. JST and VFR performed chick myotube cocultures and in ovo transplantation.  
 
For mouse iMN reprogramming: EYS cloned the pMXs constructs; JKI harvested MEFs and EYS 
harvested glial cells; EYS and JKI performed the series of transductions for identifying the minimum set of 
iMN-inducing factors, as well as immunostaining; using cells generated in collaboration, EYS performed 
microarrays and analyzed the data with the help of JKI and BJW; JKI performed RT-PCRs; for C2C12 co-
cultures, EYS prepared the cultures, and EYS and JKI quantified the contractions; for ALS disease 
modeling, EYS cultured the cells and JKI analyzed the results; EYS performed BrdU incorporation; JKI 
generated triple transgenic MEFs for the lineage tracing experiment, and EYS cultured the cells and 
analyzed the results.  
 
For human iMN reprogramming: JKI and EYS derived and expanded the fibroblasts, and JKI derived new 
patient-specific iPS lines; JKI modified the fibroblasts with mCAT and performed the initial pMXs 
transductions; JKI and EYS cultured the retrovirally transduced human iMN cultures, and JKI performed 
vChAT staining; JKI cloned the FUW-tetO constructs and EYS cloned the pHAGE constructs; JKI, with 
the help of EYS, produced the lentivirus, except for pHAGE virus which was made at Harvard Gene 
Therapy Core; EYS, with the help of JKI, cultured the human iMNs; EYS performed and quantified TUJ1, 
MAP2 and HB9 stains as well as reporter expression. 
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Abstract 

 

The mammalian nervous system is composed of a multitude of distinct neuronal 

subtypes, each with its own phenotype and differential sensitivity to degenerative 

disease. Although specific neuronal types can be isolated from rodent embryos or 

engineered from stem cells for translational studies, transcription factor mediated 

reprogramming might provide a more direct route to their generation.  Here we 

report that the forced expression of select transcription factors is sufficient to 

convert mouse and human fibroblasts into induced motor neurons (iMNs). iMNs 

displayed a morphology, gene expression signature, electrophysiology, synaptic 

functionality, in vivo engraftment capacity and sensitivity to degenerative stimuli, 

similar to embryo-derived motor neurons. We show that the converting fibroblasts 

do not transit through a proliferative neural progenitor state, and thus form bona 

fide motor neurons via a route distinct from embryonic development. Importantly, 

we have generated functional human ALS patient-specific iMNs. Our findings 

demonstrate that fibroblasts can be converted directly into a specific differentiated 

and functional neural subtype, the spinal motor neuron, with potential applications 

in regenerative medicine. 
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Introduction 

The mammalian central nervous system (CNS) is assembled from a diverse collection of 

neurons, each with its own unique properties. These discrete characteristics underlie the 

proper integration and function of each neuron within the circuitry of the brain and spinal 

cord. However, their individual qualities also render particular neurons either resistant or 

sensitive to particular degenerative stimuli. Thus, for each neurodegenerative disease, a 

stereotyped set of neuronal subtypes is destroyed, causing the hallmark presentation of 

that condition. Therefore, if we are to comprehend the mechanisms that underlie the 

development, function and degeneration of the CNS, we must first deeply understand the 

properties of individual neuronal subtypes. 

Physiological and biochemical studies of individual neuronal types have been 

greatly facilitated by the ability to isolate distinct classes of neurons and interrogate them 

in vitro. Most studies have focused on neurons isolated from the developing rodent CNS. 

However, it is not routinely possible to isolate analogous populations of human neurons 

or to isolate and fully study differentiated central neurons. Pluripotent stem cells, such as 

embryonic stem cells (ESCs), may provide an inexhaustible reservoir of diverse neural 

subtypes, offering an attractive approach for in vitro studies (Wichterle et al., 2002). 

Although stem cells have shown great promise, to date, only a handful of neural subtypes 

have been produced in this way. Furthermore, in many cases the neuronal populations 

produced from stem cells have not been shown to possess refined subtype specific 

properties and may only superficially resemble their counterparts from the CNS (Peljto 

and Wichterle, 2011).  
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Experiments using the reprogramming of one set of differentiated cells directly 

into another suggest an alternative approach for the generation of precisely defined neural 

subtypes. Using distinct sets of transcription factors, it is possible to reprogram 

fibroblasts into pluripotent stem cells (Takahashi and Yamanaka, 2006), blood 

progenitors (Szabo et al., 2010), cardiomyocytes (Ieda et al., 2010) as well as functional, 

post-mitotic neurons (Caiazzo et al.; Pfisterer et al., 2011; Vierbuchen et al., 2010). We 

have therefore considered the idea that by using factors acting on cells intrinsically, rather 

than relying on morphogens that act extrinsically, it might be possible to more precisely 

specify the exact properties of a wide array of neuronal types. Most reprogramming 

studies have so far only produced induced neurons (iNs) with an unknown developmental 

ontogeny and a generic phenotype (Pang et al., 2011; Pfisterer et al., 2011; Vierbuchen et 

al., 2010). Recently, two studies have generated cells that resemble dopaminergic neurons 

based on the production of tyrosine hydroxylase (Caiazzo et al.; Pfisterer et al., 2011). 

However, it is unclear whether these cells are molecularly and functionally equivalent to 

embryo- or ESC-derived dopaminergic neurons. In particular, it has yet to be determined 

whether any type of neuron made by reprogramming can survive and properly integrate 

into the CNS. If neuronal reprogramming is to be successfully applied to the study of 

CNS function or degeneration, then it must be capable of producing specific neuronal 

types that possess the correct phenotypic properties both in vitro and in vivo. 

To determine whether transcription factors can bestow a precise neural subtype 

identity, we sought factors that could reprogram fibroblasts into spinal motor neurons. 

Motor neurons control the contraction of muscle fibers actuating movement. Damage to 

motor neurons caused by either injury or disease can result in paralysis or death; 
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consequently, there is significant interest in understanding how motor neurons regenerate 

after nerve injury and why they are selective targets of degeneration in diseases such as 

spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS).  We therefore 

attempted induction of motor neurons both because of their significant translational 

utility and because the developmental origins and functional properties of this neural 

subtype are among the most well understood. 

Here we show that when mouse fibroblasts express factors previously found to 

induce reprogramming toward a generic neuronal phenotype (Vierbuchen et al., 2010), 

they also respond to components of the transcription factor network that act in the 

embryo to confer a motor neuron identity on committed neural progenitors. Thus, we 

found that forced expression of these transcription factors converted mouse fibroblasts 

into induced motor neurons (iMNs). Importantly, we found that the resulting iMNs had a 

gene expression program, electrophysiological activity, synaptic functionality, in vivo 

engraftment capacity and sensitivity to disease stimuli that are all indicative of a motor 

neuron identity. We also show that the converting fibroblasts do not transition through a 

proliferative neural progenitor state before becoming motor neurons, indicating they are 

formed in a manner that is distinct from embryonic development. Finally, we demonstrate 

that this same approach can convert human fibroblasts into motor neurons; specifically, 

human ALS patient-specific iMNs have been generated and may serve as useful 

substrates for studying disease. 

 

Results 
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Eleven Factors Convert Fibroblasts into Hb9::GFP+ Cells with Neuronal 

Morphologies 

We hypothesized that transcription factors known to instruct motor neuron formation 

during development might also facilitate the conversion of other cell types into motor 

neurons. To test this idea, we used the literature to select eight candidate transcription 

factors that participate in varied stages of motor neuron specification (Jessell, 2000). In 

order to potentially aid the transition toward a neuronal phenotype, we supplemented the 

motor neuron specification factors with three factors that convert fibroblasts into induced 

neurons (iNs) of a generic character (Ascl1, Brn2 and Myt1l) (Vierbuchen et al., 2010) 

(Figure 3.1A). 

For reprogramming studies, we used mouse embryonic fibroblasts (MEFs) 

harvested from Hb9::GFP mouse embryos at day E12.5, allowing spinal motor neuron 

conversion to be monitored. Prior to use, cultures of MEFs were carefully screened for 

the absence of any contaminating GFP+ cells. First, we asked whether the action of the 

three iN factors alone could generate Hb9::GFP+ cells by transducing MEFs with 

retroviral vectors encoding Ascl1, Brn2 and Myt1l (Figure 3.1A). Although cells with a 

neuronal morphology were observed, as previously reported (Vierbuchen et al., 2010), no 

Hb9::GFP+ cells emerged, even after 35 days (Figure 3.1B). This suggests that the iN 

factors alone do not generate motor neurons, consistent with the report that cholinergic 

neurons were not generated by these factors (Vierbuchen et al., 2010).  

We next tested whether the eight motor neuron specification factors we selected 

could induce motor neurons in the absence of the three iN factors. Based on titering with 

a control virus encoding GFP, we determined that each factor was expressed in >95% of 
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Figure 3.1. 
Induction of Hb9::GFP+ Neurons from Mouse Fibroblast Cultures. (A) Experimental outline. 11 
candidate transcription factors include eight developmental genes in addition to the three iN factors. (B) 
Hb9::GFP+ cells are generated from MEFs by transduction with 8 or 11 factors by day 35 post-
transduction, but more efficiently by 11 factors. Scale bars represent 50 mm. (C) Hb9::GFP+ neurons 
express Tuj1 (purple). Scale bars represent 40 mm. 
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the fibroblasts. Encouragingly, a small number of Hb9::GFP+ cells were observed at 35 

days post-transduction; however, they did not possess a normal neuronal morphology 

(Figure 3.1B). We therefore next asked whether the two sets of factors, iN factors and 

motor neuron specification factors, together could synergize to produce motor neurons. 

Indeed, when the aggregate set of 11 factors was transduced into fibroblasts, a significant 

number of Hb9::GFP+ cells emerged, which elaborated complex processes and all of 

which expressed a neuronal form of tubulin (n=50) (Figure 3.1C). We preliminarily 

designated these Hb9::GFP+ cells, induced motor neurons (iMNs). 

 

iMNs Are Efficiently Induced by Seven Factors 

To determine which of the 11 factors were necessary for generating iMNs, we omitted 

each gene one at a time (Figure 3.2A). Excluding either Lhx3 or Ascl1 eliminated iMN 

formation. However, reprogramming efficiency was either only slightly reduced or 

unchanged when each of the remaining factors were removed (Figure 3.2A). 

Interestingly, we observed that ectopic expression of Hb9 was not required for iMN 

formation (Figure 3.2A), suggesting that, at least in that case, exogenous Hb9 was not 

simply transactivating its own promoter. Similarly, we observed Isl1/2 expression by 

immunostaining in iMNs (80.6%, n=36), even when the Isl1 retrovirus was omitted from 

the transduction (Figures 3.2A-C).  

Although Lhx3 and Ascl1 seemed necessary for reprogramming, they were not 

sufficient to induce motor neuron formation (Figure 3.2D). However, when Lhx3 was 

combined with the three iN factors (Ascl1, Brn2 and Myt1l), we observed a modest 

number of Hb9::GFP+ cells (Figure 3.2E). Because these four factors could not  
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Figure 3.2. 
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Figure 3.2. (Continued) 
iMNs Are Efficiently Generated by 7 Factors. (A) Efficiency of reprogramming 35 days post-
transduction when each factor is omitted from the 11-factor pool individually. Error bars indicate +s.d. (B) 
Isl1 is dispensable for generating iMNs. Scale bar represents 200 mm. (C) iMNs generated with 10 factors 
(without Isl1) express endogenous Islet (red). Scale bars represent 40 mm. (D) Lhx3 and Ascl1 are not 
sufficient to convert fibroblasts into motor neurons. Error bars indicate +s.d. *** p<0.001 (Student’s t-test, 
two-tailed). (E) Reprogramming efficiency is greater with Hb9 or Isl1 on top of 4 factors (Lhx3, Ascl1, 
Brn2 and Myt1l) at day 21 post-transduction. Error bars indicate +s.d. *P <0.05 (Student’s t-test, two-
tailed). (F) Addition of Ngn2 to the 6-factor pool (Hb9, Isl1, Lhx3, Ascl1, Brn2 and Myt1l) greatly enhances 
reprogramming efficiency as seen 10 days after transduction. Error bars indicate +s.d. ***P<0.001; **P 
<0.01 (Student’s t-test, two-tailed). (G) Efficiency of fibroblast-to-iMN reprogramming in two different 
media conditions. N3 medium promotes iMN accumulation. Error bars indicate +s.d. (H) Adding each of 
the neural progenitor factors to 7 factors (Ngn2 + 6 factors) inhibits iMN formation as seen 10 days after 
transduction. Error bars indicate +s.d. ***P<0.001; **P <0.01 (Student’s t-test, two-tailed).  
(I) The 7 iMN factors convert adult tail tip fibroblasts into motor neurons. Scale bar represents 100 mm. 
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efficiently induce motor neuron formation, we next individually added each of the other 

factors back to this smaller set (Figure 3.2E). We found that either Isl1 or Hb9 were 

capable of increasing the efficiency of iMN induction, which was further enhanced when 

Ngn2 was added to the other 6 factors (Figure 3.2F).  Indeed, the efficiency of motor 

neuron induction with these 7 factors (Ascl1, Brn2, Myt1l, Lhx3, Hb9, Isl1 and Ngn2) 

surpassed the activity of the 11 as a whole and, depending on the culture conditions used, 

reached between 5% and 10% of the number of MEFs transduced (Figures 3.2F-G). 

Adding any one of the remaining factors, which are all known to function in earlier stages 

of motor neuron specification (Lee et al., 2005), dramatically decreased the efficiency of 

reprogramming by the 7 factors (Figure 3.2H).  

 We reasoned that, although our apparently homogeneous MEF cultures lacked 

Hb9::GFP+ cells,  they could be contaminated with rare embryonic neuronal progenitors 

that might be more responsive to reprogramming. To rule out the possibility that iMNs 

originated from such progenitors, we prepared fibroblasts from the tails of adult 

Hb9::GFP mice and transduced them with the optimal set of 7 factors. Again, GFP+ cells 

with neuronal morphologies emerged (Figure 3.2I), indicating that the ability to respond 

to the 7 iMN factors was not restricted to cells of an embryonic origin. 

 

iMNs Possess a Motor Neuron Gene Expression Signature 

To begin to assess whether iMNs had the known characteristics of cultured embryonic 

motor neurons, we carefully examined the phenotype of iMNs made with 10 factors (Isl1 

omitted). We found that iMNs were comparable in cell body size and projection length to 

both E13.5 embryo- and ESC-derived motor neuron controls (Figure 3.3A). To  
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Figure 3.3 
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Figure 3.3. (Continued) 

 



	   	  
	  

 129	  

 

 

 

 

 

 

 

 

Figure 3.3. (Continued) 
iMNs Possess Gene Expression Signatures of Motor Neurons. (A) iMN morphology is similar to that of 
embryonic and ESC-derived motor neurons. Scale bars represent 100 mm. (B-J) Global transcriptional 
analysis of FACS-purified Hb9::GFP+ motor neurons. (B) iMNs cluster with control motor neurons and 
away from MEFs. (C-E) Pairwise gene expression comparisons show that iMNs are highly similar to 
embryo-derived motor neurons and dissimilar from the starting MEFs; black labeling denotes genes 
expressed in motor neurons, red labeling denotes genes expressed in fibroblasts, and the red lines indicate 
the diagonal and 2-fold changes between the sample pairs. (F) iMNs express the pan-neuronal genes Map2 
and b2-tubulin. (G) iMNs express genes required for synapse formation. (H) iMNs endogenously express 
transcription factors expressed in motor neurons. (I) iMNs endogenously express choline acetyltransferase. 
(J) Fibroblast-specific genes are downregulated in iMNs. mRNA expression levels are shown relative to an 
embryonic motor neuron control (F-I) or relative to a MEF control (J). (K) qRT-PCR using primers for the 
viral transcripts of 7 iMN factors. iMNs have not silenced viral transgenes. Expression levels are shown 
relative to ESC-derived motor neurons. Error bars indicate +s.d. (L) qRT-PCR data showing expression of 
endogenous transcripts of the 7 iMN factors relative to their levels in ES-MNs. Error bars indicate +s.d. 
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determine how similar overall transcription in iMNs was to control motor neurons, we 

isolated the three motor neuron types by fluorescence-activated cell sorting (FACS) and 

performed transcriptional profiling (Figure 3.3B-E). For these analyses, RNAs isolated 

from MEFs and ESCs were used as negative controls. When we performed hierarchical 

clustering of the data, iMNs grouped closely to embryonic motor neurons, as did ESC-

derived motor neurons (Figure 3.3B). In contrast, iMNs were very distinct from the initial 

MEF population. Thus, our results suggest that transduction of MEFs with these 

transcription factors results in a global shift towards a motor neuron transcriptional 

program. 

When we examined the transcription of specific neuronal genes, we again found 

that iMNs and control motor neurons were very similar. Relative to either MEFs or ESCs, 

iMNs and both types of control motor neurons expressed elevated levels of β2-tubulins 

(Tubb2a and Tubb2b) and Map2 (Figures 3.3C-F), as well as synaptic components such 

as synapsins (Syn1 and Syn2), synaptophysin (Syp) and synaptotagmins (Syt1, Syt4, Syt13 

and Syt 16) (Figures 3.3C-E, G). iMNs also expressed known motor neuron transcription 

factors that were not provided exogenously (NeuroD and Isl1) (Figures 3.3C-E, H), as 

well as the gene encoding the enzyme cholineacetyltransferase (ChAT) (Figures 3.3C-E, 

I). In contrast, iMNs had downregulated the fibroblast program as exemplified by 

reduced transcription of Snai1, Thy1 and Fsp1 (Figure 3.3E and Figure 3.3J). 

Immunostaining confirmed that the iMNs expressed Map2 (100%, n=120) (Figure 3.4A), 

synapsin (Figure 3.4B), and vesicular ChAT (97.6%, n=124) (Figure 3.4C), indicating 

that they had indeed activated the enzymatic pathways for producing acetylcholine 

(ACh), the neurotransmitter released by motor neurons, and suggesting they should be  
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Figure 3.4. 
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Figure 3.4. (Continued) 
iMNs Express Neuronal and Motor Neuron Proteins. (A) iMNs express the pan-neuronal marker Map2 
(red). Scale bars represent 100 mm. (B) iMNs express synapsin (red). Scale bars represent 20 mm. (C) iMNs 
express vesicular cholineacetyltransferase (vChAT, red). Scale bars represent 40 mm. (D) iMNs generated 
without the motor neuron-selective transcription factor Hb9 express the Hb9 protein (red). Scale bars 
represent 80 mm. (E) iMNs rarely express tyrosine hydroxylase (TH). A rare TH+ iMN with a low level of 
Hb9::GFP reporter expression is shown on the right. Scale bars represent 50 mm. 
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capable of forming functional synapses. In contrast, the vast majority of iMNs did not 

express tyrosine hydroxylase (3%, n=150) (Figure 3.4E), suggesting that they were not of 

a mixed neuronal character. 

In order to determine if the iMNs truly adopted a new cellular identity through 

transdifferentiation, we performed qRT-PCR analysis to ask if they established an 

endogenous program of motor neuron gene expression (Table 3.1). As expected for a 

somatic cell type such as the motor neuron, the retroviral transgenes used for 

reprogramming were not silenced in the iMNs (Figure 3.4F), leaving it unclear as to 

whether the endogenous loci of these motor neuron genes had been activated. When we 

quantified the endogenous mRNA levels of the motor neuron-specific genes used for 

conversion, we found that all 7 transcription factors were expressed at levels similar to 

those in ESC-derived motor neurons (Figure 3.4G). Furthermore, immunostaining 

revealed that iMNs created without exogenous Hb9 still activated expression of this 

important transcription factor from the endogenous locus (87.9%, n=149) (Figure 3.4D). 

Together, these data indicate that the iMNs we produced had established a transcriptional 

program characteristic of motor neurons. 

 

iMNs Possess Electrophysiological Characteristics of Motor Neurons 

In order to determine if MEF- and tail tip fibroblast-derived iMNs possessed the 

electrophysiological properties of motor neurons, we performed whole-cell patch clamp 

recordings. The average resting membrane potential for iMNs was -49.5 mV (SEM 5.6, 

n=6), which was similar to that for control ESC-derived motor neurons (-50.5 mV, SEM 

3.5, n=13). Depolarizing voltage steps in voltage clamp elicited fast inward currents  
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Gene Forward Primer Reverse Primer 

Ascl1 CCAACTACTCCAACGACT GGAGAGCCTGGCAGGTCC 

Brn2 GCGCCGAGGATGTGTATG AGGAAAGACTGTGGACC 

Hb9 ACAACTTCCCGTACAGCAAT CTTCCGCCCTGGAGGCAA 

Isl1 GCGACATAGATCAGCCTGC CATCTGAATGAATGTTCC 

Lhx3 CCCCCACCCATGAGGGTGCT GAGCCAGGGGAAGCAGAGGC 

Myt1l CGTGACTACTTTGACGGA TCACCACTAGAGCAGCTGT 

Ngn2 GCGTCATCCTCCAACTCC AGAGGGAGACCCGCAGCT 

Viral LTR N/A TTTGTACAAGAAAGCTGGGT 

 
 
Table 3.1. 
RT-PCR Primer Sequences. 
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followed by slow outward currents, consistent with the opening of voltage-activated 

sodium and potassium channels, respectively (Figures 3.5A-B, L). The inward current 

was blocked by addition of 500 nM tetrodotoxin (TTX), a potent antagonist of TTX-

sensitive voltage-activated sodium channels (Figure 3.5C). A defining feature of a neuron 

is its ability to fire action potentials. In current clamp experiments with iMNs, 

depolarizing current steps produced single or multiple action potentials (90%, n=10), 

with overshoot, after-hyperpolarizations and a firing frequency similar to that reported for 

ESC-derived motor neurons and rat embryonic motor neurons (Alessandri-Haber et al., 

1999) (Figures 3.5D-E, M-N).  

 We next tested whether iMNs express functional receptors for the excitatory and 

inhibitory neurotransmitters that normally act on motor neurons. As might be expected 

given the known receptor subunit transitions associated with development of immature 

neurons to a fully differentiated state, certain agonists yielded responses in some but not 

all neurons. Glycine and GABA are the major inhibitory neurotransmitters, and their 

ionotropic activity is mediated by opening chloride channels. Addition of 100 mM glycine 

(44.4%, n=9, Figure 3.5F) or GABA (72.7%, n=11, Figures 3.5G, O) elicited inward 

currents when cells were held at -80 mV. We also evaluated the response of iMNs to fast 

excitatory glutamatergic neurotransmitters and observed a strong response to the receptor 

agonist kainate (80%, n=15 cells, Figures 3.5H, P).  

 Consistent with our physiological analyses, and similar to control embryonic 

motor neurons and motor neuron populations described previously (Cui et al., 2006), the 

iMNs transcribed the genes encoding a and b subunits of voltage-gated sodium channels 

(Figures 3.3D-E and Figure 3.5I), as well as members of the Shaker-, Shaw-, and Eag- 
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Figure 3.5. 
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Figure 3.5. (Continued) 
Electrophysiological Activity of iMNs. (A-H) MEF-derived iMNs are electrophysiologically active. (A-
B) MEF-derived iMNs express functional sodium and potassium channels (B) iMN sodium channel activity 
is appropriately blocked by tetrodotoxin (TTX). (D-E) iMNs fire a single and multiple action potentials 
upon depolarization. (F) 100 mM GABA induces inward currents in iMNs. (G) 100 mM glycine induces 
inward currents in iMNs. (H) 100 mM kainate induces inward currents in iMNs. (I-K) MEF-derived iMNs 
express genes required for ion channel function and neurotransmitter response. mRNA expression levels 
relative to an embryo-derived motor neuron control are shown for (I) sodium channel, (J) potassium 
channel, and (K) glutamate receptor genes. All motor neuron samples were FACS-purified by Hb9::GFP 
expression prior to mRNA extraction. (L-O) Tail tip fibroblast (TTF)-derived iMNs exhibit 
electrophysiology characteristic of motor neurons. (L) TTF-derived iMNs have functional sodium and 
potassium channels. (M-N) TTF-derived iMNs fire single and multiple action potentials. (O) 100 mM 
GABA induces inward currents in TTF-derived iMNs. (P) 100 mM kainate induces inward currents in TTF-
derived iMNs.  
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related, inwardly rectifying, and calcium-activated families of potassium channels 

(Figures 3.3D-E and Figure 3.5K). In addition, iMNs transcribed genes encoding the 

receptor components required for responding to the neurotransmitter glutamate (Figures 

3.3D-E and Figure 3.5J). Together, our physiological and gene expression analyses 

indicate that iMNs are excitable, generate action potentials and respond to both inhibitory 

and excitatory neurotransmitters in a manner characteristic of both ESC-derived and 

embryonic motor neurons. 

 

iMNs Form Functional Synapses with Muscle 

Our initial results indicated that iMNs have many of the phenotypic and 

electrophysiological properties of bona fide motor neurons. However, the defining 

functional characteristic of the spinal motor neuron is its ability to synapse with muscle 

and, through the release of acetylcholine (ACh), stimulate muscle contraction. To test 

whether iMNs could form functional neuromuscular junctions (NMJs), we co-cultured 

FACS-purified iMNs with myotubes derived from the C2C12 muscle cell line. We found 

that iMNs could establish themselves in these muscle cultures and sent projections along 

the length of the myotubes (Figure 3.6A).  

Strikingly, we observed that several days following the addition of purified iMNs, 

C2C12 myotubes began to undergo regular and rhythmic contraction (Figure 3.6B). 

Regular contractions were not seen at this time point in myotubes that were cultured 

alone or with generic iNs (Table 3.2). To directly test whether the regular contractions of 

mytotubes were due to synaptic stimulation of ACh receptors, we quantified the 

frequency of myotube contraction and then added curare to the culture medium. As  
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Figure 3.6. 
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Figure 3.6. (Continued) 
iMNs Form Functional Neuromuscular Junctions in Vitro. (A) iMNs co-cultured with a monolayer of 
C2C12 myotubes. Scale bar represents 200 mm. (B) iMN-induced contractions of C2C12 myotubes are 
blocked by 50 mM curare. The arrow indicates the timing of curare addition. (C-G) iMNs induce 
acetylcholine receptor clustering and form anatomical endplates on cultured myotubes. (C) iMNs cultured 
with chick myotubes form NMJs with characteristic a-bungarotoxin (a-BTX, red) staining. The dotted line 
outlines the boundaries of a myotube. Scale bar represents 5 mm. (D-G) A zoomed-out view of the iMN-
muscle co-culture. (D) iMNs after 7 weeks of co-culture with chick myotubes. (E) Rhodamine-conjugated 
a-BTX staining showed ACh clustering occurred on the chick myotubes. (F) Merged image of (D) and (E) 
showed ACh receptors clustering preferentially occurred near the GFP+ axons (open arrowhead) and at the 
end of the neurites at putative endplates regions (arrows).  ACh clusters were less pronounced on myotubes 
not associated with axons (arrowhead). (G) Confocal image depicting a GFP+ axon co-localized with 
acetylcholine receptors at a putative endplate in a 3-week co-culture. Imaging in both the x–z and y–z 
orthogonal planes confirms the close proximity of the receptors to the axon terminal. Scale bars represent 
50 mm (F) and 5 mm (G). 
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 Total number of 

dishes 

Dishes with twitching 

muscle 

Dishes with >2 

twitching areas 

iMN on muscle 5 4 3 

iN on muscle 2 0 N/A 

Muscle only 10 0 N/A 

 
 
Table 3.2. 
iMNs Induce Contraction of C2C12 Myotubes. FACS-purified iMNs and iNs were plated on top of 
C2C12 myotubes. At day 10 after the start of co-culture, contraction was observed in myotubes cultured 
with iMNs. Those cultured alone or with iNs did not exhibit contractions at this time point.  
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Movie 3.1.  
iMNs Induce Contraction of C2C12 Myotubes That Is Blocked by Curare Treatment. Video was 
filmed 10 days after iMNs were added to the myotube cultures. iMN-dependent contraction was observed 
for 5 minutes before the video was initiated. 17 seconds after video initiation, a final concentration of 50 
mM curare was added to the culture to specifically block acetylcholine receptors on the myotubes. All 
muscle contraction stopped by 32 seconds after video initiation and did not resume for the remainder of the 
video, indicating that the contraction was dependent on the activity of the iMNs. Movie provided as a 
supplementary file. 
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curare selectively and competitively antagonizes nicotinic ACh receptors, its addition 

should only inhibit muscle contractions that result from stimulation of such receptors 

(Figure 3.6B and Movie 1). Shortly after the addition of curare, we observed a 

precipitous and sustained decline in the frequency of myotube contraction, indicating that 

the contractions were indeed dependent on the stimulation of ACh receptors.  

 In order to directly visualize NMJ formation in iMN cultures, we co-cultured 

iMNs with primary chick myotubes (Figure 3.6C-G). After one week of co-culture, we 

found that many Hb9::GFP+ iMNs survived even following withdrawal of neurotrophic 

support, suggesting that they had formed synapses with the muscle. Three weeks after co-

culture had been initiated, staining with a-bungarotoxin (a-BTX) revealed ACh receptor 

clustering on the myofibers (Figures 3.6C-G). As occurs in ESC-derived 

motoneuron/chick myotube cocultures (Miles et al., 2004; Soundararajan et al., 2007), 

ACh receptors clustered preferentially near the iMN axons, although the clustering was 

not always clearly opposed to Hb9::GFP+ axons. This phenomenon is similar to what 

occurs during chick (Dahm and Landmesser, 1988) and mouse (Lupa and Hall, 1989) 

neuromuscular development where receptor clustering first appears near the innervating 

motor axons, but not always in direct contact. Imaging in the x-z and y-z orthogonal 

planes verified that ACh receptors clustered near iMN axons superimposed with the 

Hb9::GFP+ axons (Figure 3.6G). These results indicate that iMNs signal to the post-

synaptic muscle fiber to induce appropriate receptor clustering which is necessary for 

neuromuscular transmission. Together, these data indicate that iMNs can make functional 

synaptic junctions with muscle. 
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iMNs Integrate into the Developing Chick Spinal Cord 

Transplantation of motor neurons into the developing chick spinal cord provides a 

rigorous test of their ability to survive in vivo, migrate to appropriate engraftment sites in 

the ventral region of the spinal cord, and to properly respond to axon guidance cues to 

send their axonal projections out of the spinal cord through the ventral root (Peljto et al., 

2011; Soundararajan et al., 2006; Wichterle et al., 2002). In order to test the ability of 

iMNs to survive and function in vivo, we transplanted FACS-purified iMNs or control 

ESC-derived motor neurons into the neural tube of stage 17 chick embryos at 12-16 days 

post-transduction (Figure 3.7A). Although the injection of the iMNs along the dorsal-

ventral axis was not precisely controlled, we observed that Hb9::GFP+ iMNs engrafted in 

the ventral horn of the spinal cord in the location where endogenous motor neurons reside 

at stage 31 (Figure 3.7C). Like transplanted ESC-derived motor neurons (Soundararajan 

et al., 2006; Wichterle et al., 2002), the Hb9::GFP+ cells maintained Tuj1 expression and 

exhibited extensive dendritic arbors (Figure 3.7C). In addition, we asked whether iMNs 

project their axons out of the CNS. Endogenous and transplanted ESC-derived motor 

neurons send axonal projections out of the spinal cord through the ventral root towards 

musculature (Figure 3.7B) (Soundararajan et al., 2010; Wichterle et al., 2002).  When 

Hb9::GFP ESCs are subjected to directed differentiation toward motor neurons, the 

resulting EBs contain both GFP+ motor neurons and distinct, non-motor neuronal 

subtypes that do not express GFP. In contrast to GFP+ motor neurons, GFP- non-motor 

neuron subtypes present within the same transplants extend extensive processes whose 

projections remain restricted to the developing spinal cord and do not exit through the 

ventral root (Soundararajan et al., 2010). Therefore, the chick transplantation assay can  
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Figure 3.7.  
In Vivo Engraftment Capacity of iMNs. (A) Diagram showing the injection of iMNs into the neural tube 
of the stage 17 chick embryo. (B) Transverse section of chick neural tube injected with ESC-derived motor 
neurons (asterisks). The motor neurons engrafted into the ventral horn and extended axons out of the spinal 
cord through the ventral root (arrow) 5 days after transplantation into an E2.5 chick embryo neural tube.  
Scale bar represents 100 mm. (C) Transverse sections of the iMN-injected chick neural tube 5 day after 
transplantation. Arrows in both panels indicate the same axon of an iMN exiting the spinal cord through the 
ventral root. D: dorsal, V: ventral, VR: ventral root. 
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be used to measure motor neuron-specific axonal pathfinding. Indeed, after 

transplantation, we often observed Hb9::GFP+ iMNs in the ventral horn of the spinal 

cord, and in 80% (n=5) of these cases, we saw axons of Hb9::GFP+ iMNs projecting out 

of the spinal cord through the ventral root towards the musculature (Figure 3.7C).  Thus, 

their in vivo engraftment capacity was similar to that observed for ESC-derived 

Hb9::GFP+ motor neurons (Figure 3.7B). Together, these data demonstrate that iMNs 

are able to engraft, migrate to appropriate sites of integration, and correctly respond to 

guidance cues in vivo, projecting their axons out of the CNS. 

 

iMNs Are Sensitive to Disease Stimuli 

ALS is an invariably fatal neurological condition whose hallmark is the selective and 

relentless degeneration of motor neurons. We reasoned that if iMNs fully phenocopied 

bona fide motor neurons, they should also be sensitive to degenerative stimuli thought to 

contribute to ALS. To determine if this was the case, we co-cultured iMNs with glial 

cells from the SOD1G93A mouse model of ALS. We, and others, have shown that both 

embryonic and ESC-derived motor neurons are selectively sensitive to the toxic effect of 

mutant glia, while other neural cell types, such as spinal interneurons, are relatively 

unaffected (Di Giorgio et al., 2007) (Nagai et al., 2007). iMNs were co-cultured with 

either wild-type or mutant SOD1G93A glia and the number of Hb9::GFP+ iMNs 

quantified 10 days later. As we would expect if iMNs were indeed bona fide motor 

neurons, there was a sharp reduction in the number of iMNs co-cultured with mutant glia 

relative to those cultured with wild-type glia (Figures 3.8A-B), and the effect was similar 
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in magnitude to its reported effect on ESC-derived motor neurons (Di Giorgio et al., 

2007) (Nagai et al., 2007). 

Currently, it is unclear whether there are cell-autonomous mechanisms of motor 

neuron degeneration induced by mutant SOD1 that can lead to overt differences in motor 

neuron survival in vitro. To see whether iMNs could be used to answer this question, we 

asked if there is a survival difference between wild-type and SOD1G93A iMNs in culture 

with wild-type glia.  We prepared MEFs from mouse embryos that overexpress the 

SOD1G93A transgene as well as harbor the Hb9::GFP reporter, and transdifferentiated 

them into Hb9::GFP+ iMNs alongside MEFs which only contain the Hb9::GFP reporter. 

We then FACS-purified Hb9::GFP+ iMNs of both genotypes in parallel and plated the 

same number of cells for each on wild-type glia. After 4 days in culture, we observed 

impaired survival of SOD1G93A iMNs relative to control iMNs (Figure 3.8C), 

suggestive of a cell-autonomous disease phenotype. Taken together, these results indicate 

that iMNs are useful for studying both cell autonomous and non-autonomous contributors 

to motor neuron degeneration in ALS. 

Because there is significant interest in the identity of factors and pathways that 

modulate neuronal survival in the context of neurodegenerative diseases, we also tested 

whether iMNs were similar to motor neurons in their sensitivity to growth factor 

withdrawal. Indeed, when the neurotrophic factors GDNF, BDNF and CNTF were all 

withdrawn from the medium, iMNs were lost more rapidly (Figure 3.8D). Thus, iMNs 

share a neurotrophic support requirement similar to embryonic motor neurons, and we 

conclude that iMNs could serve as a suitable substrate for in vitro studies of motor 

neuron function, disease and injury.  
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Figure 3.8.  
iMNs Recapitulate ALS Disease Phenotypes in Vitro. (A) FACS-purified Hb9::GFP+ iMNs co-cultured 
with wild-type or the mutant SOD1G93A-overexpressing glia for 10 days. Scale bars reperesent 50 mm. (B) 
Quantification of (C). Error bars indicate +s.d. **P <0.01 (Student’s t-test, two-tailed). (C) SOD1G93A 
iMNs exhibit reduced survival in culture with wild-type glia. Error bars indicate +s.d. **P <0.01 (Student’s 
t-test, two-tailed). (D) Changes in iMN number after 9 days of culture in the presence or absence of 
neurotrophic factors (GDNF, BDNF and CNTF). Error bars indicate +s.d. **P <0.01 (Student’s t-test, two-
tailed). 
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Fibroblasts Do Not Transit Through a Neural Progenitor State Before Becoming iMNs 

The process by which the initial fibroblasts undergo conversion into another cell type in 

defined-factor reprogramming and transdifferentiation experiments remains poorly 

understood. In particular, it is currently unknown if the somatic cells reprogram through 

the same developmental intermediates that are found in the developing embryo, for 

example, by first de-differentiating and then re-differentiating through a neural progenitor 

state into a neuron, or if they instead convert more “directly”. To address this question, 

we used a lineage tracing approach to ask if during the course of reprogramming, a gene 

commonly used to identify neuronal progenitors ever became expressed. 

 Motor neuron progenitor cells are highly proliferative in culture (Frederiksen and 

McKay, 1988; Jessell, 2000). To determine whether iMNs transited through a highly 

proliferative intermediate during the reprogramming process, we quantified the timing of 

cell division in the reprogramming cultures using 48-hour pulses of BrdU. Following 

transduction, we found that the cells incorporated decreasing amounts of BrdU at each 

subsequent time point and did not incorporate detectable levels of Brdu after 4 days post-

transduction (Figure 3.9A). Consistent with a previous report (Vierbuchen et al., 2010), 

these results suggest that the transduced cells quickly become post-mitotic. Since 10% of 

the fibroblasts eventually become iMNs and because GFP+ iMNs do not begin to appear 

in culture until day 5 and the majority arise between 7 and 14 days in culture these results 

suggest that the iMNs are not being produced from highly proliferative neuronal 

progrenitors. 
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Figure 3.9.  
Transdifferention Does Not Occur through a Nestin+ Neural Progenitor State. (A) Percentage of 
iMNs that have incorporated BrdU. (B) Outline of the lineage tracing experiment using Nestin::CreER; 
LOX-STOP-LOX-H2B-mCherry; Hb9::GFP iPSCs or MEFs. To detect Nestin+ intermediates, cultures 
were treated with 1-2 mM 4-OHT during directed diffentiation of iPSCs (positive control) or during 
transdifferentiation of fibroblasts by the 7 factors. (C) FACS-purified, mCherry+ Hb9::GFP+ motor 
neurons derived from the triple transgenic iPSCs in the presence of 1 mM 4-OHT. Expression of mCherry 
was observed in 3% of Hb9::GFP+ cells (n > 10,000) and indicates the activation of Nestin::CreER during 
directed differentiation. Scale bars represent 40 mm. (D) mCherry- Hb9::GFP+ iMNs generated from the 
triple transgenic MEFs by transdifferentiation in the presence of 2 mM 4-OHT. mCherry+ iMNs were never 
observed (n > 5,000), suggesting a Nestin+ state is not accessed during reprogramming. Scale bars 
represent 40 mm. 
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 To more definitively test if the fibroblasts become motor neuron progenitors 

before differentiating into iMNs, we repeated the induction of a motor neuron identity 

using transgenic fibroblasts with a Nestin::CreER (Burns et al., 2007); lox-stop-lox-H2B-

mCherry (Abe et al.); Hb9::GFP genotype (Figure 3.9B). Because Nestin is a well-known 

marker of neural progenitor cells in the mammalian CNS (Messam et al., 2002), we 

reasoned that if the fibroblasts transited through a progenitor state before becoming motor 

neurons, the resulting iMNs would activate expression of Nestin::CreER, recombine the 

reporter gene and thus express both mCherry and Hb9::GFP.  

First, as a positive control for this experiment, we generated iPSCs from the 

fibroblasts, then used retinoic acid and sonic hedgehog (Wichterle et al., 2002) to 

differentiate the iPSCs into motor neurons. As this directed differentiation protocol 

mimics development, we expected the resulting motor neurons to originate from Nestin+ 

precursors. When we performed the differentiation without 4-hydroxytamoxifen (4-

OHT), none of the resulting Hb9::GFP+ motor neurons expressed mCherry (Figure 

3.9C). However, when we added 4-OHT to the differentiation, 3% of the motor neurons 

co-expressed mCherry (n > 10,000) (Figure 3.9C), verifying that the Nestin::CreER 

reporter successfully identified motor neurons that transited through a Nestin+ progenitor 

state. In contrast, when we treated the 7 factor-transduced MEF cultures with 4-OHT 

both before and during transdifferentiation, none of the resulting iMNs expressed 

mCherry (n > 5,000) (Figure 3.9D). These results confirm that fibroblasts do not become 

iMNs by transiting through a motor neuron progenitor cell state and further rule out the 

possibility that many of the iMNs are derived from contaminating neural progenitor cells 

in the MEF cultures. 
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Human iMNs Can Be Generated by Eight Transcription Factors 

We next sought to determine whether the same, or a similar set of factors could be used 

to generate human iMNs from fibroblasts. To this end, human embryonic fibroblasts 

(HEFs) were derived from a human ESC line, HUES3, harboring the Hb9::GFP 

transgene (Di Giorgio et al., 2008). The HUES3-HEFs were first transduced with the 

mouse ecotropic receptor mCAT, then transduced with retroviruses containing the 7 iMN 

factors identified in the mouse system as well as NEUROD1, a pro-neural gene reported 

to enhance the conversion efficiency of human fibroblasts into iNs (Pang et al., 2011). 30 

days after transduction, we observed Hb9::GFP+ cells with highly neuronal 

morphologies in the culture of 8 factor-transduced HUES3-HEFs (Figures 3.10A-B), 

whereas untransduced HUES3-HEFs never spontaneously expressed the transgene under 

the same conditions (Figure 3.10B). These putative human iMNs expressed vesicular 

ChAT (Figure 3.10C), indicating that they were indeed cholinergic in nature. 

            In order to assess the functionality of human iMNs made with 8 factors, we 

employed whole-cell patch clamp recording to look at their electrophysiological 

properties. Similar to their mouse counterparts, HUES3-HEF-iMNs expressed functional 

voltage-gated sodium and potassium channels (Figure 3.10D) and were able to fire action 

potentials (Figure 3.10E) when depolarized. Importantly, they responded appropriately to 

the addition of 100 mM kainate (Figure 3.10F) and 100 mM GABA (Figure 3.10G), 

demonstrating their ability to receive and respond to the major excitatory and inhibitory 

inputs, respectively, that govern spinal motor neuron activity.  Therefore, functional 

iMNs can be generated from human fibroblasts by transdifferentiation.  
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Figure 3.10.  
Human iMNs Are Generated by Eight Transcription Factors. (A) An Hb9::GFP+ neuron generated 
from HUES3-HEFs by 8 transcription factors. Scale bars represent 80 mm. (B) Quantification of human 
iMN reprogramming efficiency at day 30 post-transduction. (C) Human iMNs express vChAT (red). Scale 
bars represent 80 mm. (D-G) Human iMNs are electrophysiologically active. (D) Human iMNs express 
functional sodium and potassium channels. (E) Human iMNs fire action potentials upon depolarization. (F) 
100 mM kainate induces inward currents in human iMNs. (G) 100 mM GABA induces inward currents in 
human iMNs. 
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Functional ALS Patient-Specific iMNs Are Generated 

Encouraged by these initial results using retroviruses, we set out to improve the human 

iMN reprogramming process. We noticed that a slightly greater number of Hb9::GFP+ 

cells were generated from HUES3-HEFs when Hb9 was omitted from the cocktail (data 

not shown); therefore, all subsequent human iMN experiments were performed in the 

absence of the Hb9 transgene.  

 Suspecting that the low transduction efficiency of the ecotropically packaged 

retrovirus was a major limiting factor, we cloned the 7 iMN genes (7F’; NEUROD1 plus 

the 7 factors discovered in mouse, except Hb9) into a doxycycline (Dox)-inducible 

lentiviral vector (FUW-tetO). We transduced HUES3-HEFs with lentiviruses containing 

the 7F’ cocktail and administered Dox. After 30 days, there were numerous Hb9::GFP+ 

cells in the culture, the majority of which had robust TUJ1 and HB9 expression (Figures 

3.11A-B), indicating that the FUW-tetO lentivirus resulted in an increased efficiency of 

human iMN reprogramming. 

 While the transgenic Hb9::GFP reporter in HUES3 has worked well, establishing 

a similarly reliable reporter iPS line for each patient may not be practical. To this end, a 

small subset of the 7F’-transuced HUES3-HEFs had been subsequently infected with a 

lentiviral Hb9::RFP reporter, which contains a shorter Hb9 promoter fragement (3.7 kb) 

(Marchetto et al., 2008) driving RFP expression. In this way, we could directly compare 

the performance of the lentiviral RFP reporter with the transgenic Hb9::GFP reporter that 

contains a well-validated, longer promoter fragment (9.2 kb) (Lee et al., 2004). After 5  
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Figure 3.11.  
Improved Efficiency of Human iMN Reprogramming. (A) HUES3-HEF-derived iMNs express TUJ1. 
Scale bars represent 200 mm. (B) HUES3-HEF-derived iMNs express HB9. Scale bars represent 200 mm. 
(C) Lentiviral Hb9::RFP reporter expression in HUES3-HEF-derived iMNs. Scale bars represent 200 mm. 
(D) Overlap of the transgenic Hb9::GFP reporter and the lentiviral Hb9::RFP reporter in HUES3-HEF-
derived iMNs. 
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Subject Genotype Fibroblast types used 

A11 Wild-type Primary fibroblasts and 

iPSC-derived HEFs 

A27 Wild-type Primary fibroblasts 

A36 TDP-43 Q343R Primary fibroblasts and 

iPSC-derived HEFs 

A39 SOD1 A4V Primary fibroblasts and 

iPSC-deribed HEFs 

A47 TDP-43 G298S Primary fibroblasts 

Rb9 SOD1 A4V iPSC-derived HEFs 

 
 

Table  3.3. 
List of Human Fibroblasts from ALS Patients and Control Subjects. 
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Figure 3.12. 
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Figure 3. 12. (Continued) 
Electrophysiologically Active ALS Patient iMNs are Produced. (A) A47-hFib-derived cells that express 
Hb9::GFP ePiggybac (ePB) reporter but not Hb9::RFP lentiviral reporter. Scale bars represent 100 mm. (B) 
A11a-HEF-derived cells that express either Hb9::GFP ePB reporter or Hb9::RFP lentiviral reporter. Scale 
bars represent 200 mm. (C) An RB9d-HEF-derived cell that expresses both Hb9::GFP ePB reporter and 
Hb9::RFP lentiviral reporter. Scale bars represent 200 mm. (D) Hb9::RFP+ TUJ1+ neuronal cells are 
generated from A11a-HEFs. Scale bars represent 100 mm. (E) Hb9::RFP+ TUJ1+ neuronal cells are 
generated from A36a-HEFs. Scale bars represent 100 mm. (F-I) A36-HEF-iMNs are elecrophysiologically 
active. (F) A36-HEF-iMNs express functional voltage-gated sodium and potassium channels. (G) A36-
HEF-iMNs fire multiple action potentials upon depolarization. (H) A36-HEF-iMNs respond to 100 mM 
kainate. (I) A36-HEF-iMNs respond to 100 mM GABA. (J-K) ALS patient iMNs can show heightened 
excitability relative to wild-type controls. (J) HUES3-HEF-iMNs generate single action potentials in 
response to the current injections as shown. (K) Rb9-HEF-iMNs can have a lower threshold for firing and 
may be prone to generating trains of action potentials.  
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weeks of Dox treatment, there were many fewer RFP+ cells than GFP+ cells (53 versus 

158, respectively) with neuronal morphologies, with some cells co-expressing both 

reporters (45 cells) (Figures 3.11C-D). Taking the expression of the transgenic Hb9::GFP 

reporter as a surrogate for a motor neuron state, this indicates that the lentiviral reporter 

vastly underestimates the reprogramming efficiency, since less than 30 % of GFP+ cells 

co-express RFP. On the other hand, 85 % of RFP+ cells also express GFP+, suggesting 

that the lentiviral reporter has a reasonable degree of fidelity and could be used to detect 

patient iMNs.   

We went on to generate iMNs from a small panel of human fibroblasts from 

healthy adults as well as ALS patients with known disease-causing mutations in SOD1 or 

TAR DNA-binding protein 43 (TDP-43) (Neumann et al., 2006); adult primary 

fibroblasts as well as HEFs derived from established patient-specific iPS lines were used 

(Table 3.3). In addition to the Hb9::RFP lentiviral reporter, we also decided to test an 

Hb9::GFP ePiggybac transposon-based reporter containing the same promoter fragment 

as a possible alternative. The patient-derived fibroblasts were first modified with the 

ePiggybac reporter and selected for stably maintaining the construct. They were then 

transduced with 7F’ and, the following day, with the Hb9::RFP lentiviral reporter.  

After 40 days of Dox treatment, rare reporter-expressing cells emerged in all of 

the cell types; we saw a larger number of Hb9::RFP+ cells than Hb9::GFP+ cells, with 

only a limited degree of overlap, suggesting that the lentiviral reporter was more efficient 

than the ePiggybac reporter (Figure 3.12A-C). However, while the labeled cells 

expressed TUJ1, they did not convincingly express HB9 or possess complex neuronal 

morphologies (Figures 3.12D-E).  
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Despite the rarity of reprogrammed human iMNs, those marked by either reporter 

were electrophysiologically active, having functional voltage-gated sodium and 

potassium channels (Figures 3.12F) and firing action potentials (Figures 3.12G), as well 

as responding to neurotransmitters (Figures 3.12H-I). Surprisingly, many of the ALS 

patient-derived iMNs seemed much more excitable than what we commonly observe in 

non-ALS iMNs (Figures 3.12J-K): they not only generated trains of action potentials 

more readily, but did so with much smaller input current. A larger sample size would be 

needed to determine whether or not ALS iMNs behave in a significantly different manner 

in this assay. 

 

Improved Efficiency of Patient iMN Generation 

Although the FUW-tetO lentiviral system significantly increased the efficiency of 

HUES3-HEF reprogramming, there was a clear need to optimize patient-specific iMN 

reprogramming. Therefore, we decided to explore the use of another inducible lentiviral 

vector, pHAGE-tetO, that might permit greater transgene expression. We focused on 

fibroblasts derived from one patient, A39, who had an SODA4V mutation that causes one 

of the most severe forms of ALS, with an average of three years from the time of disease 

onset until death.  

Both primary fibroblasts (A39-hFibs) and iPS-derived HEFs (A39-HEFs) were 

transduced with 7F’-containing FUW-tetO or pHAGE-tetO lentiviruses, with a subset of 

cells also subsequently receiving the Hb9::RFP lentiviral reporter. The pHAGE virus 

seemed to infect the cells better, as judged by control transductions of Venus, and caused 

less toxicity (data not shown). Two weeks into Dox addition, Hb9::RFP+ cells began to  
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Figure 3.13.  
Optimization of ALS Patient iMN Generation and Detection. (A) HB9+ MAP2+ neuronal cells are 
generated from A39-HEFs. Scale bars represent 100 mm. (B) HB9+ MAP2+ neuronal cells are generated 
from A39-hFibs. Scale bars represent 100 mm. (C) The lentiviral Hb9::RFP reporter labels HB9+ MAP2+ 
cells generate from A39-HEFs. Scale bars represent 200 mm. (D) Representative pictures of morphological 
categories for classifying human patient iMNs. Cells with a distinct soma and multiple and/or branched 
processes were classified as ‘complex neuronal’; those with a distinct soma and a simple process, ‘simple 
neuronal’; and those with a non-neuronal morphology, ‘non-neuronal’. Scale bar represents 200 mm. (E) 
Quantification of HB9 expression in different categories of Hb9::RFP+ MAP2+ cells, generated from A39-
HEFs or A39-hFibs. 
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emerge in cultures infected 7F’-pHAGE-tetO viruses. In contrast, FUW-tetO-infected 

cultures never generated significant numbers of Hb9::RFP-labeled cells at any timepoint 

(data not shown) and were excluded from further analysis.  

After 4 weeks of Dox administration, we fixed and immunostained the pHAGE-tetO-

infected cultures with antibodies for MAP2 and HB9 (Figures 3.13A-B). Surprisingly, the 

overall frequency of HB9+ MAP2+ cells was encouraging, amounting to 5.7 % of 

transduced A39-hFibs. Some of the HB9+ MAP2+ cells had complex neuronal 

morphologies (Figures 3.13A-B), suggesting that the quality of the putative iMNs had 

also improved. In the culture of infected A39-HEFs, clusters of Hb9+ MAP2+ cells were 

frequently observed (Figure 3.13A). 

We noticed that the lentiviral Hb9::RFP reporter could label some of the HB9+ 

MAP2+ cells in the reprogramming cultures (Figures 3.13C-D), and asked how well it 

performed in these contexts. For this purpose, Hb9::RFP+ MAP2+ cells were scored for 

HB9 protein expression and also assigned to different morphological classes: complex 

neuronal, simple neuronal, and non-neuronal (Figure 3.13D). In the culture of 7F’-

transduced A39-hFibs. 17 % of reporter-labeled MAP2+ cells stained positively for HB9 

and had a complex morphology, while 63 % were HB9+ with a simple morphology 

(Figure 3.13E). Therefore, the fidelity of the reporter, estimated by HB9 expression in 

labeled, MAP2+ cells, is around 80 %  – a slightly lower figure in the HUES3-HEF-

iMNs. Conversely, this indicates that only 16 % of all HB9+ MAP2+ cells were labeled 

by the reporter in this case. (Figure 3.13E).  

Taken together, these results clearly demonstrate that human iMNs from patient-

derived fibroblasts can be generated using a suitable gene delivery method. The lentiviral 
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reporter for the motor neuron fate underreports on the number of HB9+ cells, but has a 

reasonable fidelity. Notably, a higher proportion of HEF-derived iMNs exhibited 

complex morphologies (24 % of RFP+ MAP2+ cells) compare with hFib-derived iMNs 

(17 % of RFP+ MAP2+ cells), suggesting that the HEFs are more amenable to the 

reprogramming process. 

 

Discussion 

We have shown that a small set of transcription factors can convert embryonic and adult 

fibroblasts into functional motor neurons. The iMNs expressed pan-neuronal and motor 

neuron-specific markers, as well as the receptors and channels that generate excitable 

membranes sensitive to transmitters, allowing them both to fire action potentials and 

receive synaptic input. These cholinergic iMNs also possessed the defining hallmark of 

motor neurons: the ability to synapse with muscle and to induce its contraction. Most 

importantly, iMNs are able to contribute to the developing CNS in vivo, migrating 

appropriately to the ventral horn and sending out axonal projections through the ventral 

root. We also demonstrated that the iMNs are sensitive to a degenerative ALS stimulus 

that selectively affects motor neurons. Thus we provide several lines of evidence that 

iMNs are functional motor neurons with consequent utility for the study of motor neuron 

physiology and disease susceptibility. 

It is remarkable that the conversion to motor neurons occurs so efficiently given 

that the cells do not transit through a neural progenitor state. It was striking that under 

certain conditions, as many as one Hb9::GFP+ iMN was made from every 10 MEFs. 

This efficiency was substantially higher than iPSC reprogramming (Takahashi and 
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Yamanaka, 2006) and could be the result of a cooperative process in which establishment 

of a general neuronal program is augmented by specific patterning to a motor neuron 

identity. These results indicate that the massive changes in gene expression induced 

during defined-factor reprogramming can be executed efficiently even though they do not 

mimic embryonic development precisely. It will be of interest to determine whether this 

approach can serve as a general strategy for the production of many distinct neuronal 

subtypes.  

Importantly, this method enables us to reprogram adult human fibroblasts into 

iMNs. We have significantly improved the efficiency of human iMN reprogramming, 

such that it would be feasible to use the iMNs for applications that require a relatively 

small number of cells. Using more powerful viral vectors, adding and removing genetic 

factors, or using small molecules might enhance the efficiency further. Developing a 

reporter system with better accuracy and efficiency of reporting would also be 

worthwhile, for example, by using a larger promoter fragment to drive the reporter gene 

expression. 

It is intriguing that ALS patient fibroblast-derived iMNs seem prone to fire action 

potentials, perhaps more so than is typical for non-ALS iMNs. As an aberrant increase in 

neuronal activity is associated with muscle fasciculation in ALS, it is tempting to 

speculate that the readily excitable state observed in ALS patient iMNs is a possible 

disease-related phenotype that may be worth pursuing.  

Going forward, direct reprogramming may be an ideal tool for rapidly surveying a 

cohort of ALS patient-derived motor neurons for disease-relevant phenotypes. By 

stratifying the patient population into phenotypic classes with clinical significance, a 
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more targeted approach to developing therapeutics may become possible. Applying it to 

the production of other neuronal subtypes could help tackle a variety of 

neurodegenerative diseases, and reveal more principles that govern the stability and 

plasticity of cell fate. 
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Materials and Methods 

Molecular Cloning, Isolating Embryonic and Adult Fibroblasts, Viral Transduction, 

and Cell Culture  

Complementary DNAs for the 11 candidate factors were each cloned into the pMXs 

retroviral expression vector, as well as FUW-tetO and pHAGE-tetO lentiviral vectors, 

using Gateway technology (Invitrogen). Hb9::GFP-transgenic mice (Jackson 

Laboratories) were mated with ICR mice (Taconic) and MEFs were harvested from 

Hb9::GFP E12.5 embryos under a dissection microscope (Leica). TTFs were isolated 

from Hb9::GFP-transgenic adult mice as previously described (Vierbuchen et al., 2010). 

The fibroblasts were passaged at least once before being used for experiments. HEFs 

were isolated from human ESCs or iPSCs by culturing them in DMEM + 20% fetal 

bovine serum without bFGF for at least three passages. Retroviral and lentiviral 

transductions were performed as described (Ichida et al., 2009). Glial cells isolated from 

P2 ICR mouse pups were added to infected fibroblasts two days after transduction. The 

next day, medium was switched either to mouse motor neuron medium containing F-12 

(Invitrogen), 5% horse serum, N2 and B27 supplements, glutamax and 

penicillin/streptomycin, or to N3 medium (Vierbuchen et al., 2010). Both media were 

supplemented with GDNF, BDNF and CNTF, all at 10 ng/ml. Efficiency of mouse iMN 

generation was estimated by counting the number of Hb9::GFP+ cells with neuronal 

morphologies using a fluorescence microscope (Nikon).  

 

Obtaining ESC-Derived and Embryonic Motor Neurons, FACS, Microarray Analysis, 

and qPCR  
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Motor neurons were derived from Hb9::GFP mouse ESCs and isolated by FACS using 

standard protocol (Di Giorgio et al., 2007). Embryonic motor neurons were harvested 

from Hb9::GFP E13.5 embryos. Briefly, whole spinal cords were washed in F-12 

(Invitrogen) and incubated in 10 ml of 0.025% trypsin with DNase for 45 minutes with 

gentle agitation every 15 minutes. Media was added to the dissociated spinal cords and 

the cells were triturated, spun down at 1,000 rpm for 5 minute and resuspended in 

DMEM/F-12 with glutamax and penicillin/streptomycin. FACS was performed in the 

same way as with ESC-derived motor neurons. Total RNA isolation, RNA amplification 

and microarray analysis were performed as described previously (Ichida et al., 2009). 

qPCR was performed using iScript cDNA synthesis, SYBR green qPCR supermix (Bio-

rad), and the primers in Table S1. 

 

Immunocytochemistry 

Antibody staining was performed as previously described (Ichida et al., 2009). The 

following primary antibodies were used: mouse anti-Hb9 (DSHB, 1:50), mouse anti-Islet 

(DSHB, 1:100); mouse anti-TuJ1 (Covance, 1:500); rabbit anti-vChAT (Sigma, 1:1000); 

rabbit anti-synapsin I (Millipore, 1:500); goat anti-Chx10 (Santa Cruz, 1:200); and rabbit 

anti-tyrosine hydroxylase (ThermoScientific, 1:300). 

 

Electrophysiology 

Whole-cell voltage-clamp and current-clamp recordings were made using a Multiclamp 

700B (Molecular Devices) at room temperature (21-23°C). Data were digitized with a 

Digidata 1440A A/D interface and recorded using pCLAMP 10 software (Molecular 
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Devices). Data were low-pass filtered at 2 kHz and sampled at 20 kHz (1kHz  and 2 kHz, 

respectively, for transmitter application). Patch pipettes were pulled from borosilicate 

glass capillaries on a Sutter Instruments P-97 puller and had resistances of 2-4 MΩ. The 

pipette capacitance was reduced by wrapping the shank with Parafilm and compensated 

for using the amplifier circuitry. Series resistance was typically 5-10 MΩ, always less 

than 15 MΩ, and compensated by at least 80%. Leak currents were typically less than 

200 pA with mean input resistance 675 MΩ and mean resting potential -49 mV. For 

study of voltage-gated conductances, linear leakage currents were digitally subtracted 

using a P/4 protocol and voltage was stepped from a holding potential of -80 mV to test 

potentials from -80 to 30 mV in 10 mV increments. Intracellular solutions were 

potassium-based solution and contained KCl, 150; MgCl2, 2; HEPES, 10; pH 7.4 used for 

earlier experiments and KCl, 135; MgCl2, 2; HEPES, 10; MgATP, 4; NaGTP, 0.3; 

Na2PhosCr, 10; EGTA, 1; pH 7.4 used for later experiments with no obvious difference 

in sodium and potassium currents. The extracellular was sodium-based and contained 

NaCl, 135; KCl, 5; CaCl2, 2; MgCl2, 1; glucose, 10; HEPES, 10; pH 7.4). Based on the 

chloride Nernst potential of -2 mV, inward currents were expected following GABA and 

glycine treatment (Puia et al., 1990). Transmitters were not washed out, explaining the 

delayed current decay. 

 

C2C12 Muscle Co-Culture 

C2C12 myoblasts were expanded in DMEM with 20% fetal bovine serum and 

penicillin/streptomycin. When the culture reached 100% confluency, the serum content 

was reduced to 5% to induce differentiation. Flow-purified iMNs or iNs were added to 
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the myotubes after 7-14 days and the medium switched to either mouse motor neuron or 

N3 media. The co-cultures were monitored for myotube contractions under the 

microscope with 10x or 20x objectives. To stop contractions, a solution of tubocurarine 

hydrochloride was added to a final concentration of between 50 nM and 50 mM. 

Twitching myotubes were filmed using Nikon ACT-2U Imaging Software (Excel 

Technologies) and contraction frequencies determined. 

 

iMN-Chick Myotube Co-Cultures and Immunocytochemistry 

Myoblasts were isolated from the epaxial (longissimus) muscles of E10 White Leghorn 

chick embryos and plated in 24-well plates at a density of 100,000 cells/well.  Cultures 

were maintained at 370C in F10 media (Gibco) supplemented with 0.44 mg/ml calcium 

chloride, 10% horse serum, 5% chicken serum and 2% penicillin:streptomycin. iMNs 

were added to the myotubes 5 days later in Neurobasal media (Gibco) supplemented with 

B27 (Gibco), 1% L-glutamine and 1% penicillin:streptomycin. Co-cultures were 

supplemented with 10ng/mL CNTF and GDNF every two days for the first week 

following the addition of the iMNs. Co-cultures were maintained for 3 weeks when they 

were prepared for immunocytochemistry.  Antibody staining was performed as 

previously described (Soundararajan et al., 2006).  A rabbit anti-GFP (Chemicon, 1:2000) 

primary antibody was used to visualize the iMNs and rhodamine-conjugated a-

bungarotoxin (Invitrogen, 1:500) was used to visualize the AChRs. Images were acquired 

on a laser scanning-confocal microscope (Zeiss LSM 510).  Orthogonal images were 

rendered and edited with LSM imaging software (Zeiss) and further contrast and 

brightness adjustments were performed on Photoshop version 7.0. 



	   	  
	  

 170	  

	  

In Ovo Transplantation of ESC-derived Motor Neurons and iMNs  

In ovo transplantations and immunohistochemistry were performed as previously 

described12.  Briefly, E2.5 chick embryos were exposed; the vitelline membrane and 

amnion were cut to allow surgical access to the neural tube. An incision of 1-1.5 somites 

in length was made along the midline of the neural tube at the rostral extent of the 

developing hind limb bud (T7-L1) using a flame-sterilized tungsten needle (0.077 mm 

wire, World Precision Instruments). For control ESC-derived motor neuron 

transplantations, Hb9::GFP-transgenic mouse ESCs were differentiated into motor 

neurons as described previously (Soundararajan et al., 2006; Wichterle et al., 2002).  A 

single embryoid body containing approximately 150-200 differentiated Hb9::GFP+ 

motor neurons was transplanted into the ventral lumen of the neural tube of E2.5 chick 

embryos as described previously (Soundararajan et al., 2006).  For iMN transplantations, 

a sphere of iMNs mixed with non-transgenic, ESC-derived motor neurons containing 

approximately 200 cells was transplanted into the ventral lumen of the neural tube of 

E2.5 chick embryos. For all transplantations, the chick embryos were harvested five days 

later, fixed in 4% paraformaldehyde/PBS, cut on a cryostat and then processed for 

immunohistochemistry. The following primary antibodies were used: rabbit anti-GFP 

(Chemicon, 1:1000) and mouse anti-Tuj1 (Covance, 1:1000). Images were captured with 

a digital camera (C4742; Hamamatsu Photonics, Hamamatsu, Japan) in conjunction with 

digital imaging acquisition software (IPLab; Version 4.0; BD Biosciences, Rockville, 

MD, USA).  
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Glia-Neuron Co-Culture for Disease Modeling 

SOD1G93A transgenic mice (Jackson Laboratories) were mated with ICR mice. Glial 

preps were derived from transgenic P2 pups and their littermates. 3 weeks later, confluent 

flasks of glial cells were passaged 1:2 onto 6-well plates and iMNs were plated on top. 

The co-cultures were kept in mouse motor neuron medium with neurotrophic factors and 

the media changed every other day for the duration of the experiment.  

 

Nestin::CreER Lineage Tracing 

MEFs were isolated from E13.5 embryos that were transgenic for Nestin::CreER, LOX-

STOP-LOX H2B-mCherry, and Hb9::GFP. To generate iPSCs, the MEFs were 

transduced with retroviruses (pMXs vector) encoding Oct4, Sox2, and Klf4. Cells were 

cultured in mES media containing 13% Knockout Serum Replacement and colonies were 

picked, expanded, and verified by Nanog immunostaining. For the positive control, 

iPSCs were differentiated into motor neurons using retinoic acid and Sonic Hedgehog 

(Wichterle et al., 2002) in the presence or absence of 2 mM 4-OHT. iMNs were also 

created in the presence or absence of 2 mM 4-OHT. 
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Chapter 4 

 

Promises of Reprogramming Technology 
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Abstract 

 

Since the discovery of induced pluripotent stem cells (iPSCs), rapid progress has 

been made in manipulating cellular fate with defined factors. We and others have 

discovered small molecules capable of facilitating iPSC generation, adding to the 

molecular toolkit for inducing and dissecting the process of reprogramming. 

Transdifferentiation has produced terminally differentiated cells as well as more 

immature cells, and may provide multiple routes for producing a desired cell type. 

Improving the quality and efficiency of reprogramming, with methods for designing 

new conversions, could propel these technologies forward into therapeutic 

relevance. We propose that directly reprogrammed motor neurons may enable a 

rapid survey of a spectrum of ALS patients with the goal of classifying them into 

clinically distinct categories. 
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Insights from iPS Reprogramming Chemicals 

Progress in Chemical Reprogramming  

Our discovery of the Sox2-replacement molecule, RepSox, was one of the earliest 

demonstrations that small molecules could not only enhance iPS reprogramming 

efficiency, but also potently replace multiple reprogramming genes simultaneously, 

possibly through different mechanisms. Discovered from a functional complementation 

screen using a focused library of bioactive molecules, RepSox modulates a well-known 

signaling pathway, the Transforming Growth Factor-b (Tgf-b) pathway, in cells 

undergoing reprogramming. In particular, a subset of Oct4-, Klf4- and cMyc-infected, 

partially reprogrammed intermediate cells are highly responsive to RepSox: even with a 

pulse treatment, they rapidly upregulate Nanog and convert to fully reprogrammed 

iPSCs.  

Of note, two other Tgf-b inhibitors could reportedly enhance four-factor iPSC 

generation in rat and human (Li et al., 2009; Lin et al., 2009), indicating the involvement 

of Tgf-b signaling in related contexts. In these studies, inhibition of the MEK/ERK 

pathway, as well as activation of the Wnt pathway in the former case, were also found to 

facilitate the iPS conversion, and suggests that these pathways may also have relevance in 

reprogramming. 

Interestingly, several inhibitors of epigenetic modulators have been reported to 

aid reprogramming; this indicates that, similar to SCNT, iPS reprogramming is hindered 

by the presence of epigenetic barriers. For example, valproic acid (VPA), an HDAC 

inhibitor (Huangfu et al., 2008a, b), increases both murine and human reprogramming 

efficiency and, at an extremely low rate (0.0001%), can replace Klf4 and Sox2 during 
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human iPSC generation. The DNMT inhibitor 5-azacytidine (Aza) can enhance late-stage 

murine reprogramming, even rescuing incompletely reprogrammed cells toward 

pluripotency (Mikkelsen et al., 2008). However, it is unclear whether global changes in 

chromatin structure or DNA methylation will have long-term adverse effects on the 

quality of iPSCs produced in this way. 

Compounds of this functional class have also been found to cooperate with other 

molecules to replace one or more reprogramming factors: these include inhibitors of G9a 

histone methyltransferase (HMTase) (Shi et al., 2008a), DNMTs (Shi et al., 2008b), 

HDACs (Zhu et al., 2010), and protein arginine methyltransferase (PRMT) (Yuan et al., 

2011). Of note, the latter two are part of 6- and 2-chemical cocktails that reportedly 

enable reprogramming of human keratinocytes and MEFs, respectively, with OCT4 

alone; interestingly, both cocktails contain an inhibitor of Tgf-b signaling, A-83-10. 

However, these synergistic chemical combinations typically resulted in low efficiency 

reprogramming; more importantly, they have yet to be successfully replicated, suggesting 

that specific laboratory conditions might be required for their actions. 

An outstanding goal in this area is to derived iPSCs with a purely chemical 

cocktail. Even though modified RNAs (Warren et al., 2010) or proteins (Zhou et al., 

2009) can generate transgene-free iPSCs, a chemical approach will be valuable for 

economic as well as logistical reasons. The success of identifying such a cocktail is likely 

to critically depend on finding a small molecule replacement for the central 

reprogramming factor, Oct4. Although an orphan nuclear receptor, Nr5a2, was shown to 

replace Oct4 in murine reprogramming (Heng et al., 2010), no chemical has fulfilled this 

role in a reproducible manner. It remains to be seen whether a combination of approaches 
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– functional complementation screens, as well as luciferase screens for direct Oct4 

induction, for example – will achieve this milestone in the future.  

 

Tgf-b  Signaling and Reprogramming 

The Tgf-b family of signaling molecules plays highly context-dependent roles in a 

plethora of processes ranging from development to cancer. Using specific neutralizing 

antibodies and other Tgf-b inhibitors, as well as kinase profiling, we showed that Tgf-b 

type I receptors, specifically ALK4/5 as well as ALK2, were the functional targets of 

RepSox during reprogramming. Thus, this well-known signaling pathway can also 

intersect with a highly artificial reprogramming system. 

The precise molecular events that relate Tgf-b inhibition to a dramatic 

upregulation of Nanog in partially reprogrammed cells are unclear. One hypothesis is that 

RepSox tips the balance between Activin/Nodal and Bmp signaling – the two major arms 

of the Tgf-b superfamily that share a common requirement for Smad4 (Attisano and 

Wrana, 2002) – by specifically blocking the former. In mouse ESCs, Bmp signaling can 

activate Nanog in the presence of Stat3 (Suzuki et al., 2006). Another possibility is that 

RepSox treatment downregulates Snail1/2 downtream of Tgf-b signaling, leading to de-

repression of E-cadherin and its induction of of Nanog; these would be the reverse of the 

molecular changes induced by Tgf-b signaling during epithelial-mesenchymal transition 

(EMT) (Chou et al., 2008; Willis et al., 2008). 

Given the importance of Tgf-b signaling in human ESC self-renewal (Xu et al., 

2008), it is intriguing that its inhibition increases the efficiency of human iPS 
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reprogramming as well (Li et al., 2009; Lin et al., 2009); it would be interesting to 

identify the contextual differences that would reconcile these observations.  

Efforts to understand the full molecular mechanism of chemical-mediated 

reprogramming may reveal novel physical and functional interactions between signaling 

pathways and other regulators of the ESC state acting in trans or in cis. Such findings 

could help build a comprehensive algorithm for predicting reprogramming agents that 

include not only transcription factors but signaling pathway agonists and antagonists. 

 

Partially Reprogrammed Cell States 

The partially reprogrammed cell lines we isolated from iPS factor-transduced cultures 

responded in a repeatable and characteristic manner to reprogramming chemicals: a 

subset of them were in a RepSox-responsive state poised for Nanog activation and full 

reprogramming; others reprogrammed instead upon Aza treatment; still others did not 

respond to either chemical. These reproducible behavior patterns suggest that these cell 

lines are in distinct, non-overlapping states. Importantly, they are not representative of 

any naturally occurring cell type, yet maintain a stable phenotype.  

Such non-productive reprogramming intermediates have been reported by other 

groups as well. Takahashi and Yamanaka found self-renewing, non-pluripotent colonies 

that had activated the Fbx15::b-geo cassette, when Sox2 was omitted from the four-factor 

cocktail (Takahashi and Yamanaka, 2006). Meissner and colleagues also derived three 

partially reprogrammed lines from four-factor transduced MEFs and B cells (Mikkelsen 

et al., 2008); these lines were then extensively characterized with regard to their 
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differential propensities to reprogram, either spontaneously or in response to Aza with or 

without the knockdown of inappropriately expressed lineage-specifying genes.  

Although sample size is limited, these observations in aggregate support an 

interesting prediction of the systems view of cell fate – the existence of numerous stable 

attractor states that are never accessed during development, due to the absence of natural 

trajectories that lead to them. In an intuitive picture, the cell state landscape is expected to 

be a highly complex terrain given the enormous number of inter-dependent variables 

required to describe cell state. During defined-factor reprogramming where a strong, non-

physiological perturbation is provided, cells can gain access to unexplored parts of the 

landscape and encounter attractor states that would not otherwise be accessed. Hence, the 

trapped intermediate states would correspond to relatively stable, non-pluripotent 

attractor states from which a cell cannot escape; the precise configuration of each state 

would dictate what stimuli might rescue the cell to pluripotency. 

These non-productive events during reprogramming are predicted by a 

computational model developed by Charkraborty and colleagues, where cell state is 

modeled as having a particular epigenetic signature associated with each of the 

developmentally important gene modules that they defined (Artyomov et al., 2010). 

When reprogramming was simulated as an epigenetic change in a random module of the 

starting cell, followed by cell division cycles that permitted chromatin remodeling at each 

telophase, they found that reaching the pluripotent state was a rare, stochastically 

encountered outcome; dead-end loops, no-change, and even transdifferentiation were the 

other possibilities.  
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Interestingly, Jaenisch and colleagues showed that, when the cell-to-cell 

variability arising from differences in viral delivery is eliminated, the responses could be 

homogeneous over a long timescale (Hanna et al., 2009). They examined the 

reprogrammability of single ‘secondary’ pre-B cells from a clonal population, obtained 

from an iPSC-derived mouse with identical doxycycline-inducible lentiviral 

reprogramming transgenes in each cell. After 18 weeks of doxycycline administration, 

over 90% of the original cells had given rise to iPSC colonies. The efficiency and kinetics 

are consistent with a continuous, stochastic process that has one irreversible outcome 

among many reversible ones; given enough time, eventually the entire population will 

escape to the irreversible state.  

Notably, major events that lead to non-productive intermediates seem to have 

been bypassed in this secondary system, where each cell has the same configuration of 

transgenes that permitted iPS reprogramming of the primary cells. In fact, some of our 

own partially reprogrammed lines can reprogram spontaneously, while others are highly 

resistant. Understanding the molecular basis for these different states of permissiveness 

could uncover roadblocks in reprogramming and delineate cell state trajectories. In a 

sense, these non-natural intermediates are offering a glimpse into the otherwise 

intractable regions of the cellular landscape. 

 

Insights from Transdifferentiation 

Progress in Transdifferentiation 

The conversion of mouse and human fibroblasts into induced motor neurons (iMNs) is 

one of the first examples where a precisely defined neuronal type was produced by 
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transdifferentiation. In addition to extensive molecular and functional characterization in 

vitro, the engraftment capacity of mouse iMNs was demonstrated by their ability to 

integrate into the developing spinal cord of the chick embryo. We also demonstrated that 

human ALS patient-specific iMNs can be generated, as a complementary approach to 

using iPSC-derived motor neurons for downstream applications.  

Notably, two groups have produced human induced neuronal (iN) cells from 

fibroblasts. Wernig and colleagues used NEUROD1 on top of the three mouse iN factors 

(Ascl1, Brn2 and Myt1l) to achieve 2-4% conversion of human fetal and postnatal 

fibroblasts into iN cells (Pang et al., 2011). On the other hand, Crabtree’s laboratory 

achieved a similar result using micro-RNAs that control neuronal differentiation, miR-

9/9* and miR-124, in conjunction with NEUROD2 as well as ASCL1 and MYT1L to 

enhance the efficiency (Yoo et al., 2011).  

From single-cell qPCR analyses and immunocytochemistry, it seems that both 

methods produce iN cells of predominantly cortical nature; however, the precise subtype 

identities represented in the iN cell populations remain unclear. Moreover, while iN cells 

made from postnatal sources exhibited many active membrane properties, including 

action potentials and postsynaptic currents (PSCs), only fetal fibroblast-derived iN cells 

showed response to GABA and L-glutamate, suggesting different levels of maturity.  

To date, only one other specific type of neuron has been made directly from 

fibroblasts: the mesodiencephalic dopaminergic (DA) neurons that are lost in Parkinson’s 

disease (PD) (Caiazzo et al., 2011; Pang et al., 2011; Pfisterer et al., 2011). Like motor 

neurons, their developmental pathway has been well characterized (Smidt and Burbach, 

2007) given their clinical relevance, and key transcription factors that establish and 



 185	  

regulate the DA neuron fate are known. Three groups have each used a different cocktail 

chosen from DA neuron-specific factors and iN factors to generate putative induced 

dopaminergic (iDA) neurons, some more convincingly than others.  

Parmar and colleagues supplemented the three iN factors with Lmx1a and Foxa2 

to convert over 5% of transduced human embryo-derived fibroblasts to tyrosine 

hydroxylase (TH)-expressing cells (Pfisterer et al., 2011). However, these cells only fired 

single action potentials upon depolarization, and no evidence of synapse formation was 

shown. Furthermore, there was limited molecular characterization and no functional 

demonstration pertaining to their specific identity. 

 A different combination of three factors, Ascl1, Nurr1 and Lmx1a, was 

discovered by Broccoli and colleagues using TH::GFP reporter MEFs (Caiazzo et al., 

2011). Mouse iDA neurons could be generated efficiently (15%) and exhibited many 

molecular and functional characteristics of DA neurons including release of dopamine. 

Significantly, human PD patient fibroblasts could also be converted to dopamine-

releasing iDA neurons at 2% efficiency, although it is unclear whether they can produce 

multiple action potentials and respond to neurotransmitters. 

Using a more extensive set of six factors – Ascl1, Pitx3, Lmx1a, Nurr1, Foxa2 and 

EN1 – Jaenisch and colleagues generated iDA neurons that most closely resemble 

endogenous DA neurons, albeit only in the mouse (Kim et al., 2011b). Remarkably, when 

transplanted into the brain of a mouse model of PD, they were able to engraft and extend 

TH+ projections into the deinnervated striatum by 4 weeks and increased the levels of 

dopamine in the area. At 8 weeks, iDA-transplanted PD mice had reduced amphetamine-
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induced rotation scores, suggesting that these cells had a positive impact at the behavioral 

level.  

The varying degree of functionality exhibited by the three flavors of putative iDA 

neurons may be a product of the precise factor combination, the starting cell type, or the 

peculiarities of different laboratories. We cannot rule out the possibility that some of the 

less functional iDA neurons represent incompletely reprogrammed states that are 

nonetheless closely related to the bona fide DA neuron state. It is intriguing to consider: 

if conditions could be strictly standardized, could the different factor cocktails induce 

equivalent states – that is, are there multiple ways of discovering the same DA neuron 

attractor state from the fibroblast state? 

In answering this question, two recent reports of fibroblast-derived mouse 

induced hepatocytes (iHeps) of the endodermal lineage (Huang et al., 2011; Sekiya and 

Suzuki, 2011) may provide additional insight. Starting from fibroblasts, each group used 

a distinct set of genetic conditions: Gata4, Hnf1a, and Foxa3 with p19Arf inactivation; or, 

Hnf4a and one of Foxa1, Foxa2 or Foxa3. The resulting iHeps were functional by a 

stringent criterion: they could engraft into the adult liver and partially rescue a genetic 

model of liver failure. Perhaps related to the incomplete rescue phenotype, they possessed 

global transcriptional programs similar, but not identical, to primary hepatocytes.  

From the perspective of understanding reprogramming routes, a direct comparison 

would be useful between the two types of iHeps that seem to have many common 

functional properties, as well as a comparison of iDA neurons which may differ more 

greatly from each other. Similarly, we have noticed that Hb9::GFP+ iMNs can be 

produced with different factor permutations, which could provide an additional 
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experimental platform. Such studies, which could involve creating detailed genome- and 

epigenome-wide maps and carrying out quantifiable functional assays in parallel, may 

help to map out reprogramming trajectories and suggest ideas for improving the quality 

of reprogrammed cells. 

 

Multiple Trajectories of Conversion 

We have presented direct as well as circumstantial evidence against the appearance of 

progenitor-like intermediates during iMN reprogramming. The lack of BrdU 

incorporation or Nestin expression in the cells that give rise to iMNs argues that the 

Nestin+ proliferative neural progenitor state is not accessed. Although our results do not 

formally rule out other types of precursor intermediates, such as Olig2+ precursor cells, 

the fact that iMN generation is inhibited by progenitor factors makes a dedifferentiation-

redifferentiation model unlikely.  

As in iPS reprogramming, partially reprogrammed states may be stochastically 

encountered during the conversion, which may or may not lead to the fully 

reprogrammed states. The non-dividing nature of these cell types makes it currently 

difficult to isolate and characterize the possible unnatural intermediates, but the use of 

single cell-based methods may soon enable this type of analysis. However, findings from 

other lineage conversion paradigms, such as ib-cell and iCM reprogramming, also 

suggest that the reprogramming factors seem to directly promote the final target cell state 

(Ieda et al., 2010; Zhou et al., 2008). Although only speculative, bypassing a proliferative 

progenitor or stem-like state may be beneficial for preserving disease-causing genetic or 

epigenetic mechanisms during reprogramming. 
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Recently, two groups have made use of iPS reprogramming factors in 

transdifferentiation toward progenitor states. Bhatia and colleagues overexpressed a 

single gene, OCT4, in human dermal fibroblasts and cultured them with appropriate 

cytokines to generate cells expressing the pan-leukocyte marker CD45; these cells were 

capable of giving rise to the major non-lymphoid hematopoietic cell types (Szabo et al., 

2010). This conversion does not involve the activation of pluripotency genes or 

embryonic hematopoietic genes, but occurs through the activation of a definitive 

hematopoietic program. The authors attributed the unexpected activity of OCT4 in this 

context to its homology with OCT1 and OCT2, which have roles in adult hematopoiesis. 

However, two reports by Ding and colleagues suggest that a greater degree of 

stochasticity may be inherent in iPS factor-mediated transdifferentiation. They used the 

full cocktail of iPS factors – Oct4, Sox2, Klf4, and cMyc – with specific culture 

conditions to convert MEFs into contracting cardiomyocytes after 12 days (Efe et al., 

2011), or into bipotential induced neural progenitor cells (iNPCs) in a similar timeframe 

(Kim et al., 2011a). The rapid kinetics and the culture media unsuited for iPSC 

generation, as well as molecular characterization of the reprogramming cell population, 

suggested that the pluripotent state is not reached during either conversion.  

What might be the molecular basis for these surprising results? All iPS factors are 

known to bind many downstream targets (Sridharan et al., 2009), important among which 

are developmental regulators that are kept repressed in iPSCs and ESCs. During 

reprogramming, however, the pattern and outcome of iPS factor binding to cis-regulatory 

elements are likely to be imprecise, due to their high-level expression and the lack of 

other ESC-specific components. In turn, there can be stochastic activation of lineage-



 189	  

specific genes, such as receptors and effectors for developmental morphogens, across the 

population. Therefore, providing a permissive environment for a somatic lineage but not 

iPSCs, as both laboratories have done, could capture and consolidate these transient states 

responsive to fate-inducing signals in the culture medium. 

These observations can be directly related the aforementioned computational 

model from the Chakraborty group, which predicts that transdifferentiation into non-

pluripotent states is one of the possible outcomes of perturbing a gene module at random 

by iPS factor overexpression (Artyomov et al., 2010). Given the extensive binding sites 

of these factors throughout the genome (Sridharan et al., 2009), enriched for 

developmentally important genes, a wide range of somatic states may be stochastically 

accessed in this way. This could help circumvent the need to generate individual viral 

constructs for new cell type-specific genes if the appropriate culture conditions could be 

found for accommodating the conversion to the desired cell type.  

Since then, tripotent iNPCs and induced neural stem cells (iNSCs) have been 

produced by three different genetic cocktails. The former is a more canonical 

transdifferentiation approach using NPC-associated genes (Lujan et al., 2011); 

intriguigly, using Sox2 and FoxG1 generates bipotential iNPCs that are only neurogenic 

and astrogliogenic, whereas adding Brn2 to the cocktail produces tripotential iNPCs that 

can also make oligodendrocytes, demonstrating that precise control over the identity of 

the target cell type is possible by this approach.  

On the other hand, the iNSCs with self-renewing characteristics are produced 

using iPS factors with or without neural-specific genes (Han et al., 2012; Thier et al., 

2012). It is interesting that Oct4 expression is either limited to the first 5 days or omitted 
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altogether, while the remaining three iPS factors, which are expressed in NSCs, are used 

throughout in both studies. This suggests that, while stochasticity may play a part, the 

lineage-specific functions of the iPS factors are also being exploited in these processes.  

Ultimately, the best trajectory for producing a desired cell type should be 

determined on a case-by-case basis. For making terminally differentiated neurons, it may 

sometimes be advantageous to first generate NPCs, using either of the above methods, or 

even iPSCs, followed by a partial or full recapitulation of development; these approaches 

that transit through proliferating cell states would be especially preferred if large 

quantities of cells are needed. In other cases, a direct transition to the final state that 

bypasses proliferative intermediate stages may be preferred, for example, for preserving 

unstable genetic elements in the starting cells or for producing a highly specific neuronal 

subtype. From these multiple independent approaches, it should be possible to develop an 

optimal protocol for generating the desired cell type for particular applications. 

 

Future Challenges for Reprogramming 

Improving the Efficiency  

Several limitations must be addressed for transdifferentiation technologies to have a wide 

and meaningful impact in regenerative medicine. First is the low reprogramming 

efficiency of human cells relative to mouse cells, and of adult cells relative to immature 

cells: in our hands, mouse iMNs are routinely generated at 10-15% efficiency; in 

contrast, our best efficiency in generating patient-specific iMNs from primary adult 

human fibroblasts is around 5%. This seems to be a general pattern in induced 
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pluripotency as well as transdifferentiation, but is likely to be more severely limiting in 

the latter which produces a finite number of differentiated cells.  

In this regard, optimizing the existing set of reagents could have immediate 

benefits. Systematically testing the factor combination and removing unnecessary or 

inhibitory genes has been shown to improve efficiency. Another integral component is 

the method of gene delivery: more potent viral vectors, or even modified RNAs, could be 

tested for possible improvement of efficiency. In addition, an accurate and efficient 

reporter system would be invaluable; for iMNs, using a longer Hb9 promoter fragment to 

drive the reporter gene expression could help capture the maximum number of correctly 

reprogrammed cells.   

To achieve an additional improvement in efficiency, it may be necessary to 

expand our reprogramming toolkit to include other classes of molecules. Micro-RNAs 

involved in determination and maturation of the target cell type are obvious candidates, 

similar to miR-9/9* and miR-124 in human iN cell generation (Yoo et al., 2011). Our 

experience in iPSC reprogramming also suggests that small molecules can be potent 

mediators of cell fate change; they can be discovered through unbiased screens (Ichida et 

al., 2009; Lyssiotis et al., 2009) or by educated guesses (Huangfu et al., 2008a). 

Similarly, morphogens and other signaling molecules could be added to this set.  

In developing a complete protocol, combining the strengths of multiple 

approaches could prove beneficial. For example, Kaspar and colleagues combined 

defined-factor reprogramming with directed differentiation to generate motor neurons 

from human ESCs at 60-70% efficiency (Hester et al., 2011); in addition to the high-

efficiency, this method may allow us to more precisely guide the fate of differentiating 
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cells into specific subtypes using additional factors. Of course, in the long-term, 

understanding the exact molecular nature of the difficulties in reprogramming adult 

human cells will be important for developing better strategies to overcome them.  

 

Designing Novel Conversions 

Another major challenge in lineage conversion is the initial identification of the optimum 

reprogramming condition. Although empirical determination by trial-and-error is likely to 

be always necessary, we may be able to assemble an efficient test set of candidate 

transcription factors using generalizable principles from existing studies. For 

transdifferentiation to a specific neuronal type, a good starting cocktail may be the iN 

factors supplemented by master regulators of the target state. Of note, most neuronal 

reprogramming paradigms to date seem to require Ascl1 and, if applicable, factors central 

to the specific neuronal type. This suggests that a more complete cocktail may be built 

from a basal set of genes that are relatively easily predicted.  

In this regard, insights from unbiased functional complementation screens for iPS 

reprogramming chemicals may be useful. If a screen had been performed using Oct4- and 

Klf4-infected MEFs with iPSC generation as the readout, without a priori knowledge of a 

gene that could fulfill the role of a positive control (Sox2 in this case), it is likely that 

RepSox would still have been found. Similarly, kenpaullone might have been discovered 

as a chemical that could synergize with Oct4 and Sox2 to enable iPS reprogramming 

(Lyssiotis et al., 2009) even if Klf4 had not been identified. Therefore, it may be possible 

to assemble a small set of target cell-specific factors, which do not accomplish the 
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desired cell fate change by themselves, to form the basis of a chemical screen to achieve 

full reprogramming. 

Undoubtedly, developing algorithms for in silico prediction of reprogramming 

factors would improve our ability to navigate the cell state landscape. Global molecular 

profiling of known cell types provides reference maps from which high-quality 

regulatory networks might be constructed (Meissner et al., 2008; Mikkelsen et al., 2007). 

It remains to be seen whether these system-wide computational approaches can make 

predictions for new reprogramming paradigms that will pass experimental validation.  

 

Using the Reprogrammed Cells  

An immediate practical use of reprogrammed cells may be to model human disease in a 

dish. In particular, using transdifferentiated patient-specific neurons may be 

advantageous for the study of neurological disorders: first, it circumvents the generation 

of iPSCs; second, limited replication during reprogramming may preserve disease-

associated epigenetic modifications or unstable genetic elements, such as hexanucleotide 

repeat expansions recently found to cause chromosome 9p21-linked ALS and 

frontotemporal dementia (FTD) (DeJesus-Hernandez et al., 2011; Renten et al., 2011). 

On the other hand, even if transdifferentiation efficiencies were vastly improved, the 

quantity of cells generated would be inferior to using directed differentiation of iPSCs.  

Using iMNs for in vitro ALS modeling might be a useful case study, where we 

attempt to capitalize on the strengths of the transdifferentiation approach. In principle, a 

cohort of patient population could be screened for iMN phenotypes with relative ease, 

giving a preview of the disease characteristics associated with each genotype. Our small 
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sample of ALS patient iMNs which displayed high excitability suggests that lineage-

reprogrammed cells may be a rapid means to reveal motor neuron phenotypes. 

There are a number of ways in which patient iMNs may be evaluated in a 

standardized manner. First, morpholometric analyses of soma size, as well as the number 

and length of their neurites, could show gross morphological abnormalities arising in 

patient iMNs. Second, their electrophysiological properties – resting membrane potential, 

peak sodium and potassium currents, threshold voltage, and neurotransmitter response – 

could give important clues as to the nature of their functional defects. Third, the survival 

parameters of patient iMNs in the presence or absence of chemical and cellular inducers 

of stress, such as hydrogen peroxide or SOD1G93A glia (Di Giorgio et al., 2007; Nagai 

et al., 2007), could reveal pronounced disease-relevant phenotypes.  

In addition, looking at the motor neuron-specific functionality of patient iMNs 

could be even more informative, and the two assays that we used in our study – muscle 

co-culture and transplantation – may be adapted for this purpose. Specifically, the 

number of neuromuscular junctions formed between an iMN and muscle can be 

quantified, as well as the amount of vesicle recycling at each synapse labeled by FM dyes 

(Gaffield and Betz, 2007). In transplantation assays, the degree of survival and the pattern 

of integration are parameters that could inform us of the subtype specificity of the iMNs 

as well as the ability to engraft (Soundararajan et al., 2006; Wichterle et al., 2002). 

However, in interpreting any results, careful attention should be paid as to whether an 

apparent phenotype is disease-related or is simply a result of sub-optimal reprogramming. 

A main goal of this exercise would be to find criteria for classifying the patient 

population into phenotypic classes. One could imagine developing customized 
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therapeutics for each phenotypic class, then treating each newly diagnosed patient 

according to the behavior of their own iMNs. Also, the small-scale experiments 

performed with the iMNs could help identify the most important or representative 

genotypes to be further investigated by other methods using stem cells or animal models. 

If successful, this ‘preview’ approach would also be valuable for modeling other 

neurological spectrum disorders for which an appropriate neuronal cell type could be 

made by direct lineage conversion. 	  
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Concluding Remarks 

Our work presented here contributes to a growing body of nuclear reprogramming 

studies, which collectively represents a significant step toward harnessing the latent 

plasticity of differentiated cells. The list of target cell types that can be generated by 

cellular conversion, and the human disease conditions that affect them, is growing 

rapidly. It is hoped that continued conceptual and technological advances in this area will 

eventually make an impact in diagnosing, treating and preventing human disorders. 
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