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Lipschitz maps and nets

in Euclidean space

Curtis T. McMullen∗

1 April, 1997

1 Introduction

In this paper we discuss the following three questions.

1. Given a real-valued function f ∈ L∞(Rn) with inf f(x) > 0, is there
a bi-Lipschitz homeomorphism φ : R

n → R
n such that the Jacobian

determinant detDφ = f?

2. Given f ∈ L∞(Rn), is there a Lipschitz or quasiconformal vector field
with div v = f?

3. Given a separated net Y ⊂ Rn, is there a bi-Lipschitz map φ : Y → Zn?

When n = 1 all three questions have an easy positive answer. In this
paper we show that for n > 1 the answer to all three questions is no. We
also find all three questions have positive solutions if the Lipschitz condition
is relaxed to a Hölder condition.

Definitions. A map φ is bi-Lipschitz if there is a constant K such that

1

K
<

|φ(x) − φ(x′)|

|x− x′|
< K

for x 6= x′. A set Y ⊂ R
n is a net if there is an R such that d(x, Y ) < R for

every x ∈ R
n; it is separated if there is an ǫ > 0 such that |y − y′| > ǫ > 0

for every pair y 6= y′ in Y .

History. In 1965, J. Moser showed that any two positive, C∞ volume
forms on a compact manifold with the same total mass are related by a
diffeomorphism [Mos]. Extensions of this result to other smoothness classes
such as Ck,α were given in [Rei1] and [DM]; see also [RY1], [RY2], and [Ye].
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Questions (1) and (2) remained open. Question (3) was posed in Gromov’s
1993 book [Gr, p.23], and popularized by Toledo’s review [Tol].

Recently counterexamples to (1) and (3) were discovered independently
by Burago and Kleiner [BK], and the author. Here we show the linearized
question (2) can be settled using a 1962 result of Ornstein (§2). The coun-
terexample to (2) suggests the right type of f to make a counterexample
to (1), as we sketch in §3. This f ∈ L∞ is similar to the one constructed
in [BK], to which we refer for a detailed resolution of (1). In §4 we show
questions (1) and (3) are equivalent, completing the discussion of Lipschitz
mappings. Finally in §5 we show questions (1-3) have positive answers in
the Hölder category.

2 Vector fields

We begin with the infinitesimal form of the problem of constructing a map
with prescribed volume distortion. That is, we study the equation

div v =
∑ ∂vi

∂xi
= f

on R
n, where f is a real-valued function and div v is the divergence of the

vector field v. We will show:

Theorem 2.1 For any n > 1 there is an f ∈ L∞(Rn) which is not the

divergence of any Lipschitz, or even quasiconformal, vector field.

Definitions. Let D = (∂/∂xi); then the matrix of partial derivatives of a
vector field v is given by the outer product

(Dv)ij =
∂vi
∂xj

,

and div v = tr(Dv). Similarly, letting

(D2)ij =
∂2

∂xi∂xj
,

we have ∆f = tr(D2f).
A vector field v is quasiconformal if the distribution Sv lies in L∞, where

the conformal strain

Sv =
1

2
(Dv + (Dv)∗) −

1

n
(trDv)I
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is the symmetric, trace-free part of Dv. Explicitly,

(Sv)ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

−
1

n

∑

k

∂vk
∂xk

.

Any Lipschitz vector field is quasiconformal.
Quasiconformal vector fields with div v ∈ L∞ are more general than

Lipschitz vector fields, but they provide good models for infinitesimal bi-
Lipschitz maps. For example, v(z) = iz log |z| is not Lipschitz, but it gener-
ates a Lipschitz isotopy of the plane (shearing along circles). Theorem 2.1
states that even this broader class of quasiconformal vector fields is insuffi-
cient to solve div v = f . (Further discussion of quasiconformal flows can be
found in [Rei2] and [Mc2, Appendix A].)

Singular integral operators. Before proving Theorem 2.1, we mention
how it fits into the general theory of singular integral operators and PDE.

Suppose f ∈ C∞
0 (Rn) and

∫

f = 0. The most straightforward solution
to div v = f is given by v = Du, the gradient of the solution to Laplace’s
equation ∆u = f . The regularity of v is thus determined by the behavior of
the operator

Tf = Dv = D2∆−1f.

For example v is Lipschitz iff Dv = Tf ∈ L∞.
The operator T is a singular integral operator of Calderón-Zygmund

type, whose kernel is obtained by differentiating a fundamental solution to
Laplace’s equation. By the general theory of such operators, T sends Lp

into Lp for 1 < p <∞, but it does not preserve L∞ or L1.
In the case at hand, where f is in L∞, one can say at most that Dv =

Tf ∈ BMO with
‖Dv‖BMO ≤ Cn‖f‖∞

(see [St, IV.4.1]). Just as vector fields with Dv ∈ L∞ are Lipschitz, those
with Dv ∈ BMO satisfy the Zygmund condition

||v||Z = sup
x,y∈Rn,y 6=0

|v(x+ y) + v(x− y) − 2v(x)|

|y|
< ∞

(see [Mc2, Thm. A.2]). It follows that v has an |x log x| modulus of con-
tinuity, so while v is generally not Lipschitz it is Hölder of every exponent
α < 1.

On the other hand, a solution to div v = f is only determined up to
a volume-preserving vector field w, so another solution v + w might be
Lipschitz even if v is not.

3



To handle the kernel of the divergence operator, one is lead to argue by
duality. Theorem 2.1 then reduces to a problem in L1, which is settled by
the following:

Theorem 2.2 (Ornstein) For any set of linearly independent degree m
differential operators on R

n,

Pi =
∑

|α|=m

aαi
∂α

∂xα
, i = 0, . . . , k,

and any C > 0, there exists an g ∈ C∞
0 (Rn) such that

‖P0g‖1 > C

k
∑

1

‖Pig‖1.

See [Or]; we are grateful to E. Stein for this reference.

Proof of Theorem 2.1. The proof is by contradiction.
Suppose for every f ∈ L∞(Rn) there exists a quasiconformal vector field

v such that div v = f . Then there is a constant Cn such that v can be chosen
with

‖Sv‖∞ ≤ Cn‖f‖∞. (2.1)

Indeed, let B be the Banach space of quasiconformal vector fields with
bounded divergence, equipped with the (pseudo-)norm

‖v‖B = ‖Sv‖∞ + ‖div v‖∞;

then the divergence map div : B → L∞(Rn) is surjective, so (2.1) follows by
the open mapping theorem.

We claim (2.1) implies, for any compactly supported smooth function g,
that

‖∆g‖1 ≤
n

n− 1
Cn‖Eg‖1.

Here E denotes the trace-zero part of D2; it satisfies

(D2g)ij = (Eg)ij +
1

n
(∆g)Iij , (2.2)

where Iij = δij is the identity matrix.
The main point of the proof is the identity:

tr(E(Sv)) =
∑

Eij(Sv)ji =
n− 1

n
∆ div v. (2.3)
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To check (2.3), note that

tr((D2)(Dv)) =
∑

i,j

∂3vi
∂x2

j ∂xi
= ∆ div v,

while
1

n
tr((∆I)(Dv)) =

1

n
∆ div v;

so by (2.2) we have

tr(E(Dv)) =
n− 1

n
∆ div v.

But E is trace-zero and symmetric, so tr(E(Dv)) = tr(E(SV )) and we have
(2.3).

Now given any g ∈ C∞
0 (Rn), choose f ∈ L∞ such that |f | = 1 and

‖∆g‖1 =

∫

f∆g =

∫

g∆f.

Choose a quasiconformal vector field with div v = f and satisfying (2.1), so
‖Sv‖∞ ≤ Cn. Then

‖∆g‖1 =

∫

g∆ div v =
n

n− 1

∫

g tr(E(Sv))

by (2.3). Integrating by parts gives

∫

g tr(E(Sv)) =

∫

tr((Eg)(Sv)),

so we have

‖∆g‖1 ≤
n

n− 1
‖Eg‖1‖Sv‖∞ ≤

n

n− 1
Cn‖Eg‖1.

But E and ∆ are linearly independent differential operators, so this inequal-
ity contradicts Ornstein’s theorem.

3 Maps

In this section we sketch the construction of a counterexample to (1). A sim-
ilar counterexample is given in [BK, Theorem 1.2]. The L1 counterexamples
given by Ornstein in [Or] are also similar in spirit.
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For simplicity we will work in R
2. Let T ⊂ S denote the square of side

1/3 within the unit square S. Choose f > 0 to be constant on T and S−T ,
with

∫

S f = 1 and
∫

T f = 0.99. Cover the edges of S and T with much
smaller squares Si, and redefine f |Si as f ◦ hi, where hi : Si → S is a linear
map. See Figure 1; the regions where f > 1 are black.

Figure 1. Non-realizable density.

Now repeat the construction along the edges of each Si, and iterate j
times to obtain fj. As the construction is iterated, arrange that the ratio
between the sizes of the squares at levels j and j+ 1 tends to infinity. Then
f(x) = limj→∞ fj(x) exists almost everywhere and is bounded above and
below.

We claim f cannot be realized as the Jacobian determinant of a bi-
Lipschitz homeomorphism. To see this, let K = sup |φ(a) − φ(b)|/|a − b|,
where the sup is over just the edges [a, b] of all squares at all levels j. For
simplicity, suppose K is achieved on a horizontal edge [a, b] of a square S′

at level j. Let S′
i denote the squares at level j + 1 running along [a, b], and

let R =
⋃

S′
i be the long, thin rectangular they form.

By the triangle inequality, the horizontal edges of R are mapped to al-
most straight lines stretched by K. Since areaφ(R) = area(R), the height of
R is compressed by 1/K. The horizontal edges of most S′

i are also stretched
by K, so the perimeter of some S′

i is increased by a factor of at least K/2.
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But most of the area of φ(S′
i) is filled by φ(T ′

i ), the image of the black sub-
square T ′

i ⊂ S′
i. Since the perimeter of T ′

i is 1/3 that of S′
i, it is stretched

by a factor of about 3K/2 under φ, contradicting the definition of K.
A detailed proof can be given along lines similar to those presented in

[BK], to which the reader is referred for a more complete discussion.
This counterexample to (1) was motivated for us by the area-modulus

inequality

area(T ) ≤
area(S)

1 + 4πmod(A)
(3.1)

where A is the annulus between two disks T ⊂ S ⊂ C [Mc1, Lemma 2.17].
This inequality relates conformal distortion to distortion of relative areas.
Since (3.1) comes from the isoperimetric inequality, for a rigorous proof one
is lead to consider stretching along the edges and stability of geodesics as
above.

4 Nets

In this section we show questions (1) and (3) are equivalent. In particular,
a counterexample to (1) implies a counterexample to (3).

Theorem 4.1 The following two statements are equivalent:

A. Every measurable f > 0 on R
n with f and 1/f bounded can be realized

as the Jacobian determinant of a bi-Lipschitz map.

B. Every separated net Y ⊂ R
n is bi-Lipschitz to Z

n.

Proof of Theorem 4.1. (B) =⇒ (A). Choose a net Y such that under
rescaling, the measure that assigns a δ-mass to each point of Y accumu-
lates weakly on the measure µ = f(x) dx. By (B) there is a bi-Lipschitz
map φ : Y → Z

n. Under suitable rescaling, φ converges to a bi-Lipschitz
homeomorphism Φ : R

n → R
n with Jacobian f . Compare [BK, Lemma 2.1].

(A) =⇒ (B). Let Y ⊂ R
n be a separated net. Let 〈Cy : y ∈ Y 〉 be the

tiling of R
n determined by the Voronoi cells

Cy = {x : |x− y| < |x− y′| for all y′ 6= y in Y }.

Since Y is a net, we have supdiamCy <∞, and inf volCy > 0 because Y is
separated. Let

f(x) =
∑

y : x∈Cy

1

volCy
. (4.1)
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Then f and 1/f are bounded a.e., so (A) provides a bi-Lipschitz homeomor-
phism φ : R

n → R
n with Jacobian determinant f . Letting Dy = φ(Cy), we

have volφ(Dy) = 1.
For z ∈ Z

n let Ez denote the unit cube centered at z. Consider the
relation R ⊂ Y × Zn given by the set of pairs (y, z) such that Dy meets
Ez. Since diamDy and diamEz are bounded, the distance |φ(y)− z| is also
bounded for all (y, z) ∈ R.

Now think of the relation R as a multi-valued map from Y to Z
n. Then

for any finite set A ⊂ Y , we have |R(A)| ≥ |A|. Indeed, the cubes labeled
by R(A) cover the cells Dy labeled by A, so the inequality follows from the
fact that volDy = volEz = 1. Similarly, |R−1(B)| ≥ |B| for any finite set
B ⊂ Z

n.
By the transfinite form of Hall’s marriage theorem [Mir, Thm. 4.2.1], R

contains the graph of an injective map ψ1 : Y → Z
n. Similarly, R−1 contains

the graph of an injective map ψ2 : Z
n → Y . By the Schröder-Bernstein

theorem [Hal, §22], R contains the graph of a bijection ψ : Y → Z
n. Since

sup |ψ(y) − φ(y)| <∞, the map ψ : Y → Z
n is bi-Lipschitz, proving (B).

The proof of (A) =⇒ (B) shows that for any separated net Y , the
quality of a bijection φ : Y → Z

n can be controlled by the quality of a
solution to detDφ = f , where f is determined by the Voronoi cells as in
(4.1). This fact is exploited in the next section.

5 Hölder maps

To conclude we show questions (1-3) have positive answers if we relax the
Lipschitz condition to a Hölder condition.

Definition. We say φ : R
n → R

n is a homogeneous Hölder map if there are
constants K ≥ 0 and 0 < α ≤ 1 such that for |x|, |y| ≤ R we have

|φ(x) − φ(y)| ≤ KR1−α|x− y|α. (5.1)

If φ(x) satisfies (5.1), then so does rφ(x/r) for every r > 0; it is this sense
that the Hölder condition above is homogeneous.

If φ and φ−1 both satisfy (5.1) then we say φ is a homogeneous bi-Hölder

homeomorphism. When α = 1 we obtain the class of bi-Lipschitz maps.
Note that for any homogeneous bi-Hölder homeomorphism, we have

|φ(y)| ≍ |y|

when |y| is large. To see this, set x = 0 and R = |y| in (5.1).
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We say a map φ : Y → Y ′ between subsets of R
n is a homogeneous

bi-Hölder bijection if φ and φ−1 satisfy (5.1) on their respective domains.

Theorem 5.1 Fix n ≥ 1. Then:

1. For any f ∈ L∞(Rn) with inf f(x) > 0, there is a homogeneous bi-

Hölder homeomorphism φ : R
n → R

n such that

vol(φ(E)) =

∫

E
f(x) dx (5.2)

for all bounded open sets E ⊂ R
n.

2. For any f ∈ L∞(Rn), there is a vector field v with Zygmund compo-

nents such that div v = f .

3. For any separated net Y ⊂ R
n, there is a homogeneous bi-Hölder bi-

jection ψ : Y → Z
n.

Lemma 5.2 Any radial function f(r) ∈ L∞(Rn) with inf f > 0 can be

realized as the Jacobian determinant of a radial bi-Lipschitz homeomorphism

φ(r, θ) = (ψ(r), θ).

Proof. Define ψ : [0,∞) → [0,∞) by

ψ(r)n

n
=

∫ r

0
sn−1f(s) ds.

Then we have

detDφ =
ψ′(r)ψ(r)n−1

rn−1
= f(r).

The upper and lower bounds on f imply ψ(r) ≍ r, so by the formula above
we have ψ′(r) ≍ 1. Thus φ is bi-Lipschitz.

Proof of Theorem 5.1.
(2). This statement follows from the general theory of singular integral

operators, as sketched in §2. Note that a vector field v with Zygmund
components has |x log x| modulus of continuity and generates a flow whose
time-one map is Hölder [Rei2, Prop. 4].

(1). This result is due to Rivière and Ye. Consider the tiling of R
n − {0}

by the dyadic annuli

〈Ai = {x : 2i ≤ |x| ≤ 2i+1}, i ∈ Z〉.
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After a preliminary radial Lipschitz map, whose existence is insured by
Lemma 5.2, we can assume

∫

Ai
f =

∫

Ai
1 for each i. By [RY2, Thm. 2],

there exists a homeomorphism φ0 : A0 → A0 such that

(i)
∫

E f(x) dx = vol(φ0(E)) for any open set E ⊂ A0;

(ii) φ0(x) = x on ∂A0; and

(iii) K−1|x− y|1/α ≤ |φ(x) − φ(y)| ≤ K|x− y|α, where α > 0, K > 1
depend only on ‖f‖∞ + ‖1/f‖∞ (compare [RY2, (2.14)]).

Since Ai is simply A0 rescaled by a factor of 2i, we can apply this result
to obtain homeomorphisms φi : Ai → Ai satisfying the volume distortion
equation (5.2) for E ⊂ Ai. The Hölder bounds in (iii) rescale to give the
homogeneous bounds (5.1) for φi and φ−1

i , so the φi piece together to produce
the desired homogeneous bi-Hölder map φ : R

n → R
n.

(3). Let Y ⊂ R
n be a separated net. Let 〈Cy〉 be the Voronoi cells for Y , and

let Ez denote the unit cube centered at z ∈ Z
n. Define f(x) = 1/ vol(Cy)

for x ∈ Cy as in (4.1).
By (1) there exists a homogeneous bi-Hölder map φ : R

n → R
n sending

f(x) dx to the standard measure on R
n. Letting Dy = φ(Cy) we have

volDy = 1 and diamDy = O(1 + |y|1−α), where α is the exponent in (5.1).
As in the proof of Theorem 4.1, Hall’s marriage theorem provides a bijection
ψ : Y → Z

n such that Dy ∩ Ez 6= ∅ whenever ψ(y) = z. Therefore

|φ(y) − ψ(y)| ≤ C(1 + |y|1−α) (5.3)

for some constant C.
We claim ψ : Y → Zn is a homogeneous bi-Hölder map. Indeed, given

distinct points x, y ∈ Y with |x|, |y| ≤ R, by (5.1) and (5.3) we have

|ψ(x) − ψ(y)| ≤ |φ(x) − φ(y)| + |φ(x) − ψ(x)| + |φ(y) − ψ(y)|

≤ KR1−α|x− y|α + 2C(1 +R1−α)

= O(R1−α|x− y|α)

since |x − y| > ǫ > 0 by separation of Y . This shows ψ satisfies the homo-
geneous Hölder condition.

To verify the same condition for ψ−1, we apply the same reasoning to
the inverse image cubes Fz = φ−1(Ez). The Hölder condition on φ−1 gives
diam(Fz) = O(1 + |z|1−α), and since Fz ∩Cψ−1(z) 6= ∅ we have

|ψ−1(z) − φ−1(z)| ≤ C ′(1 + |z|1−α).
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Thus for distinct z,w ∈ Z
n with |z|, |w| ≤ R we have

|ψ−1(z) − ψ−1(w)| ≤ KR1−α|z − w|α + 2C ′(1 +R1−α)

= O(R1−α|z − w|α)

since |z − w| ≥ 1. Therefore ψ−1 also satisfies (5.1) and we are done.
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