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Selective Small Molecule Targeting of Anti-Apoptotic MCL-1  

BCL-2 family proteins are key regulators of the mitochondrial apoptotic pathway in 

health and disease. Anti-apoptotic members such as BCL-2, BCL-XL, and MCL-1 have been 

implicated in the initiation, progression, and chemoresistance of human cancer. Small molecules 

and peptides have successfully targeted the anti-apoptotic BCL-2/BCL-XL groove that binds and 

sequesters pro-apoptotic BH3 death helices. Such compounds induce tumor cell apoptosis and 

are being advanced in clinical trials as promising next-generation cancer therapeutics. Notably, 

selective antagonists such as ABT-737 are highly effective at inducing apoptosis in BCL-2/BCL-

XL-dependent cancers but are rendered inactive by overexpression of MCL-1, a formidable 

chemoresistance protein that lies outside the molecule's binding spectrum. By screening a library 

of stabilized alpha-helices of BCL-2 domains (SAHBs), we previously discovered that the  

MCL-1 BH3 helix is itself a potent and exclusive MCL-1 inhibitor. Here, we deployed this 

chemically-constrained peptidic inhibitor of MCL-1, MCL-1 SAHB, in a competitive binding 

screen to identify selective small molecule inhibitors of MCL-1. Rigorous in vitro binding and 

functional assays were used to validate the compounds and their mechanisms of action, and most 

notably, MCL-1 inhibitor molecule 1 (MIM1) displayed exquisite selectivity in these assays.  

NMR analysis documented that MIM1 engages the canonical BH3-binding pocket of MCL-1.  

Importantly, MIM1 selectively triggers caspase 3/7 activation and apoptosis of a cancer cell line 

that is dependent on induced overexpression of MCL-1 but showed no activity in the isogenic 

cell line that is driven instead by overexpressed BCL-XL. Thus, a selective stapled peptide 

inhibitor of MCL-1 was successfully applied to identify a high fidelity small molecule inhibitor 

of MCL-1 that exhibits anti-cancer activity in the specific context of MCL-1 dependence. 
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The BCL-2 Family Regulates Cellular Apoptosis 

 

Introduction to apoptosis 

Apoptosis, a type of programmed cell death, is critical for both normal development and 

the preservation of cellular homeostasis1. Deregulation of apoptotic pathways often results in 

disease; for example, inhibition of apoptosis leads to cell accumulation in various types of 

cancer, while excessive cell death is evident in neurodegenerative disorders2. The morphological 

cellular hallmarks of apoptosis include cell shrinkage, chromatin condensation, DNA cleavage, 

and blebbing of the plasma membrane3. From early studies in C. elegans4 to the complex human 

models known today, caspases (cysteine-aspartic proteases) have been shown to be essential for 

the progression of apoptosis5. Caspases are most often expressed as inactive zymogens and are 

proteolytically activated upon apoptotic pathway induction, either acting as initiators that 

respond to upstream signals or effectors that execute these death signals6. Ultimately, the cell is 

fragmented into apoptotic bodies, which are engulfed by macrophages, preventing an 

inflammatory cellular response7.  

Apoptotic pathways can be subdivided into two classes based on the death-inducing 

signal involved: the extrinsic pathway and the intrinsic pathway. The extrinsic apoptotic 

pathway, or the death-receptor pathway, is propagated by transmembrane receptors that are 

bound by their extracellular ligands, such as Fas ligand (FasL) or tumor necrosis factor-related 

apoptosis inducing ligand (TRAIL). FasL binds to the transmembrane Fas (also called CD95 or 

Apo1) receptor, while TRAIL binds death receptors 4 and 5 (DR 4/5)8. In either case, ligand 

binding induces a conformational change in the receptor complex, leading to assembly of the 

death-inducing signaling complex (DISC)9. Adaptor proteins, such as Fas-associated protein with 
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death domain (FADD), then bind to the death domain of the receptor, recruiting pro-caspase 8 to 

the complex5. Caspase-8’s auto-proteolytic activation can then proceed through one of two 

pathways. In type I cells, large amounts of active caspase-8 directly cleave additional 

downstream caspases, including caspase-3 and caspase-7 among others, which cleave and 

activate cytosolic pro-death substrates10. In type II cells, caspase-8 cleaves the cytosolic BCL-2 

family BH3-only protein BID, amplifying the death signal by linking the extrinsic and intrinsic 

apoptotic pathways6. 

The intrinsic apoptotic pathway, or the mitochondrial apoptotic pathway, is induced by 

intracellular death signals that converge at the mitochondria. This process is highly regulated, 

primarily by interactions between the BCL-2 family pro-death and pro-survival proteins11. Pro-

apoptotic stimuli, such as radiation12, DNA damage13, or growth factor withdrawal14, lead to 

mitochondrial outer membrane permeabilization, inhibiting the respiratory chain and releasing 

cytochrome c and other apoptogenic fators15. Cytochrome c then combines with the adaptor 

protein apoptotic protease activating factor-1 (APAF-1) and pro-caspase-9 to form the 

apoptosome, which proteolytically cleaves and activates caspase-916,17. Similar to the extrinsic 

pathway, caspase-9 then sequentially activates caspase-3 and caspase-7, triggering the 

downstream caspase cascade and irreversibly initiating apoptosis. 

 

Introduction to the BCL-2 family 

BCL-2 family proteins are critical regulators of the intrinsic pathway of apoptosis1. The 

discovery of BCL-2 at the t(14;18) chromosomal breakpoint in follicular lymphoma led to a 

landmark paradigm shift that linked disease pathogenesis to deregulation of the proteins that 

regulate the apoptotic balance18-20. All BCL-2 family proteins possess BCL-2 homology (BH) 
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domains, with the most conserved BH3 death domain being contained by all members of the 

family (Figure 1.1). Based on structure and function, the BCL-2 family is subdivided into three 

classes: the multidomain pro-apoptotic, the “BH3-only” pro-apoptotic, and the multidomain anti-

apoptotic proteins21.  

The pro-apoptotic proteins are classified as either multidomain members or BH3-only 

proteins22. The multidomain pro-apoptotic proteins BAX and BAK contain BH1-3 domains and 

are responsible for oligomerizing in the outer mitochondrial membrane, inducing mitochondrial 

outer membrane permabilization, releasing apoptogenic factors, and initiating the caspase 

cascade23. BAX and BAK are essential for mitochondrial outer membrane permeabilization and 

apoptosis induction, as cells lacking these proteins fail to undergo apoptosis following cellular 

insult by a range of stimuli24. The BH3-only proteins, such as BID, BIM, BAD, and NOXA, 

transmit afferent death signals to the core apoptotic machinery by interacting with either anti- or 

both pro- and anti-apoptotic multidomain proteins. The multidomain anti-apoptotic proteins 

MCL-1, BCL-2, BCL-XL, BCL-w, and BFL-1/A1 contain up to four BH domains, and their 

expression promotes cellular survival25.   

Structurally, the BH3 death domain is an amphipathic alpha-helical motif conserved 

among all family members and mediates the critical protein interactions regulating apoptosis26. 

Anti-apoptotic BCL-2 members counteract apoptosis by sequestering the BH3 domains of both 

BH3-only and multidomain pro-apoptotic proteins. Specifically, the pro-apoptotic BH3 domain 

binds a hydrophobic groove formed by helices 2, 3, 4, 5, and 8 (also termed the BH1-3 regions) 

of the anti-apoptotic proteins; this groove contains a region of hydrophobic residues that is 

highly conserved among BCL-2 family anti-apoptotic proteins12. Complex formation is mediated 

by both hydrophobic and charged interactions between the pro-apoptotic BH3 domain and anti-  
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Figure 1.1. BH3 domain conservation among BCL-2 family proteins. Multidomain anti-

apoptotic proteins contain BH1-4 domains (with the exception of MCL-1), forming a 

hydrophobic groove capable of sequestering the BH3 helices of pro-death proteins. The pro-

apoptotic multidomain proteins contain BH1-3 domains, which form a similar hydrophobic 

groove whose function is less well understand but may involve BH3-only α-helical binding 

during the BAK/BAX activation process or participate in homo-oligomerization interactions 

once triggered from an allosteric site, as has been identified for BAX. BH3-only proteins 

exclusively contain the BH3 domain, which is essential for pro-apoptotic function.  
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apoptotic binding site27-29, as shown by the first solution structure of BAK BH3 bound to BCL-

XL
29 (Figure 1.2). 

BH3-only pro-apoptotic proteins exhibit differential binding profiles for anti-apoptotic 

proteins. For example, NOXA selectively binds MCL-1 and BFL-1/A1, BAD selectively binds 

BCL-2, BCL-XL, and BCL-w, and BID, BIM, and PUMA bind all anti-apoptotic proteins with 

varying affinities30 (Figure 1.3). BAX and BAK are also bound with differential selectivities, 

with MCL-1 and BFL-1/A1 preferentially binding BAK, and the anti-apoptotic BCL-2 

predominantly blocking BAX31-33. These differences in binding profiles arise due to slight 

structural differences within the BH3 grooves and/or the BH3 helix itself. Structural studies have 

revealed slight differences in the MCL-1 and BCL-XL grooves, for example, upon binding BIM 

BH3; mutational analysis revealed that position 4 within MCL-1’s binding site is more open and 

solvent exposed, thus being tolerant of BH3 mutations (e.g., reducing amino acid size from 

phenylalanine within BIM BH3)34. The difference in BH3 binding profiles of MCL-1 and BFL-

1/A1 compared to BCL-2, BCL-XL, and BCL-w confers distinct anti-apoptotic functions with 

important physiologic implications30.  

The mechanisms by which the anti-apoptotic blockade is overcome and how BAX and 

BAK are activated remains an area of intensive study35. The direct activation model divides the 

BH3-only proteins into sensitizers (e.g., BAD and NOXA) that only bind anti-apoptotic proteins 

and activators (e.g., BID and BIM) that interact directly with both the multidomain anti- and pro-

apoptotic proteins. The direct binding of the activator BH3 domains to BAX and BAK results in 

their oligomerization within the mitochondrial outer membrane, pore formation, and the 

subsequent release of cytochrome c and other apoptogenic factors36,37. In contrast, binding of the 

sensitizer BH3 domain to anti-apoptotic proteins results in the displacement of activator BH3- 
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Figure 1.2. NMR solution structure of anti-apoptotic BCL-XL bound to BAK BH3. This solution 

structure29 was the first visualization of the anti-apoptotic BH3-binding pocket, which is 

composed of helices 2-5, 8 (green); BAK BH3 (purple) binds to the surface pocket, resulting in 

functional sequestration of the BH3 death domain and consequent suppression of apoptosis. 
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Figure 1.3. The BH3-only proteins selectively bind discrete anti-apoptotic protein subclasses. 

The BH3-only signaling proteins BIM, BID, and PUMA bind all five anti-apoptotic proteins 

with similar affinities. However, BAD specifically binds to the BCL-2/BCL-w/BCL-XL subclass 

of anti-apoptotic proteins, whereas NOXA only binds to MCL-1 and BFL-1/A1. The peptides’ 

natural affinities for these proteins reveal important differences in anti-apoptotic BH3 pocket 

structure, which distinguishes their binding partners and functions. 
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only proteins that can subsequently directly activate BAX and BAK38-40. The indirect activation 

model suggests that all BH3-only proteins bind anti-apoptotic proteins exclusively, leading to the 

disruption of constitutive, heterodimeric, and inhibitory interactions with BAX and BAK, and 

allowing auto-oligomerization to proceed41,30. These models are not mutually exclusive; in both 

models, anti-apoptotic proteins likely act by binding and directly inhibiting both the multidomain 

pro-apoptotic proteins BAX and BAK and a subset of the BH3-only proteins.  

 

Anti-apoptotic MCL-1 

Mcl-1 was originally discovered as a Bcl-2 homology gene that is transcribed upon 

differentiation induction of a human myeloid leukemia cell line42. MCL-1 predominantly 

localizes to the mitochondria, but lower quantities have been observed in the cytoplasm, 

endoplasmic reticulum, and nucleus43. The anti-apoptotic role of MCL-1 was revealed by a 

marked delay in stress-induced cell death upon MCL-1 expression in Chinese hamster ovary and 

hematopoietic cells44. Overexpression of MCL-1 in transgenic mice promotes immortalization of 

hematopoietic cells, while loss of MCL-1 results in peri-implantation embryonic lethality45.  

MCL-1 also plays a key role in the survival of hematopoietic stem cells and the development and 

maintenance of B and T lymphocytes46,47. MCL-1 has important distinctions from its anti-

apoptotic counterparts, including its larger size, the presence of 3 rather than 4 BH domains, and 

a long N-terminal extension. Another distinguishing feature is that MCL-1 has a short half-life, 

with protein levels tightly regulated by proteasomal degradation, phosphorylation, and 

transcriptional regulation, including the production of multiple alternative spliceforms48-55. The 

heightened regulation of MCL-1 compared to other anti-apoptotic proteins suggests that MCL-1 

activities may be finely tuned to accommodate discrete cellular activities56. 
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The BCL-2 family and cancer pathogenesis 

 Cancer cells often hijack the apoptotic machinery to promote cellular survival in the face 

of therapeutic intervention. Several examples of this include downregulation of pro-apoptotic 

proteins, deregulation of microRNAs (miRNAs), disruption of upstream signaling pathways, 

and/or upregulation of anti-apoptotic proteins. Death-promoting apoptotic proteins, such as 

BAX, can be deleted or mutated in cancer. For example, frameshift mutations in Bax have been 

found in specific cases of colon cancer57, and the loss of BAX expression in a mouse breast 

cancer model leads to accelerated mammary tumor formation57. Additionally, the BH3-only pro-

apoptotic BIM was found to be necessary for apoptosis induction in thymocytes58. Recently, a 

common Bim deletion polymorphism was found to mediate resistance to kinase inhibitors in 

chronic myelogenous leukemia and non-small cell lung cancer59.   

 Downregulation of specific pro-apoptotic proteins by increased miRNA expression is an 

analogous pathway that drives cancer cells toward survival. A number of miRNAs target the pro-

death BH3-only BIM; for example, miR-32 acts as an oncogene that contributes to prostate 

cancer chemotherapy resistance60, while elevated expression of miR-19/92 via amplification of 

the coding regions in lymphocytes leads to lymphoma development in patients and 

lymphoproliferative disease in mice61. BH3-only PUMA is targeted by miR-221/222, inducing 

cellular survival in glioblastoma cells62,63. Finally, the pro-apoptotic executioner BAK is targeted 

by miR-125b, and this miRNA has been found to be upregulated in both taxol-resistant breast 

cancer64 and prostate cancer65.  

 Additionally, deregulation of upstream apoptotic signaling pathways can provide the 

driving force behind cancer cell survival through modulation of the BCL-2 family. p53, a 

common tumor suppressor whose loss of function mutations often promote carcinogenesis or 
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chemotherapeutic resistance, exerts its pro-apoptotic function through a number of pathways. 

One such example is the upregulation of BH3-only PUMA and NOXA as a result of DNA 

damage through p53 activation66-68. Therefore, mutations in p53 resulting in its repression will 

also lower the expression levels of PUMA and NOXA, leading to increased cell survival. A 

second example of upstream targeting affecting apoptotic proteins is through modulation of the 

MAP kinase (MAPK) pathways, regulating anti-apoptotic protein levels. Inhibition of p38 was 

shown to increase p53 functionality, leading to downregulation of both MCL-1 and BCL-XL
69. 

Therefore, mutations causing increased function of p38 would lead to increased levels of MCL-1 

and BCL-XL, promoting cell survival. 

Upregulation of the BCL-2 anti-apoptotic family of proteins, which can occur through a 

number of different mechanisms, is a major strategy cancer cells utilize to evade cell death and 

promote chemoresistance70,71. BCL-2 family anti-apoptotic overexpression is present in a 

number of hematologic malignancies such as multiple myeloma, chronic lymphocytic leukemia, 

acute lymphocytic leukemia, and acute myelogenous leukemia71. Increased levels of BCL-2 and 

BCL-XL have been associated with more aggressive cancer phenotypes and increased drug and 

radiation resistance in both hematologic malignancies and solid tumors72. miR-143 has been 

found to be downregulated in osteosarcoma cell lines and primary tumor samples, and apoptosis 

can be induced by restoring miRNA expression, thus reducing BCL-2 levels73. 

Important differences in anti-apoptotic BCL-2 family protein expression occur among 

cancer cell types; whereas BCL-2 and BCL-XL overexpression are more prominent in small cell 

lung cancer, MCL-1 overexpression has been linked to the pathogenesis of a variety of refractory 

cancers, including multiple myeloma74,75, acute myelogenous leukemia76, melanoma77, and poor 

prognosis breast cancer78. BCL-2-overexpressing transgenic mice exhibit a high occurrence of T 
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cell lymphomas79, and Eµ myc/BCL-2 mice show a much greater incidence of B cell tumors in 

comparison to Eµ myc mice80. Similarly, transgenic mice overexpressing MCL-1 resulted in 

high levels of immortalized hematopoetic cells and lymphomas81,82. Increased MCL-1 levels are 

also frequently present in relapsed and refractory acute myelogenous and acute lymphocytic 

leukemias and can be used as a prognostic marker83. Recently, cancer cells containing 

amplifications in MCL-1 have been shown to be dependent on MCL-140,84.	  miR-29b targets 

MCL-1 mRNA and is downregulated in malignant cells, which correlates with increased MCL-1 

expression85. Similarly, mIR-101, which also targets MCL-1, is downregulated in hepatocellular 

carcinoma86. Importantly, Mcl-1 was found to be one of the “top ten” most amplified genomic 

regions in human cancers84. Targeting MCL-1 in MCL-1-overexpressing cancers with anti-sense 

oligonucleotides, shRNA, or non-specific MCL-1 modulators has been effective in promoting 

apoptosis, singly or in combination with other agents56,87,88. Because the BCL-2 family plays 

critical roles in cancer pathogenesis, the development of targeted inhibitors of anti-apoptotic 

proteins has become a pressing pharmacologic goal for combating refractory malignancies72.   

 

Summary 

 Apoptosis, or programmed cell death, is important in both development and disease. The 

BCL-2 family of proteins regulates the mitochondrial apoptotic pathway through interactions 

among pro-apoptotic BH3 domains and anti-apoptotic BH3 binding grooves. Disease states arise 

upon deregulation of the BCL-2 family of proteins, where cell death is either promoted or 

evaded; one of the most common tactic cancer cells utilize to promote survival is anti-apoptotic 

protein overexpression. Specifically, MCL-1 overexpression has been shown to be a major 
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chemoresistance factor in a number of human cancers, and for this reason, MCL-1 targeting is a 

pharmacologic priority in the quest to reactivate cell death for therapeutic benefit in cancer.  
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Targeting Protein Interactions within the BCL-2 Family 

 

The BCL-2 family anti-apoptotic proteins are viable therapeutic targets in cancer 

Because BCL-2 family anti-apoptotic proteins are often overexpressed in refractory or 

relapsed cancers, targeting these proteins either at the gene or the protein level is an important 

therapeutic strategy that has been validated by a series of experimental successes. The first 

strategy utilized anti-sense oligonucleotides to target the first six codons of BCL-2 mRNA, 

resulting in mRNA degradation and a decrease in protein translation89. In cancer cells that 

overexpress BCL-2, this molecular “hit” should reset the cell’s rheostat from survival to death in 

the face of therapeutic intervention. This was indeed the case, as oblimersen sodium (G3139, 

Genasense) downregulated BCL-2 protein levels and led to apoptosis induction in t(14;18)-

expressing lymphoma cells89. In a human melanoma mouse xenograft model, G3139 led to 

sensitization with cyclophosphamide90, although on-mechanism responses were elusive (or 

ambiguous) in vivo91 . Similar anti-sense strategies have been used to target BCL-XL in epithelial 

cells in response to DNA damage92 and MCL-1 in human multiple myeloma92 or a human 

melanoma xenograft in severe combined immunodeficient (SCID) mice92. Further proof-of-

concept studies show that downregulation of MCL-1 through siRNA overcomes ABT-737 

resistance in small cell lung cancer cell lines, triggering cell death.93 

In addition to direct anti-sense targeting of the anti-apoptotic proteins, upstream targeting 

of signaling pathways that leads to decreased anti-apoptotic protein expression has also been 

explored. Sorafenib is a small molecule inhibitor of multiple kinases in the MAPK signaling 

pathway94, and its administration promotes rapid downregulation of MCL-1 levels through 

indirect and non-targeted translational inhibition, thus contributing to apoptosis induction in 
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chronic lymphocytic leukemia cells95. Another example of upstream targeting of the BCL-2 

family involves the galectin-3 antagonist, GCS-100, which was found to overcome bortezomib-

mediated resistance in melanoma cells96. Further mechanistic studies revealed that this 

compound exerted its apoptotic effect in part by downregulating MCL-1 and BCL-XL, which is 

accompanied by an increase in NOXA expression97. Additionally, cell cycle proteins were 

deregulated, and although the exact connection between these three pathways (apoptotic, cell 

cycle, and carbohydrate binding via galectin-3) is incompletely understood, the ultimate result 

was that BCL-2-family modulation sensitized cancer cells to apoptosis. These approaches and 

results confirm that the BCL-2 family anti-apoptotic proteins are high-priority targets in cancer 

due to their essential roles in preserving pathologic cell survival.  

The relevance of targeting anti-apoptotic proteins in cancer has been clearly 

demonstrated by the successes of the described therapeutic strategies. However, off-target effects 

and poor pharmacokinetic properties are major drawbacks, preventing the clinical utility of anti-

sense oligonucleotides, for example. Because BCL-2 family proteins perform functions 

independent of their BH3 domain interactions, eliminating the protein entirely, including its non-

apoptotic functions, may be detrimental to normal cells. Furthermore, inhibitors targeting 

upstream pathways that lead to apoptotic modulation also produce off-target effects owing to 

their effects on downstream pathways other than intrinsic apoptotic signaling. For this reason, 

selective disruption of pro-apoptotic BH3 domain sequestration by targeting the anti-apoptotic 

proteins’ canonical and conserved BH3 grooves has become a priority in the developmental 

cancer therapeutics field.  
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Targeting protein-protein interactions 

Typical contact surfaces within a protein-protein interaction are often very large (1,500-

3,000 Å), as compared to standard small molecule-protein contact surfaces (300-1,000 Å)98. 

Moreover, most protein surfaces are flat, without defined grooves, making small molecule 

targeting of protein-protein interactions difficult. Despite the large size of protein contact 

surfaces, mutational studies such as alanine scanning have demonstrated that the free energy of 

binding is typically dictated by specific “hot-spots” within the binding site99,100. Based on the 

hot-spot hypothesis, small molecule targeting of protein-protein interactions would theoretically 

be feasible if the critical subportion of the binding interface could be appropriately targeted. 

Suitability for small molecule targeting is typically dictated by a well-defined deep pocket within 

the binding site where a small molecule can bind effectively. A select group of protein-protein 

interactions are amenable for high throughout small molecule drug development101, and the 

BCL-2 family falls into this class because they contain well-defined, conserved binding pockets 

that are deeper than most protein interfaces. Additionally, the structures of all anti-apoptotic 

proteins are known. This structural knowledge allows for the design and optimization of 

inhibitors to increase binding potency and selectivity. 

 Targeting protein-protein interaction sites is typically difficult when both interaction 

partners are large, soluble proteins102. While this may be the case for some BCL-2 family 

interactions (e.g., MCL-1/BAK), these protein interactions can be simplified; for example, the 

pro-apoptotic BH3 domain of the pro-death proteins, which binds to the anti-apoptotic protein’s 

BH3 groove, has been successfully substituted for full-length soluble proteins in in vitro 

assays38. Whereas peptidic targeting of these protein interfaces would allow for the disruption of 

large surface areas, native peptides often display unfavorable pharmacokinetic properties due to 
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rapid degradation in vivo and cell impermeability. Therefore, small molecules have traditionally 

been the modality of choice for drug development, with the development of screens to target a 

soluble protein/α-helical interaction a feasible starting point for BCL-2 family drug discovery.   

Lipinski’s Rule of Five highlights important physiochemical properties necessary for 

favorable pharmacokinetics and potential oral bioavailability of small molecule drugs. According 

to Lipinski’s Rule, a drug-like compound must possess a molecular weight of less than 500 Da, 

contain less than five hydrogen bond donors, contain less than ten hydrogen bond acceptors, and 

have an octanol-water partition coefficient of less than five103. Typical compounds that follow 

these rules are enzyme inhibitors (e.g. GPCRs, ion channels), which bind to a small portion 

within a protein active site. However, small molecules that inhibit protein-protein interactions 

often must be much larger than 500 Da in order to engage sufficient surface area for effective 

targeting. Currently, only 51% of FDA-approved drugs on the market are orally bioavailable and 

follow Lipinski’s rule of five104, highlighting an increase in small molecule diversity and the 

need to inhibit more difficult and non-traditional targets, such as protein-protein interactions. 

This shift of small molecule properties is referred to as the “rule of four,” with compounds that 

successfully target these interactions possessing higher molecular weights (> 400 Da), higher 

hydrophobicity (octanol water coefficient > 4), more rings within their structures (> 4), and more 

hydrogen bond acceptors (> 4) than common drugs obeying Lipinski’s Rule105. 

 Because protein-protein interactions have become increasingly recognized as critical to 

modulating cellular processes in homeostasis and disease, the search for small molecule 

inhibitors of these interactions has jumped to the forefront of academic and pharmaceutical 

research efforts. Recently, a number of effective small molecule inhibitors of protein interactions 

have been discovered, such as Nutlin-3 that targets the p53-MDM2 interaction. MDM2 is the 
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ubiquitin E3 ligase that binds p53 and is responsible for targeting it for proteasomal 

degradation106. Small molecule Nutlins disrupt the interaction between p53 and MDM2 by 

directly binding to MDM2, restoring p53’s pro-death function in cancer cells106. Another 

example involves disruption of the Inhibitor of Apoptosis (IAP)/caspase interaction in cancer 

cells. The IAPs (including XIAP, cIAP-1 and cIAP-2) bind caspases, restraining their apoptotic 

activity, and are commonly overexpressed in cancer107. The second mitochondria-derived 

activator of caspases (Smac) peptide becomes activated during apoptosis induction, binding the 

IAPs and leading to release and activation of the caspases108. Therefore, discovering Smac 

mimetics that would bind IAP and displace caspases emerged as an important goal in the cell 

death field. The first small molecule Smac mimetic was discovered to disrupt both XIAP/Smac 

and XIAP/caspase-9 interactions in vitro, binding XIAP in glioblastoma cells and potentiating 

TRAIL and TNFα-mediated cell death109. These examples highlight the utility of targeting 

protein-protein interactions for therapeutic application in cancer. 

 

Stapled peptides are unique tools to manipulate apoptosis 

Since the conserved alpha-helical BH3 domain mediates interactions among BCL-2 

family members, peptides containing these sequences have been used to dissect apoptotic 

signaling38. However, native BH3 peptides lack secondary structure, display high proteolytic 

degradation, and exhibit low cell permeability110. To overcome these issues, Verdine and 

coworkers developed hydrocarbon “stapling” to reinforce the structure of a natural alpha helix111. 

In this approach, non-natural amino acids containing olefinic side chains are substituted at the 

i,(i+4) positions and are subsequently tethered by ruthenium-catalyzed ring closing 
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methathesis112 (Figure 1.4). Stapled peptides show improved pharmacologic properties and have 

been used to initiate apoptosis in cancer cells both in vitro and in vivo110,113,114.  

Walensky et al. demonstrated for the first time the therapeutic utility of stapled peptides 

for targeting the BCL-2 family of proteins. First, BID SAHB (for stabilized alpha helix of BCL-2 

domain) displayed favorable in vitro and in vivo properties, including increased helicity, protease 

resistance, and increased cellular uptake as compared to the native non-stapled BID BH3 

peptide110. Cellular uptake was blocked by the addition of sodium azide and deoxyglucose, 

which inhibit active forms of uptake such as endocytosis. Furthermore, BID SAHB bound its 

BCL-2 family targets, such as BCL-XL, with ten-fold greater affinity then its unstapled 

counterpart. Importantly, BID SAHB induced apoptosis in leukemia cells at low micromolar 

concentrations and led to tumor suppression in a mouse model of human leukemia, sparing 

normal cells from toxic side-effects over the one week treatment course110.   

In addition to targeting apoptotic proteins, stapled peptides have been used as novel 

discovery tools to uncover mechanistic details underlying pro-apoptotic protein activation and 

subsequent apoptosis induction. In addition to binding anti-apoptotic targets, BID SAHB was 

also shown to directly bind pro-apoptotic BAX, leading to functional BAX activation in 

liposomal and cytochrome c release assays113. Gavathiotis et al. utilized BIM SAHB to discover 

a previously uncharacterized allosteric binding site on pro-apoptotic BAX; here, the stapled 

peptide was shown to directly bind to and activate BAX at a novel interaction surface on the 

opposite side of the protein from the canonical BH3-binding groove115. Furthermore, BIM SAHB 

was utilized to determine BAX’s structural reorganization upon activation116. Similar to BIM 

SAHB, BAX SAHB was also found to bind BAX at the novel interaction site, suggesting a role 

for BAX BH3 in self-propagating BAX activation once triggered by BH3-only proteins  
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Figure 1.4. Chemical stapling restores helical structure to peptide sequences. Unstructured 

peptide sequences are synthesized with non-natural olefinic-side chain-containing amino acids 

inserted into the sequence. The peptide is then chemically stapled via a ruthenium-catalyzed 

ring-closing metathesis, resulting in a rigid and stabilized stapled peptide that retains its helical 

structure. 
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during apoptosis induction116. 

While BID SAHB acts as a pan-apoptotic protein binder, the discovery of MCL-1 SAHB, 

which is an MCL-1 specific inhibitor, highlighted the utility of stapled peptides as selective 

targeting agents. Here, a panel of stapled peptides corresponding to the BH3 domains of all 

BCL-2 family members were synthesized and biochemically characterized for their ability to 

bind anti-apoptotic BCL-2 family proteins. Ironically, the BH3 helix of MCL-1 itself was the 

only specific MCL-1-targeting peptide117. The most potent stapled peptide, MCL-1 SAHBD, 

bound MCL-1 with low nanomolar affinity, and a co-crystal structure with recombinant MCL-1 

suggested important specificity and binding determinants, which were confirmed by peptide 

mutagenesis. In cells, MCL-1 SAHB binds MCL-1, as shown by chemical cross-linking, and 

dissociates important physiologic interactions, such as MCL-1/BAK, thus sensitizing OPM2 and 

Jurkat cells to death-receptor-mediated apoptosis117.  

While stapled peptides have effectively targeted BCL-2 family interactions in vitro, in 

cells, and in preclinical models, efforts to advance these novel agents to clinical trials are 

currently underway, with their potential impact on expanding the arsenal of therapies for human 

disease currently unknown. However, their large size and exquisite natural selectivity allows for 

potent and selective targeting of protein interactions in cells, whereas isolating small molecules 

to disrupt such large surface areas has been challenging118. Nonetheless, small molecules have 

historically dominated the drug collections available for clinical use. Indeed, stapled peptides 

that specifically bind MCL-1 may likewise serve as ideal tools for discovering new MCL-1-

targeting small molecules that can be applied to probe MCL-1 biology and target MCL-1 in vivo 

for therapeutic purposes.   
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Small molecule modulators of BCL-2 family interactions 

The importance of BCL-2 family members in promoting tumorigenesis has stimulated 

numerous efforts to develop small molecules that regulate the apoptotic pathway. In particular, 

investigators have searched for small molecules that mimic BH3 death domains and bind the 

hydrophobic pocket of anti-apoptotic BCL-2 family members, thus releasing the endogenous 

pro-apoptotic family members and stimulating apoptosis118. Some of the first small molecules 

targeting the BCL-2 family were discovered using high-throughput screening approaches, 

including virtual (e.g., HA14-1)119, cell-based (e.g., antimycin A)120, and competitive binding 

assays (e.g., BH3Is)121. However, optimizing specificity, binding affinity, and in vivo activity has 

remained a formidable challenge.  

The development of the BH3 mimetic ABT-737 represented the first major breakthrough 

in small molecule targeting of a discrete subset of BCL-2 proteins. This compound was found to 

bind anti-apoptotic family members BCL-2, BCL-XL, and BCL-w and was discovered using an 

“SAR by NMR” strategy that effectively mimicked the BAD BH3 peptide’s binding to the BH3-

binding site of anti-apoptotic BCL-XL
122. Specifically, an NMR-based screening approach was 

used to link low affinity small molecules that bound to specific sites of the BH3 groove, yielding 

higher affinity compounds. By binding to the BH3 pocket of a subset of anti-apoptotic 

proteins122, ABT-737 disrupts key physiologic interactions, such as BCL-2/BAX in vivo123. 

Furthermore, ABT-737 induces apoptosis in cancer cells and regression of solid tumors and 

hematologic malignances122,123. An orally bioavailable version of ABT-737, ABT-263, is 

currently undergoing clinical evaluation.  Interestingly, the compound displays an on-target side 

effect of rapid platelet clearance, due to induction of platelet senescence by blocking BCL-XL
124.  

Thus, the development of a more precise BCL-2 inhibitor, for example, would serve to avoid 
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thrombocytopenia and its attendant risks in a patient population that is typically compromised by 

bone marrow suppression. 

Because ABT-737 only targets BCL-2-like anti-apoptotics (BCL-2, BCL-XL, and BCL-

w), MCL-1 and BFL-1/A1 overexpression have emerged as clinically relevant resistance 

mechanisms that can only be addressed by developing neutralizing inhibitors of these proteins as 

well93,125-127 (Figure 1.5). The small molecule obatoclax (GX15-070) was found to bind MCL-1 

in addition to the anti-apoptotic proteins targeted by ABT-737128. By also targeting MCL-1, 

obatoclax is believed to overcome the MCL-1-mediated resistance to apoptosis observed for 

ABT-737, the extrinsic death receptor ligand TRAIL, and the proteasome inhibitor 

Bortezomib128,129. Although features of obatoclax’s mechanism of action remain unclear, this 

molecule demonstrates a preliminary proof-of-concept that diminishing MCL-1 activity by 

targeting its BH3 groove can lead to sensitization of cancer cells to apoptosis128. For this reason, 

the pursuit of selective small molecules that target MCL-1 is receiving much attention despite 

previous challenges.  

 

Summary 

Targeting protein-protein interactions using small molecules is difficult due to large 

protein surface areas and ill-defined binding pockets; however, BCL-2 family anti-apoptotic 

proteins possess a deep binding pocket amenable to small molecule targeting, as displayed by 

recent successes in compound/pocket binding. Biological peptides possess natural binding 

potency and selectivity, but their in vivo properties - namely protease susceptibility and lack of 

cell penetrance - make them ill-suited for therapeutic targeting. For this reason, peptide stapling 

has been utilized to stabilize alpha-helical structures and target protein-protein interactions;  
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Figure 1.5. Therapeutic rationale for targeting MCL-1. (A) When BCL-2 and BCL-XL are 

overexpressed in cancer cells, they bind and sequester BAX and BAK, leading to cellular 

survival. (B) Upon treatment with a BCL-2/BCL-XL specific inhibitor, these interactions are 

disrupted, and apoptosis proceeds. (C) However, if MCL-1 is overexpressed in addition to BCL-

2 and BCL-XL, even upon selective treatment with ABT-737 (which does not bind MCL-1), the 

cells will survive due to the inhibitory BH3 pockets of MCL-1, which can bind and sequester 

pro-apoptotic proteins. (D) Dual overexpression of both subclasses of anti-apoptotic proteins 

requires combination treatment with MCL-1-selective and BCL-2/XL-selective agents. If MCL-1 

is the only anti-apoptotic apoptotic protein overexpressed, specific MCL-1 targeting is expected 

to be sufficient to tip the balance in the direction of apoptosis in a cancer cell. 
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Figure 1.5 (continued) 
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proof-of-concept studies have shown favorable in vivo peptide properties and selective disruption 

of protein interactions in cells. Stapled peptides have successfully targeted BCL-2 family 

interactions by mimicking and displacing natural BH3 interactors. Due to the anti-apoptotic 

surface groove’s well-defined and relatively deep binding pocket, small molecules have also 

been discovered that disrupt anti-apoptotic/pro-apoptotic BH3 domain interactions. The most 

successful small molecule candidate to date is ABT-737/ABT-263, which binds BCL-2, BCL-

XL, and BCL-w; however, MCL-1 overexpression renders this compound ineffective in MCL-1-

dependent cancers. For this reason, selective targeting of MCL-1 remains a high priority and an 

unmet clinical need. The discovery of a stapled MCL-1 BH3 helix as a potent and selective 

MCL-1 inhibitor and potential prototype therapeutic also provides a new opportunity to mine 

chemical space for novel anti-MCL-1 molecules based on their capacity to disrupt this unique 

stapled peptide/MCL-1 interaction.  
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Abstract 

Stewart et al. recently generated a library of stabilized alpha helices of BCL-2 domains 

(SAHBs) and discovered that the BH3 helix of MCL-1 was itself the most potent and selective 

natural BH3 inhibitor of MCL-11. Whereas the unmodified MCL-1 BH3 peptide was 

predominantly unstructured and showed little MCL-1 binding activity, we sought to determine if 

the structurally-fortified and MCL-1-selective stapled peptide could be deployed in a competitive 

binding screen to in turn identify a selective small molecule antagonist for reactivating apoptosis 

in MCL-1-dependent cancer. Top compound hits found in the high-throughput screen proceeded 

through a series of secondary assays to analyze their potency and specificity. The development 

and application of high affinity/high selectivity stapled peptides for competitive screening was 

therefore utilized as an effective and generalizable strategy for small molecule drug discovery. 
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Introduction 

The discovery of BCL-2 at the t(14;18) chromosomal breakpoint in follicular lymphoma 

led to the novel paradigm that malignant transformation can be driven by proteins that regulate 

the balance between cellular survival and death2-4, specifically through upregulation of anti-

apoptotic proteins. The anti-apoptotic BCL-2 proteins MCL-1, BCL-2, BCL-XL, BCL-w, and 

BFL-1/A1  counteract apoptosis by sequestering the BH3 domains of both BH3-only and 

multidomain pro-apoptotic proteins. Specifically, the pro-apoptotic BH3 domain binds a groove 

formed by helices α2 (BH3) and portions of α3, α4, α5 (BH1) and α8 (BH2) of the anti-apoptotic 

proteins; this pocket contains a region of hydrophobic residues that is highly conserved among 

BCL-2 family anti-apoptotic proteins5. Because the BCL-2 family plays critical roles in cancer 

pathogenesis, the development of targeted inhibitors of anti-apoptotic proteins has become a 

pressing pharmacologic goal for combating refractory malignancies6.  

The physiologic role of BCL-2 family protein overexpression in promoting tumorigenesis 

has stimulated numerous efforts to develop small molecules and peptides to reactivate the 

apoptotic pathway through anti-apoptotic protein blockade. A series of small molecule screens 

and structure-based methodologies were initially applied to target BCL-2, yielding an eclectic 

array of small molecules and peptides with various degrees of biochemical, cellular, and in vivo 

activity7-16. Specifically, small molecule screens are important tools used to identify lead 

compounds that mimic BH3 death domains for anti-apoptotic targeting, allowing for 

displacement of pro-apoptotic family members and promoting apoptosis induction17. Previous 

high-throughput screening strategies have led to the successful discovery of small molecules that 

disrupt an anti-apoptotic protein interaction with its alpha-helical binding partner. For example, 

early screening platforms were optimized to discover small molecules that disrupt the BCL-
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XL/BAK BH318 or BCL-XL/BAD BH319 interaction via competitive fluorescence polarization 

(FP) assays, with the prior screen uncovering the BH3I class of small molecules that were shown 

to inhibit the BCL-XL/BAK interaction in cells, thus inducing apoptosis18. More recently, a high-

throughput screen was performed that identified small molecules capable of disrupting the BFL-

1/A1/BID BH3 interaction through a similar competitive FP assay20. These examples highlight 

the utility of high-throughput biochemical screening to identify prototype molecular modulators 

of BCL-2 family proteins. The application of MCL-1 SAHB as an MCL-1-selective agent 

provides a unique screening tool for discovering MCL-1-selective small molecules. 

The breakthrough molecule ABT-263 is an orally bioavailable and selective BCL-2/BCL-

XL inhibitor, which is advancing through the clinical trials process, manifesting both safety and 

preliminary efficacy in BCL-2-dependent cancers21-24. Broad experimentation with the ABT-263 

molecule and its progenitor ABT-737 revealed that expression of anti-apoptotic proteins lying 

outside their binding spectra caused resistance25-28, compelling the development of alternative or 

complementary agents that would either harbor broader anti-apoptotic targeting capacity or 

inherent selectivity for anti-apoptotics like MCL-1 that evade ABT-263/737 antagonism.   

The small molecule obatoclax10 and the peptidic stabilized alpha-helices of BCL-2 

domains (SAHBs) modeled after the BID and BIM BH3 domains29-31 are examples of novel 

agents that more broadly target the BCL-2 family anti-apoptotic proteins.  Given the emergence 

of MCL-1 as a “top ten” pathologic factor across the diversity of human cancers32, elucidating 

the blueprint for selective MCL-1 inhibition has also become a major focus of academic and 

pharmaceutical researchers. MCL-1 SAHB, the recently discovered selective stapled peptide that 

targets MCL-1, sensitized OPM2 and Jurkat cancer cells to death receptor-induced apoptosis1, 

highlighting the importance of targeting MCL-1 to dismantle its pro-survival role in cancer cells. 
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For this reason, the quest for exquisitely selective small molecules to target MCL-1 is receiving 

tremendous attention despite the inherent challenges of generating small molecules that can 

distinguish among homologous BH3-binding surfaces.  
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Results 

Discovery of MCL-1-selective small molecules by a high-throughput screen utilizing the MCL-

1/MCL-1 SAHB interaction  

The previous discovery of MCL-1 SAHBs, or hydrocarbon-stapled MCL-1 BH3 α-

helices, by Stewart et al. prompted their utilization in a high-throughput biochemical screen for 

small molecules that disrupt the in vitro interaction with MCL-1∆N∆C. MCL-1 SAHBs were 

previously shown to selectively target MCL-1 in biochemical, structural, and functional analyses, 

thus sensitizing cancer cells to death-receptor-induced, caspase-dependent apoptosis1. Here, we 

deployed MCL-1 SAHBA (Table 2.1) as a high fidelity screening tool to determine if its potency 

and specificity-of-action could be harnessed for small molecule discovery. A high-throughput 

competitive FP screening assay (Z-factor33, 0.62) was developed based on the direct binding 

interaction between FITC-MCL-1 SAHBA and MCL-1∆N∆C (EC50, 14 nM) (Figure 2.1A-C). 

This system was validated for screening with the positive control peptide BID SAHBA, a known 

MCL-1 binder, and the negative control peptide BCL-2 SAHBA, which does not interact with 

MCL-1. A compilation of 71,296 commercial small molecules was screened for the capacity to 

displace FITC-MCL-1 SAHBA from recombinant MCL-1∆N∆C (aa 172-327) (Figure 2.2). To 

enrich for MCL-1-selective compounds by detecting binding activity for the BCL-XL subclass of 

anti-apoptotic proteins, the libraries were also  counter-screened using a competitive FP assay 

(Z-factor, 0.71) developed based on the direct and selective interaction between FITC-BAD BH3 

and BCL-XL∆C (EC50, 26 nM)19,34 (Figure 2.1D-F). This system was validated for  counter-

screening with the positive control peptide BAD SAHBA, a known BCL-XL binder, and the 

negative control peptide MCL-1 SAHBA, which does not interact with BCL-XL. Small molecules 

with an apparent preference for MCL-1ΔNΔC (208 compounds, 0.3% hit rate), 
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Table 2.1. BH3 peptide compositions used in the high-throughput screen and subsequent assays. 
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Figure 2.1. Development of a stapled peptide-based high-throughput competitive screening 

assay for identifying MCL-1-selective small molecules. (A-C) A high-throughput competitive FP 

binding assay was developed based on the direct binding interaction between FITC-MCL-1 

SAHBA and MCL-1∆N∆C (EC50, 14 nM), and validated for screening using a positive control 

for complete displacement (BID SAHBA) and a negative control for no displacement (BCL-2 

SAHBA), yielding an assay Z-factor of 0.62. (D-F) To enrich for MCL-1-selective small 

molecules, a  counter-screen was developed based on the direct binding interaction between 

FITC-BAD BH3 and BCL-XL∆C (EC50, 26 nM), and validated for screening using a positive 

control for complete displacement (BAD SAHBA) and a negative control for no displacement 

(MCL-1 SAHBA), yielding an assay Z-factor of 0.71.  
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Figure 2.2. Workflow toward identification of small molecules that selectively bind anti-

apoptotic MCL-1. 71,296 compounds were initially screened for their selective MCL-1 binding 

capability in combination with a BCL-XL  counter-screen. The putative small molecule hits (208) 

were re-examined in a confirmatory repeat screen, leading to 130 positive hits. FITC-BID BH3 

was utilized as the ligand for specificity testing, and the 64 most potent and selective compounds 

were purchased for dose-response analyses. Those compounds binding to MCL-1 (via 

displacement of MCL-1 SAHBA) with a potency of less than 30 µM were advanced to dose-

responsive specificity testing.  
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Figure 2.2 (continued) 
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as defined both by > 50% displacement of the FITC-MCL-1 SAHBA/MCL-1ΔNΔC interaction 

and a > 45% difference in peptide displacement from MCL-1ΔNΔC vs. BCL-XLΔC were 

advanced to increasingly stringent confirmatory in vitro binding assays including: (1) repeat 

single-dose testing of 208 molecules in the differential competitive FP screen; (2) alternative 

single-dose selectivity screen for 130 confirmed MCL-1-directed antagonists comparing relative 

displacement of FITC-BID BH3, a dual binder35, from MCL-1ΔNΔC vs. BCL-XLΔC; and then 

(3) dose-responsive competitive binding of the 64 most selective molecules against the FITC-

MCL-1 SAHBA/MCL-1ΔNΔC complex (Figure 2.2). The identification of gossypol, a 

compound known to bind MCL-1 with a two-fold greater affinity than BCL-XL
35, as an initial hit 

served as a reassuring internal validation of the screen design.  

 

Structural classification, binding validation, and preliminary docking analysis of MCL-1-

selective small molecules 

The 64 identified small molecules were categorized into structural classes, as defined by 

the specific molecular scaffolds and chemical functionalities for each compound grouping 

(Figure 2.3). These compounds were purchased from commercial sources and tested in a dose-

responsive competitive FP assay examining displacement of FITC-MCL-1 SAHBA from MCL-

1ΔNΔC. Those compounds that bound MCL-1 with an IC50 value less than 30 µM were 

advanced to competitive FP binding assays utilizing the pan-anti-apoptotic binder FITC-BID 

BH3. Dose-responsive specificity data from a sample molecule within each class is shown in 

Figure 2.4.  
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Figure 2.3. Structural compound classes that emerged from the screen. Most small molecules 

could be classified based on their core structural scaffold (Classes A, C-I). Small molecules that 

were known bioactives or did not contain similar structural partners were assigned to Class B. 
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Figure 2.4. Sampling of compound hits discovered in the initial high-throughput screen. An 

example from each structural class (see Figure 2.3) is displayed; competitive FP assay shows 

displacement of FITC-BID BH3 from MCL-1ΔNΔC and BCL-XLΔC. Each compound displays 

differential affinities to MCL-1 but does not bind to BCL-XL with high affinity. 
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Figure 2.4 (continued) 
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For select classes, preliminary structure-activity relationship (SAR) studies were 

performed using commercially available derivatives that sampled alternate side groups and 

scaffold modifications. For example, analysis of Class A compounds revealed particular side  

group functionalities that either enhanced, had no effect, or impaired MCL-1 binding activity, 

providing insight into key regions of the interacting scaffold (Figure 2.5). Although further 

medicinal chemistry is necessary to fully dissect the structure-activity relationships that dictate 

potency and selectivity, the commercial availability of such compounds allowed for preliminary 

data upon which to generate basic conclusions regarding the importance of discrete 

functionalities. 

To preview potential sites of interaction for the compounds on MCL-1, molecular 

docking studies using GLIDE XP v.5 were performed. Docking calculations using this program 

yielded structures highly analogous to published x-ray structures36. Coordinates from the MCL-1 

SAHB/MCL-1 ΔNΔC co-crystal structure were used as a template, and the hydrophobic groove 

was selected as the docking site. The program then calculated energetic binding scores for 

different poses of each ligand in the hydrophobic groove, yielding a rank order of energetically 

favorable docking solutions. While BH3-only peptides and the MCL-1 SAHB span the entire 

hydrophobic groove, the small molecules dock to much more specific pockets within the groove. 

For example, MCL-1 SAHB binding depends on salt bridge interactions at R263, as well as 

hydrogen bond networks spanning D256 and N260. Based on the energetically favorable 

docking solutions, R263 is predicted to play a role in forming polar contacts between many of 

the small molecules and MCL-1ΔNΔC (Figure 2.6). Most of the small molecules dock directly 

into a deep hydrophobic pocket lined by residues L246, V249, L267, and F269, and the more 

distant H224 also appears to play a role in positioning the compounds into the groove.  
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Figure 2.5. SAR binding analysis of Class A compounds. Structural analogs were purchased, and 

their binding affinities examined by competitive FP assay in which FITC-BID BH3 is displaced 

from recombinant MCL-1. Compounds were ranked by IC50 value, with the structures of 

distinguishing R groups also displayed. 
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Figure 2.6. Molecular docking studies reveal predicted MCL-1 pocket binding of top scoring 

small molecules. Structural modeling was performed by defining the small molecule interaction 

surface as the canonical BH3-binding groove of MCL-1; the structures of all compounds 

identified in the screen were loaded into the docking program, GLIDE XP v.5. The top scoring 

compounds based on energetically favorable docking calculations are displayed on the MCL-

1ΔNΔC structure.  
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Cellular screening of MCL-1-selective small molecules 

To explore the specificity of the top small molecule hits in a genetically controlled 

system, a panel of mouse embryo fibroblasts (MEFs) was assembled for small molecule testing. 

Cellular responses to the molecules were compared in wild-type and Bax-/-Bak-/- (DKO) MEFs to 

distinguish among compounds that induce cell death in a BAX/BAK-dependent manner. To 

validate the cellular screen, the pro-apoptotic activity of the selective BCL-2/BCL-XL inhibitor 

ABT-737, which is known to impair the viability of Mcl-1-/- MEFs, but has no significant effect 

on wild-type, Bcl-xL
-/-, or DKO MEFs, was examined (Figure 2.7). Importantly, ABT-737 

showed no cytotoxic effect in wild-type or DKO MEFs, and these results were benchmarked 

against the small molecules arising from the high-throughput screen to eliminate compounds 

with inherent non-specific toxicity based on potential off-target effects. Compounds with a 

favorable, non-toxic profile in MEFs were advanced to further testing (Table 2.2).  

The MCL-1-selective small molecules were next applied to cancer cells that overexpress 

MCL-1 to screen for pro-apoptotic activity. For example, OPM2 multiple myeloma cells 

demonstrated varying sensitivity to all of the selected compounds, with IC50 values ranging from 

500 nM to 50 µM. Moreover, 18 of the small molecules displayed synergistic killing when 

combined with TRAIL, as determined by CalcuSyn analysis (combination index < 1)37 (Table 

2.2). Interestingly, MCL-1 siRNA38 and MCL-1 SAHB also sensitize TRAIL-mediated cell 

death, suggesting that the small molecules may likewise induce cell death as a result of MCL-1 

inhibition.  
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Figure 2.7. ABT-737 selectively impairs viability of Mcl-1-/- MEFs but exhibits no cytotoxicity in 

wild-type, DKO, or Bcl-xL
-/- MEFs. Cell viability was measured at 24 hours post-treatment. 
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Table 2.2. Cellular screens were applied to advance small molecules that induced cancer cell 

death in MCL-1-expressing OPM2 cells but were not cytotoxic to MEFs. Combination effects 

with TRAIL in OPM2 cells are indicated by + for synergy, - for antagonism, and +/- for additive 

effects based on previously published combination index value ranges37.  
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Discussion 

A novel FP-based competitive binding assay was established using the MCL-1-selective 

stapled peptide MCL-1 SAHBA, with the goal of identifying potent and selective small molecule 

MCL-1 inhibitors by competing with a high affinity and high specificity stapled peptide ligand. 

This screen yielded 28 small molecules that selectively bound to MCL-1 with high affinity based 

on a competitive FP binding displacement assay. A variety of distinct structural classes were 

identified, and their binding activity was interrogated in a variety of in vitro assays. The results 

of initial cellular testing were consistent with specific induction of cell death in the context of 

MCL-1 expression, lacking non-specific toxicity as assayed by parallel screening in MEFs. 

These findings highlight the utility of the MCL-1/MCL-1 SAHB-based small molecule screen, 

which yielded a novel cohort of compounds for advancement to a rigorous battery of mechanistic 

studies designed to identify potent and selective MCL-1 inhibitors with the capacity to reactivate 

cancer cell apoptosis in the specific context of MCL-1 dependence.  
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Methods 

 

SAHB synthesis 

Hydrocarbon-stapled peptides corresponding to BCL-2 family BH3 domains and their FITC-

βAla derivatives were synthesized, purified, and characterized according to previously described 

methods14,31,39. The sequence compositions of all SAHBs used in this study are listed in Table 

2.1. 

 

BCL-2 family protein production 

Recombinant MCL-1ΔNΔC and BCL-XLΔC were expressed and purified as previously 

reported29,40. Transformed Escherichia coli BL21 (DE3) were cultured in ampicillin-containing 

Luria Broth, and protein expression was induced with 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG). The bacterial pellets were resuspended in buffer (1% Triton X-

100 in PBS, complete protease inhibitor tablet), sonicated, and after centrifugation at 45,000xg 

for 45 min, the supernatants were applied to glutathione-sepharose columns (GE Healthcare). 

On-bead digestion of GST-tagged protein was accomplished by overnight incubation at room 

temperature in the presence of thrombin (75 units) in PBS (3 mL). The tagless recombinant 

proteins were purified by size exclusion chromatography (SEC) using a Superdex-75 column 

(GE Healthcare) with 150 mM NaCl, 50 mM Tris, pH 7.4 buffer conditions. 

 

Fluorescence polarization binding assays 

Fluorescence polarization assays (FPA) were performed as previously described40,41. Briefly, 

direct binding curves were first generated by incubating FITC-MCL-1 SAHBA, FITC-BID BH3, 
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or FITC-BAD BH3 (15 nM) with serial dilutions of anti-apoptotic protein in FPA buffer (150 

mM NaCl, 50 mM Tris, pH 8.0, 0.0625% CHAPS), and fluorescence polarization measured at 5 

min on a SpectraMax M5 microplate reader (Molecular Devices). For competition assays, a 

serial dilution of small molecule or acetylated peptide was added to recombinant protein at 

~EC75 concentration, as determined by the direct binding assay (MCL-1ΔNΔC, 45 nM; BCL-

XLΔC, 300 nM). Fluorescence polarization was measured at equilibrium and IC50 values 

calculated by nonlinear regression analysis of competitive binding curves using Prism software 

(Graphpad). 

 

High-throughput screening 

Small molecule screening was performed at the Institute for Chemistry and Cellular Biology-

Longwood (ICCB-Longwood) at Harvard Medical School, utilizing the commercial libraries 

Asinex1 (12,378 molecules), Chembridge3 (10,560 molecules), ChemDiv4 (14,677 molecules), 

Enamine2 (26,576), Life Chemicals1 (3,893 molecules), and Maybridge5 (3,212 molecules). 

High-throughput competitive FP binding assays were employed to screen for small molecules 

that disrupted the FITC-MCL-1 SAHBA/MCL-1ΔNΔC, but not the FITC-BAD BH3/BCL-XLΔC, 

interaction. SEC-purified MCL-1ΔNΔC or BCL-XLΔC (see above) was delivered by automated 

liquid handler (WellMate, Matrix) to 384 well plates, followed by addition of small molecule 

libraries (~5 mg/mL, 100 nL). After a 15 min incubation at room temperature, the corresponding 

FITC-SAHB (15 nM) was added to each well by liquid handler and FP read at 1 h using a 

PerkinElmer Envision plate reader (λex 480 nm, λem 535 nm).  
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Structural modeling 

Docked structures of MCL-1ΔNΔC and all small molecule hits were generated using GLIDE XP 

v.5 and analyzed using PYMOL42. 

 

Cellular viability assays  

OPM2 cells were maintained in RPMI 1640 (ATCC) supplemented with 10% (v/v) FBS, 100 

U/mL penicillin, 100 mg/mL streptomycin, 0.1 mM MEM non-essential amino acids, and 50 

mM ß-mercaptoethanol. Mouse embryonic fibroblasts (MEFs) cells were maintained in DMEM 

high glucose (Invitrogen) supplemented with 10% (v/v) FBS, 100 U/mL penicillin, 100 mg/mL 

streptomycin, 2 mM L-glutamine, 50 mM HEPES, 0.1 mM MEM non-essential amino acids, and 

50 mM ß -mercaptoethanol. OPM2 cells (5x104/well) were seeded in 96-well opaque plates and 

incubated with the indicated serial dilutions of vehicle (0.4% DMSO), compound, TRAIL, or the 

combination in RPMI at 37°C in a final volume of 100 mL. For MEF experiments, cells 

(5x103/well) were seeded in 96-well opaque plates for 24 h and then incubated with the indicated 

serial dilutions of vehicle (0.4% DMSO), compound, or ABT-737 in DMEM at 37°C in a final 

volume of 100 mL. Cell viability was assayed at 24 h by addition of CellTiter-Glo reagent 

according to the manufacturer’s protocol (Promega), and luminescence was measured using a 

SpectraMax M5 microplate reader (Molecular Devices). 
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Contributions 

M. Stewart and G. Bird synthesized the stapled peptides applied in these studies. N. Cohen 

performed the high-throughout screen and all biochemical and cellular experiments, with 

guidance from L. Walensky. Small molecule screening was conducted by N. Cohen at Harvard 

Medical School’s Institute for Chemistry and Cell Biology (ICCB), with equipment and screen 

design assistance provided by ICCB staff. N. Cohen and M. Stewart analyzed screening data and 

determined initial hit guidelines, with supervision from L. Walensky. E. Gavathiotis performed 

molecular docking studies. This chapter was written by N. Cohen and reviewed by L. Walensky. 

Assistance in generating figures was provided by E. Smith. 
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Chapter 3 

 

 

MIM1 is an MCL-1-Selective Small Molecule Inhibitor That Targets MCL-1 in vitro and 

Induces Cancer Cell Apoptosis in the Context of MCL-1 Dependence 

 

 

 

 

 

 

 

 

 

 

 

 



	   66 

Abstract 

Cancer cells hijack BCL-2 family survival proteins to suppress the death effectors and 

thereby enforce an immortal state. This is accomplished biochemically by an anti-apoptotic 

surface groove that neutralizes the pro-apoptotic BH3 α-helix of death proteins. Anti-apoptotic 

MCL-1 in particular has emerged as a ubiquitous resistance factor in cancer. Whereas targeting 

the BCL-2 anti-apoptotic subclass effectively restores the death pathway in BCL-2-dependent 

cancer, the development of molecules tailored to the binding specificity of MCL-1 has lagged. 

We previously discovered that a hydrocarbon-stapled MCL-1 BH3 helix is an exquisitely 

selective MCL-1 antagonist. By deploying this unique reagent in a competitive screen, we 

identified an MCL-1 inhibitor molecule that selectively targets the BH3-binding groove of MCL-

1, neutralizes its biochemical lockhold on apoptosis, and induces caspase activation and 

leukemia cell death in the specific context of MCL-1 dependence. 
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Introduction: From Selective Stapled Peptide to Selective Small Molecule 

MCL-1 SAHBs are hydrocarbon-stapled MCL-1 BH3 helices that were previously shown 

using chemical, structural, and biological methods to selectively target MCL-1 and sensitize 

cancer cells to caspase-dependent apoptosis1. Here, we utilized MCL-1 SAHBA as a screening 

tool to discover selective small molecules that target MCL-1. As described in Chapter 2, a high-

throughput competitive fluorescence polarization (FP) screening assay was developed based on 

the direct binding interaction between FITC-MCL-1 SAHBA and MCL-1∆N∆C; a counter-screen 

was performed based on the direct and selective interaction between FITC-BAD BH3 and BCL-

XL. Multiple commercial libraries (71,296 small molecules) were screened for the capacity to 

displace FITC-MCL-1 SAHBA from recombinant MCL-1∆N∆C while leaving the BCL-XL/BAD 

BH3 interaction intact (Figure 3.1).  

Based on the analysis of this primary screening data, which compared peptide 

displacement from MCL-1∆N∆C and BCL-XL∆C, 208 compounds with the capacity to 

selectively displace MCL-1 SAHB from MCL-1 were advanced through rigorous confirmatory 

in vitro binding assays, including repeat single-dose testing in the initial differential competitive 

FP screen, an alternative single-dose selectivity screen for 130 confirmed MCL-1-directed 

antagonists comparing relative displacement of FITC-BID BH3, a pan-anti-apoptotic binder2, 

from MCL-1∆N∆C and BCL-XL∆C, and lastly, competitive dose-responsive binding of the top 

64 compounds, examining displacement of FITC-MCL-1 SAHBA from MCL-1∆N∆C. Of the 64 

compounds that competed with FITC-MCL-1 SAHBA for MCL-1∆N∆C binding at IC50 

potencies of < 30 µM, 28 small molecules were subjected to dose-responsive target selectivity 

analysis in the comparative FITC-BID BH3/MCL-1∆N∆C vs. FITC-BID BH3/BCL-XL∆C 

competition FP assay, and then to screening liposomal release and Bax-/-Bak-/- mouse embryonic 
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Figure 3.1. Identification of MIM1, a selective inhibitor of anti-apoptotic MCL-1. A high-

throughput stapled peptide-based screen for small molecules that selectively target MCL-1∆N∆C 

identified MIM1. (B) The molecular structure of MIM1 is characterized by a thiazolyl core 

substituted with methyl, cyclohexylimino, and benzenetriol R groups. 
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fibroblast (MEF) cytotoxicity assays. Ultimately, we selected 4-((E)-(((Z)-2(cyclohexylimino)-4-

methylthiazol-3(2H)-yl)imino)methyl)benzene-1,2,3-triol, termed MCL-1 inhibitor molecule 1 

(MIM1), as our prototype compound due to a combination of favorable biophysical and 

biological properties that included MW > 200, solubility, MCL-1 binding potency and 

selectivity, compatibility with and activity in a BAX-mediated liposomal release assay, and 

relatively little to no toxicity in Bax-/-Bak-/- MEFs. This chapter will focus on our detailed 

characterization of MIM1 as a potent and selective lead inhibitor of MCL-1 for reactivation of 

apoptosis in MCL-1-dependent cancer.  
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Results 

Identification of MIM1, a potent and selective MCL-1 inhibitor molecule 

    The molecular structure of MIM1 (MW 347) is characterized by a thiazolyl core 

substituted with methyl, cyclohexylimino, and benzenetriol R groups (Figure 3.1), and the 

compound’s structure was verified by 1H NMR (Figure 3.2). We chose to vet the anti-apoptotic 

binding selectivity of MIM1 in competitive FP assays by comparison with ABT-737, a selective 

BCL-2/BCL-XL inhibitor molecule3. Whereas MIM1 effectively competed with FITC-MCL-1 

SAHBA and FITC-BID BH3 for MCL-1∆N∆C binding with respective IC50 values of 4.7 and 4.8 

µM, the compound showed no capacity to displace FITC-BID BH3 from BCL-XL∆C (IC50 > 50 

µM), mirroring the selectivity of Ac-MCL-1 SAHBD (Figure 3.3). In striking contrast, ABT-737 

competed with FITC-BID BH3 for BCL-XL∆C binding, but showed no activity toward MCL-

1∆N∆C. Although Ac-MCL-1 SAHBD was a 30- to 60-fold more potent competitor for MCL-

1∆N∆C binding than MIM1, the MCL-1-selective small molecule is one-seventh the size of the 

stapled peptide and exhibits an IC50 for its target (4.8 µM) in the same range as that of ABT-737 

for BCL-XL∆C (2.3 µM) upon competition with FITC-BID BH3. Thus, MIM1 emerged from the 

competitive screen with a marked MCL-1∆N∆C preference that reflects the binding specificity 

of the stapled peptide ligand and the opposite interaction profile of ABT-737.  

 

Structural analysis of the MIM1/MCL-1∆N∆C interaction 

To localize the protein interaction site that accounts for competitive small molecule 

binding activity, we performed NMR analysis of 15N-MCL-1∆N∆C upon MIM1 titration. The 

addition of MIM1 up to a 2:1 molecule:protein ratio induced significant backbone amide 

chemical shift changes in those MCL-1∆N∆C residues concentrated in a subregion of the  
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Figure 3.2. 1H NMR spectrum of MIM1. 
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Figure 3.3. MIM1 selectively binds MCL-1 over BCL-XL by competitive FP assay, with an 

opposite binding profile to ABT-737. (A) MCL-1 SAHBD and MIM1 dose-responsively 

competed with FITC-MCL-1 SAHBA for binding to MCL-1∆N∆C, whereas the BCL-2/BCL-XL-

selective antagonist ABT-737 had no effect. (B) Similarly, MCL-1 SAHBD and MIM1, but not 

ABT-737, effectively competed with FITC-BID BH3 peptide for binding to MCL-1∆N∆C. (C) 

In contrast, ABT-737 dose-responsively competed with FITC-BID BH3 for binding to BCL-

XL∆C, whereas MCL-1 SAHBD and MIM1 showed no BCL-XL∆C-binding activity. Data are 

mean ± SEM for FP assays performed in at least duplicate and then repeated twice with 

independent protein preparations with similar results. CI, confidence intervals 
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Figure 3.3 (continued) 
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canonical BH3-binding pocket, which is comprised of residues from α2 (BH3) and portions of 

α3, α4, α5 (BH1) and α8 (BH2) (Figure 3.4A). These data are consistent with a direct 

interaction between MIM1 and MCL-1∆N∆C at the very surface employed by BH3 helices to 

engage MCL-1. 

We next performed molecular docking analysis to examine the predicted interactions 

between MIM1 and MCL-1∆N∆C at the BH3-binding pocket. Interestingly, MIM1 is predicted 

to occupy that portion of the BH3-binding site engaged by residues 211-216 ETLRRV (aa 211-

216) of MCL-1 SAHBD (Figure 3.4B-C, PDB 3MK81). Whereas the cyclohexyl group makes 

complementary hydrophobic contacts with the region of the protein interface flanked by MCL-1 

SAHBD residues L213 and V216, the thiazolyl core and its methyl substituent point directly into 

a deep crevice occupied in the MCL-1 SAHBD/MCL-1∆N∆C complex by the highly conserved 

leucine (MCL-1 SAHBD L213) of BH3 domains. Interestingly, the benzene-1,2,3-triol (or 

pyrogallol) moiety engages in hydrophilic contacts with D256 and R263, two charged MCL-1 

residues implicated in complementary electrostatic interactions with a variety of BH3 domain 

R/D pairs (e.g., aa R214, D218 of MCL-1 SAHBD). Thus, MIM1 appears to simulate the key 

molecular features of approximately 1.5 turns of the MCL-1 BH3 helix at a potential selectivity 

hot-spot on the MCL-1 binding surface. 

 

MIM1 blocks MCL-1-mediated suppression of pro-apoptotic BAX 

We next examined whether MIM1 could selectively block MCL-1∆N∆C-based 

suppression of BAX activation, as monitored by a BAX-mediated liposomal release assay 

tailored to distinguish between pharmacologic regulation by MCL-1∆N∆C vs. BCL-XL∆C. 

Whereas the BH3-only protein tBID directly triggers the transformation of monomeric BAX to a  
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Figure 3.4. MIM1 targets the canonical BH3-binding pocket of MCL-1. (A) Measured chemical 

shift changes of 15N-MCL-1∆N∆C upon MIM1 titration up to a ratio of 2:1 MIM1:MCL-1 are 

plotted as a function of MCL-1∆N∆C residue. Affected residues are represented as purple bars in 

the plot (calculated significance threshold > 0.0197 p.p.m.). Residues with significant backbone 

amide chemical shift changes (purple) are concentrated in a subregion of the canonical BH3-

binding pocket (green). MCL-1∆N∆C residues M250, V253, F254, S255, D256, G257, G262, 

and R263 are unassigned. (B, C) The docked structure of MIM1 at the canonical BH3-binding 

pocket of MCL-1∆N∆C predicts that (1) the cyclohexyl group makes complementary 

hydrophobic contacts with the region of the protein interface flanked by MCL-1 SAHBD residues 

L213 and V216, (2) the thiazolyl core and its methyl substituent point directly into a deep 

crevice occupied by MCL-1 SAHBD L213 in the stapled peptide/protein complex, and (3) the 

benzene-1,2,3-triol (or pyrogallol) moiety engages in hydrophilic contacts with D256 and R263, 

two charged MCL-1 residues implicated in complementary electrostatic interactions with R214 

and D218 of MCL-1 SAHBD.  
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Figure 3.4 (continued) 
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membrane-embedded oligomer that porates liposomal vesicles and releases encapsulated 

fluorophore, the addition of anti-apoptotic proteins, such as MCL-1∆N∆C or BCL-XL∆C, blocks 

tBID-induced BAX activation and liposomal release (Figure 3.5A). While the BAX-suppressive 

effects of MCL-1∆N∆C are completely eliminated by pre-incubation with MCL-1 SAHBD, 

BCL-XL∆C-based inhibition of BAX activation is unimpeded by the MCL-1-selective stapled 

peptide (Figure 3.5B). Conversely, ABT-737, which selectively blocks BCL-XL∆C, negates 

BCL-XL∆C-mediated suppression of BAX activation but has no effect on MCL-1∆N∆C activity 

(Figure 3.5C). Having documented the high fidelity of this tailored liposomal assay for 

distinguishing between anti-apoptotic selectivities, we next evaluated the functional activity of 

MIM1. Indeed, we find that MIM1 simulates the pharmacologic activity of MCL-1 SAHBD, 

preventing BAX suppression by MCL-1∆N∆C but not by BCL-XL∆C (Figure 3.5D). Consistent 

with the reduced molecular weight and competitive binding activity of MIM1 compared to 

MCL-1 SAHBD, the kinetics of MIM1 inhibition of MCL-1∆N∆C-mediated BAX suppression 

are correspondingly slower (Figures 3.2C-D, 3.5B, 3.5D). Thus, these data explicitly link the 

selective MCL-1∆N∆C binding activity of MIM1 with functional blockade of MCL-1∆N∆C-

mediated inhibition of BAX activation. 

 

Selective activation of MCL-1-dependent leukemia cell death by MIM1  

One of the key challenges in developing and applying molecular antagonists for BCL-2 

family anti-apoptotic proteins is the variable expression of multiple homologues. That is, a 

cancer cell will only be susceptible to a selective anti-apoptotic inhibitor if the cell is especially 

dependent on that particular survival protein. Thus, the mere expression of MCL-1 does not 

predict cancer cell sensitivity to an MCL-1-selective inhibitor, as other anti-apoptotics lying 
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Figure 3.5. Selective blockade of MCL-1-mediated suppression of BAX activation by MIM1.  

(A) BH3-only protein tBID directly activates BAX-mediated liposomal release, which is 

effectively suppressed by treatment with anti-apoptotic MCL-1∆N∆C and BCL-XL∆C. (B) 

MCL-1 SAHBD selectively inhibited MCL-1∆N∆C suppression of tBID-induced BAX 

activation. (C) ABT-737 selectively inhibited BCL-XL∆C suppression of tBID-induced BAX 

activation. (D) The activity profile of MIM1 in the liposomal release assay mirrored the MCL-1 

selectivity of MCL-1 SAHBD. Liposomal assays were conducted in triplicate for each condition 

and repeated with an independent preparation of recombinant BAX with similar results. 
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outside its binding spectrum may continue to effectively suppress BAX/BAK. To test MIM1’s 

activity and specificity in cancer cells, we employed murine BCR-ABL(p185)-transformed, Arf-

null, B-lineage acute lymphoblastic leukemia (p185+Arf-/- B-ALL) cells that are unable to survive 

upon Mcl-1 deletion unless reconstituted with anti-apoptotic protein, reflecting a stringent system 

for assessing anti-apoptotic dependence. To validate the cellular assay, we first compared the 

effect of ABT-737 on p185+Arf-/-/Mcl-1-deleted B-ALL cells rescued by overexpression of 

MCL-1 or BCL-XL (Figure 3.6) and observed dose-responsive impairment of cancer cell 

viability (IC50, 1.6 µM) that coincided with dose-responsive caspase 3/7 activation in the BCL-

XL-dependent cells, but no effect on the MCL-1-dependent cells (Figure 3.7A). Strikingly, 

MIM1 had the exact opposite effect, negatively impacting the viability of the MCL-1-dependent 

cells (IC50, 4.2 µM), including dose-dependent induction of caspase 3/7 activity, but having little 

to no effect on the BCL-XL-dependent cells (Figure 3.7B). Importantly, ABT-737 and MIM1 

had no significant effect on the viability of wild-type or Bax-/-Bak-/- MEFs over the same dose 

range, with no observed caspase 3/7 activation (Figure 3.8). 

To interrogate the mechanism underlying MIM-1-selective killing, we performed anti-

MCL-1 co-immunoprecipitations from the MCL-1 rescued p185+Arf-/-/Mcl-1-deleted B-ALL 

cells treated with escalating doses of MIM1. By 6 hours, we observed dose-responsive 

dissociation of the MCL-1/BAK complex in the MIM-1 treated cells (Figure 3.9). Notably, 

BCL-XL /BAK dissociation was not observed when the identical experiment was performed on 

the BCL-XL-rescued p185+Arf-/-/Mcl-1-deleted B-ALL cells. These results provide important 

insight into the mechanistic basis for MIM1’s MCL-1-selective anti-leukemia activity, as MIM1 

effectively reduces the apoptotic threshold by disruption of the inhibitory MCL-1/BAK 

interaction.   
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Figure 3.6 Western blot analysis of genetically-defined p185+Arf-/- B-ALL cells. Whereas the 

parental p185+Arf-/- B-ALL cells express both MCL-1 and BCL-XL, MCL-1- and BCL-XL-

rescued p185+Arf-/-/Mcl-1-deleted B-ALL cells demonstrate overexpression of MCL-1 or BCL-

XL, respectively. Pro-apoptotic effectors, such as BAX, BAK, and BH3-only proteins, are 

expressed at relatively similar levels in all three cell lines. 
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Figure 3.7. MCL-1-dependent anti-leukemia activity of MIM. (A) ABT-737 selectively impaired the 

viability of p185+Arf-/-/Mcl-1-deleted B-ALL cells rescued by BCL-XL, but not MCL-1, as measured 

by CellTiter-Glo assay at 24 h. The selective cytotoxic effect of ABT-737 was accompanied by dose-

responsive caspase 3/7 activation in the BCL-XL-rescued leukemia cell line, as measured at 8 h post-

treatment. (B) MIM1 exhibited the opposite cellular activity profile of ABT-737, selectively impairing 

the viability of p185+Arf-/-/Mcl-1-deleted B-ALL cells rescued by MCL-1, but not BCL-XL. 

Correspondingly, the selective cytotoxic effect of MIM1 was accompanied by dose-responsive caspase 

3/7 activation only in the MCL-1-rescued leukemia cell line. 
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Figure 3.8. Effect of MIM1 and ABT-737 on MEFs. MIM1 and ABT-737 induce little to no 

cytotoxicity (24 h) (A, B) or caspase 3/7 activation (8 h) (C, D) in wild-type or Bax-/-Bak-/- MEFs 

treated with the same dose range that caused selective viability impairment of MCL-1- or BCL-

XL-rescued p185+Arf-/-/Mcl-1-deleted B-ALL cells. Data are mean + SEM for experiments 

performed in at least duplicate, normalized to vehicle control, and repeated twice with 

independent cell cultures with similar results. 
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Figure 3.9. Co-immunoprecipitation of MCL-1 and BAK shows MIM1-induced complex 

disruption in leukemia cells. p185+Arf-/-Mcl-1-deleted leukemia cells rescued by MCL-1 

overexpression were treated with varying doses of MIM1 for 6 hours, followed by 

immunoprecipitation of MCL-1. Equal loading is documented by the cellular inputs, and a 

MIM1 dose-dependent decrease in BAK was co-immunoprecipitated with MCL-1, supporting a 

mechanistic association between MIM1-induced leukemia cell apoptosis and the molecule’s 

capacity to displace pro-apoptotic BAK from MCL-1. 
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We next examined the functional impact of combining ABT-737 and MIM1 in isogenic 

p185+Arf-/- B-ALL cells differing only in their expression of MCL-1 and BCL-XL (Figure 3.6). 

In parental p185+Arf-/- B-ALL cells that express both endogenous MCL-1 and BCL-XL, the 

combination of ABT-737 (EC50, 5.1 µM) and MIM1 (EC50, 10.6 µM) resulted in synergistic 

cytotoxicity, as determined by CalcuSyn analysis4 (EC50, 1.4 µM; CI this dose, 0.47) (Figure 

3.10A). Strikingly, when the combination was applied to MCL-1-reconstituted p185+Arf-/-/Mcl-1-

deleted B-ALL cells, the addition of ABT-737 had little effect (Figure 3.10B). Similarly, the 

cytotoxic effects of single agent ABT-737 and the combination on BCL-XL-reconstituted 

p185+Arf-/-/Mcl-1-deleted B-ALL cells were identical, reflecting no added benefit of MIM1 in 

the absence of MCL-1 (Figure 3.10C). These data underscore the selectivity of MIM1 and ABT-

737 for their respective targets in the context of high stringency cancer cell dependence on MCL-

1 or BCL-XL. Importantly, the relative resistance of non-malignant fibroblasts to MIM1 

treatment, as previously observed for ABT-7375, suggests that a therapeutic window may exist, 

with preferential toxicity to cells driven by discrete anti-apoptotic blockades.    

 

Structure-activity relationship studies 

 The discovery of MIM1 from a high-throughput screen employing MCL-1 SAHB yielded 

a novel therapeutic prototype for molecular targeting of MCL-1. We performed preliminary SAR 

studies to examine MIM1’s structural analogs and determine which R groups are required to 

maintain specific MCL-1 binding activity. Commercially available analogs were purchased and 

tested for their ability to displace FITC-BID BH3 from MCL-1. Figure 3.11 shows a structural 

comparison of MIM1 and its analogs, all of which were less potent than the parental MIM1. 

Comparative binding analyses revealed two major insights: (1) the pyrogallol moiety appears 
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Figure 3.10 MCL-1-dependent synergy of MIM1 and ABT-737 in leukemia cells.  

(A) Combination treatment with MIM1 and ABT-737 induced synergistic killing of parental 

p185+Arf-/- B-ALL cells that express endogenous MCL-1 and BCL-XL, as reflected by a leftward 

shift of the viability isotherm (left) and the CalcuSyn dose effect curve (right), with calculated CI 

values of < 1 at ED50, ED75, and ED90. CI, combination index; ED, effective dose. (B) The 

addition of ABT-737 to MIM1 treatment of MCL-1-rescued p185+Arf-/-/Mcl-1-deleted B-ALL 

cells had little to no additional cytotoxic effect, consistent with the relative inactivity of ABT-

737 in the context of MCL-1-dependence. (C) Correspondingly, the addition of MIM1 to ABT-

737 treatment of BCL-XL-rescued p185+Arf-/-/Mcl-1-deleted B-ALL cells provided no additional 

cytotoxic effect, consistent with the relative inactivity of MIM1 in the context of BCL-XL-

dependence. Data are mean + SEM for experiments performed in at least duplicate, normalized 

to vehicle control, and repeated twice with independent cell cultures with similar results. 
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Figure 3.10 (continued) 
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Figure 3.11 SAR of MIM1 reveals key structural elements for MCL-1 binding. MIM1 analogs 

were purchased and tested for their ability to displace FITC-BID BH3 from MCL-1, as assessed 

by competitive FP assay. The IC50 values corresponding to the tabulated MIM1 analogs are 

plotted as a bar graph. Data are mean ± SEM for FP assays performed in at least duplicate. 
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essential for MCL-1 binding, and (2) at least one of the two indicated R groups requires a degree 

of hydrophobic bulk, in accordance with the presence of cyclohexyl and methyl R groups in 

MIM1. Future SAR studies will focus on expanding the library of de novo synthesized MIM1 

analogs in an effort to enhance the potency of binding and cellular activity. 

 MIMx4, a MIM1 analog that does not bind MCL-1, was utilized as a negative control to 

further confirm the specificity-of-action of MIM1. Figure 3.12 demonstrates that MIMx4 does 

not bind MCL-1 or BCL-XL by competitive FP assay. In addition, the compound shows no 

activity in promoting release of tBID from MCL-1, and thus does not induce BAX-mediated 

liposomal release. Furthermore, specific cellular killing is not seen in MCL-1-dependent 

leukemia cells, with cell death only occurring due to non-specific cytotoxicity at high doses. 

These data highlight that a negative control molecule containing the core structure of MIM1 but 

without essential MCL-1 binding features does not recapitulate any of the biochemical or cellular 

activity of the MCL-1-selective MIM1 compound.  
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Figure 3.12. MIMx4 does not bind MCL-1 and shows no activity in liposomal release or cellular 

specificity assays. (A) MIMx4 does not displace FITC-MCL-1 SAHB or FITC-BID BH3 from 

MCL-1 or BCL-XL as assessed by competitive FP assay. (B) MIM1 triggers liposomal release in 

the presence of MCL-1, whereas MIMx4 shows no effect. (C) MIMx4 manifests non-specific 

toxicity in both leukemia cell types at high doses, with no specificity for the MCL-1-dependent 

leukemia cells.  
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Discussion 

Cancer cells are empowered by the combination of proliferative drives and apoptotic 

blockades. Under homeostatic conditions, BCL-2 family anti-apoptotic proteins guard against 

premature or unwanted cellular death, but in the context of cancer, their overexpression subverts 

the natural death pathway and promotes tumor development, maintenance, recurrence, and 

chemoresistance. To reduce the apoptotic threshold in cancer and thereby facilitate the efficacy 

of chemotherapy and radiation treatment, an ideal collection of targeted apoptotic therapies 

would include agents with specificities tailored to individual, subsets of, and all anti-apoptotic 

proteins. The BH3 helix-binding groove on the surface of anti-apoptotic proteins represents the 

pharmacologic bull’s-eye for such targeted therapies. The first structure of a pro-apoptotic BH3 

helix in complex with anti-apoptotic BCL-XL
6 provided the blueprint for developing such 

molecules and designer peptides.  The bench-to-bedside learnings from ABT-737 and ABT-263 

have yielded enormous insight into the remarkable potential and remaining challenges of this 

pharmacologic strategy. Deciphering the topographic hot-spots that dictate similarities and 

differences among the BH3-binding sites of numerous anti-apoptotic proteins presents a 

considerable drug design challenge. However, the advancement of ABT-263 and a growing 

diversity of small molecules and peptides that address the variety of BCL-2 family targets1,7-21 

predicts that this pharmacologic puzzle can ultimately be solved.  

    With BCL-2/BCL-XL-selective inhibitors having led the field, significant attention has 

shifted to expanding the scope of anti-apoptotic targeting, with a special emphasis on MCL-1, a 

ubiquitous pathogenic and resistance factor in cancer. To uncover the binding and specificity 

determinants for MCL-1, we generated a library of hydrocarbon-stapled BH3 helices to screen 

for a naturally selective MCL-1 inhibitor. Ironically, the BH3 helix of MCL-1 itself emerged as 
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the most potent and selective antagonist. Biochemical and structural analysis of the MCL-1 

SAHBD/MCL-1∆N∆C interaction provided new insight into key distinguishing features of the 

binding interface and how they could potentially be harnessed for drug development. Here, we 

applied this uniquely selective, high affinity stapled peptide to screen for small molecules that 

could effectively displace it from the BH3-binding groove of MCL-1∆N∆C, yet not target BCL-

XL. MIM1 emerged as a potent and selective small molecule inhibitor of MCL-1∆N∆C, capable 

of targeting the canonical BH3-binding pocket of MCL-1, blocking MCL-1-mediated 

suppression of tBID-induced BAX activation in vitro, and inducing caspase 3/7 activation and 

cell death in MCL-1-dependent, but not BCL-XL-dependent, leukemia cells. In each case, ABT-

737 had the opposite biochemical and cellular activity profile of MIM1, and synergized with 

MIM1 only in the context of dual MCL-1 and BCL-XL expression. These data indicate that 

MIM1 may serve as a prototype for the development of next generation small molecules that 

effectively reduce the apoptotic threshold in cancers specifically driven by anti-apoptotic  

MCL-1.   
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Methods 

 

SAHB synthesis 

Hydrocarbon-stapled peptides corresponding to BCL-2 family BH3 domains and their FITC-

βAla derivatives were synthesized, purified, and characterized according to previously described 

methods22-24. The sequence compositions of all SAHBs used in this study are indicated in Table 

2.1. 

 

BCL-2 family protein production 

Recombinant MCL-1ΔNΔC, BCL-XLΔC, and full-length BAX were expressed and purified as 

previously reported25,26. Transformed Escherichia coli BL21 (DE3) were cultured in ampicillin-

containing Luria Broth, and protein expression was induced with 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG). The bacterial pellets were resuspended in buffer (1% Triton X-

100 in PBS, complete protease inhibitor tablet for MCL-1ΔNΔC and BCL- XLΔC, and 250 mM 

NaCl, 20 mM Tris, complete protease inhibitor tablet, pH 7.2 for BAX), sonicated, and after 

centrifugation at 45,000xg for 45 min, the supernatants were applied to glutathione-sepharose 

columns (GE Healthcare) for GST-MCL-1ΔNΔC and BCL-XLΔC, or a chitin column (BioLabs) 

for Intein-BAX. On-bead digestion of GST-tagged protein was accomplished by overnight 

incubation at room temperature in the presence of thrombin (75 units) in PBS (3 mL), whereas 

the intein tag was cleaved from BAX by overnight incubation of the chitin beads at 4°C with 50 

mM DTT. The tagless recombinant proteins were purified by size exclusion chromatography 

(SEC) using a Superdex-75 column (GE Healthcare) with 150 mM NaCl, 50 mM Tris, pH 7.4 
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buffer conditions for MCL-1ΔNΔC and BCL-XLΔC, and 20 mM HEPES pH 7.2, 150 mM KCl 

buffer conditions for full-length monomeric BAX protein. 

 

Fluorescence polarization binding assays 

Fluorescence polarization assays (FPA) were performed as previously described25,27. Briefly, 

direct binding curves were first generated by incubating FITC-MCL-1 SAHBA, FITC-BID BH3, 

or FITC-BAD BH3 (15 nM) with serial dilutions of anti-apoptotic protein, and fluorescence 

polarization measured at 5 min on a SpectraMax M5 microplate reader (Molecular Devices). For 

competition assays, a serial dilution of small molecule or acetylated peptide was added to 

recombinant protein at ~EC75 concentration, as determined by the direct binding assay (MCL-

1ΔNΔC, 45 nM; BCL-XLΔC, 300 nM). Fluorescence polarization was measured at equilibrium 

and IC50 values calculated by nonlinear regression analysis of competitive binding curves using 

Prism software (Graphpad). 

 

MIM1 characterization by mass spectrometry and 1H-NMR spectroscopy 

4-((E)-(((Z)-2-(cyclohexylimino)-4-methylthiazol-3(2H)-yl)imino)methyl)benzene-1,2,3-triol. 

LC-MS: 348(M+1,ES+); 346(M-1, ES-). 1H NMR (300 MHz, DMSO-d6): d 11.35 (s, 1H, -OH); 

9.3 (s, 1H, -OH); 8.42 (s, 1H, -OH); 8.31(s, 1H); 6.73 (d, 1H, J=8.4 Hz); 6.34(d, 1H, J=8.4 Hz); 

6.01(s, 1H); 3.09-3.05 (m, 1H); 2.15 (s, 3H); 1.81-1.60 (m, 5H); 1.40-1.2 (m, 3H), 1.15 (t, 2H). 

 

NMR samples and spectroscopy 

Uniformly 15N-labeled MCL-1ΔNΔC was generated by modifying its expression and purification 

scheme in accordance with the method for producing 15N-BAX26,28. Protein samples were 
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prepared in 20 mM HEPES solution at pH 6.5 in 5% D2O. MIM1 (20 mM stock) was titrated 

into a solution of 100 µM MCL-1ΔNΔC to achieve the indicated molar ratio concentration. 

Correlation 1H-15N HSQC spectra29 were acquired at 25°C on a Bruker 800 MHz NMR 

spectrometer equipped with a cryogenic probe, processed using NMRPipe30, and analyzed with 

NMRView31. The weighted average chemical shift difference ∆ at the indicated molar ratio was 

calculated as  in p.p.m. The absence of a bar indicates no chemical shift 

difference, or the presence of a proline or residue that is overlapped or not assigned. MCL-

1ΔNΔC cross-peak assignments were applied as previously reported28. The significance 

threshold for backbone amide chemical shift changes was calculated based on the average 

chemical shift across all residues plus the standard deviation, in accordance with standard 

methods32. 

 

Structural modeling 

Docked structures of MCL-1ΔNΔC and MIM1 were generated using Glide and analyzed using 

PYMOL33. 

 

Liposomal release assay 

Liposomes were prepared and release assays performed as previously described34,35. Liposomal 

composition reflects a mixture of the following molar percentages of lipids (Avanti Polar 

Lipids): phosphatidylcholine, 48%; phosphatidylethanolamine, 28%; phosphatidylinositol, 10%; 

dioleoyl phosphatidylserine, 10%; and tetraoleoyl cardiolipin, 4%. Aliquots of mixed lipids (1 

mg total) are stored in glass at -20oC under nitrogen, and before use, resuspended in liposome 

assay buffer (10 mM HEPES, 200 mM KCl, 1 mM MgCl2, pH 7) containing 12.5 mM of the 
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fluorescent dye ANTS (8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt) and 45 mM of 

the quencher DPX (p-xylene-bis-pyridinium bromide). The resulting slurry is vortexed for 10 

min and freeze-thawed five times in liquid nitrogen and a 40°C water bath, respectively. The 

solution is then passed through an Avanti Mini-Extruder Set (#610000) equipped with a 100 nm 

filter, followed by passage through a Sepharose column (GE Healthcare) to remove residual 

ANTS/DPX. The liposomes are brought up to a volume of 3 mL to produce a final liposome 

stock. For the liposomal release assay, a total volume of 30 µL is used in 384 well black flat-

bottom plates (Costar), and baseline fluorescent measurements of 8 µL liposomes are made for 

10 min using a Tecan Infinite M1000 (λex 355 nm, λem 520 nm). Following the baseline read, 

recombinant anti-apoptotic protein, with or without pre-incubated small molecule or peptide, is 

added to the liposomes. Subsequently, 20 nM caspase-cleaved mouse BID (R&D systems) and 

250 nM purified recombinant monomeric BAX is added, and fluorescence measurements are 

recorded each minute until the release measurements plateau, at which point the liposomes are 

quenched with 0.2% Triton X-100 (100% release). The percentage release of ANTS/DPX was 

calculated according to the equation ([F – F0]/[F100 – F0]) × 100, where F0 and F100 are 

baseline and maximal fluorescence, respectively. 

 

Cell viability and caspase 3/7 activation assays 

BCR-ABL(p185)-transformed Arf-/- B-ALL cells were generated by transducing Mcl-1+/+Arf-/- 

mouse bone marrow with BCR-ABL(p185)-IRES-Luciferase vector and then removing the cells 

from growth factor and stromal support36. MCL-1 or BCL-XL-rescued p185+Arf-/-/Mcl-1-deleted 

B-ALL cells were generated by transducing Mcl-1f/fArf-/- mouse bone marrow with p185-IRES-

Luciferase. Transformed p185+Mcl-1f/fArf-/- B-ALL cells were then transduced with MSCV-
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Puro-Mcl-1 or MSCV-Puro-Bcl-XL and selected to produce stable clones, which were 

subsequently transduced with MSCV-Cre-IRES-GFP to delete the endogenous Mcl-1 alleles. B-

ALL cells were maintained in RPMI 1640 (ATCC) supplemented with 10% (v/v) FBS, 100 

U/mL penicillin, 100 mg/mL streptomycin, 0.1 mM MEM non-essential amino acids, and 50 

mM b-mercaptoethanol. Mouse embryonic fibroblasts (MEFs) cells were maintained in DMEM 

high glucose (Invitrogen) supplemented with 10% (v/v) FBS, 100 U/mL penicillin, 100 mg/mL 

streptomycin, 2 mM L-glutamine, 50 mM HEPES, 0.1 mM MEM non-essential amino acids, and 

50 mM b-mercaptoethanol. Leukemia cells (4x104/well) were seeded in 96-well opaque plates 

and incubated with the indicated serial dilutions of vehicle (0.4% DMSO), MIM1, ABT-737, or 

the combination in DMEM at 37°C in a final volume of 100 ml. For MEF experiments, cells 

(5x103/well) were seeded in 96-well opaque plates for 24 h and then incubated with the indicated 

serial dilutions of vehicle (0.4% DMSO), MIM1, or ABT-737. Cell viability was assayed at 24 h 

by addition of CellTiter-Glo reagent according to the manufacturer’s protocol (Promega), and 

luminescence was measured using a SpectraMax M5 microplate reader (Molecular Devices). 

Caspase 3/7 activation was assayed at 8 h by addition of Caspase-Glo 3/7 reagent according to 

the manufacturer’s protocol (Promega), and luminescence measured using a SpectraMax M5 

microplate reader. Synergy of the MIM1/ABT-737 combination in leukemia cells was calculated 

using the CalcuSyn software package4. 

 

Co-immunoprecipitation assay 

 p185+Arf-/-/Mcl-1-deleted B-ALL cells rescued by MCL-1 overexpression (5x106 cells) were 

incubated with MIM1 or vehicle in the above-indicated culture media at 37ºC for 6 h. After 

cellular lysis in 50 mM Tris (pH 7.4), 150 mM NaCl, 2.5 mM MgCl2, 0.5% NP40 and complete 
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protease inhibitor tablet, cellular debris was pelleted at 14,000g for 10 min at 4ºC. The 

supernatant was exposed to pre-equilibrated protein A/G sepharose beads and the pre-cleared 

supernatant subsequently incubated with anti-MCL-1 antibody (anti-MCL-1, Rockland 

Immunochemical) overnight at 4ºC, followed by the addition of protein A/G sepharose beads for 

1 h. The beads were pelleted and washed with lysis buffer 3 times for 10 min at 4ºC. The washed 

beads were then pelleted, heated to 90ºC for 10 min in SDS loading buffer, analyzed by 

SDS/PAGE, and then immunoblotted for MCL-1 and BAK (anti-BAK-NT, Millipore). 

 

 

Contributions 

M. Stewart and G. Bird synthesized the stapled peptides applied in these studies. N. Cohen 

performed the high-throughput screen and secondary biochemical validation, including binding 

assays and liposomal assays, with guidance from L. Walensky. E. Gavathiotis performed the 

NMR analysis and structural modeling studies. J. Opferman kindly provided the genetically 

defined murine leukemia cells used in this study, and J. Tepper characterized the cells and 

performed immunoprecipitation experiments. N. Cohen performed cell viability and compound 

synergy experiments with guidance from L. Walensky. L. Walensky and N. Cohen wrote the 

submitted manuscript, which was reviewed by J. Opferman. Assistance in generating figures was 

provided by E. Smith. 
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Abstract  

BCL-2 family proteins are critical regulators of apoptosis, a form of programmed cell 

death that is essential to tissue development, homeostasis, and organism longevity. MCL-1 is an 

anti-apoptotic BCL-2 protein that binds and inhibits select pro-apoptotic members. Loss of 

MCL-1 function can sensitize cells to apoptosis and lead to premature cell death, whereas 

overexpression can prolong cell survival in the face of pro-apoptotic stress. MCL-1 is unique 

among the anti-apoptotics both in its interaction profile and complex post-translational 

regulation. Whereas small molecules have been developed to target the BCL-2 subclass of anti-

apoptotic proteins, selective modulators of MCL-1 have remained out of reach. Because such 

compounds would be valuable tools to analyze MCL-1 function in health and disease, we 

undertook a screening assay and identified a class of compounds that bound to MCL-1 

selectively and covalently, leading to striking changes in MCL-1 structure and function. In 

characterizing the binding sites, cysteine modification emerged as a chemical mechanism for 

MCL-1 modulation with potential physiologic implications. The biochemical and cellular 

consequences of cysteine modification on MCL-1 activity were studied, revealing a possible new 

druggable mechanism for maintaining cellular survival in the face of premature or unwanted cell 

death.  
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Introduction 

BCL-2 family proteins exert their influence over cellular life and death at the level of the 

mitochondria. As the cell’s power plants, mitochondria regulate energy metabolism and cell 

death, in part by generating and processing reactive oxygen species (ROS), such as superoxide 

anions, hydrogen peroxide, and hydroxyl radicals1. Elevated levels of ROS produce oxidative 

stress, which is a major contributor to diverse pathologies, including chronic inflammatory 

diseases, cancer, and neurodegeneration2. Oxidative stress leads to chemical derivatization, with 

mitochondrial proteins as prime targets due to their proximity to the produced ROS; indeed 

BCL-2 proteins are key targets for reversible and irreversible oxidative modifications1. Such 

oxidative modifications would allow proteins to act as molecular sensors of the cell’s overall 

stress level during disease states and physiological processes3. For example, high levels of ROS 

have been associated with cancer metastasis and promote DNA damage, leading to 

carcinogenesis4. Specifically, BCL-2 was shown to prevent oxidative cell death at the site of free 

radical generation in response to a number of stimuli5.  Mechanistically, BCL-2 expression led to 

an overall reduction in ROS in neural cells6. Such findings highlight the importance of BCL-2 

family regulation during oxidative stress and the potential to impact cellular life or death through 

pharmacologic targeting of the proteins themselves or their modes of post-translational 

modification. 

Among the physiologic mechanisms of cysteine modification, S-nitrosylation has 

previously been reported to impact the functional activity of several apoptotic regulators. Nitric 

oxide (NO), synthesized from L-arginine by one of three isotypes of nitric oxide synthase 

(NOS)7, is a free radical mediator, interacting directly or indirectly with a number of ROS to 

yield secondary reactive species capable of modifying proteins. NO itself can also act directly on 
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proteins through S-nitrosylation of free reactive thiol groups8. BCL-2 is S-nitrosylated in 

response to chromium (V), Fas ligand, and stress-induced apoptosis in human lung epithelial 

cells; this modification inhibits its ubiquitin-mediated proteasomal degradation, thus increasing 

BCL-2 levels and its anti-apoptotic function9. In contrast, S-nitrosylation of X-linked inhibitor of 

apoptosis (XIAP) inhibits its binding to caspase-3 in neurons and promotes apoptosis10. Indeed, 

S-nitrosylation is an important modifier of a large variety of proteins, promoting alterations in 

structure and function that have been implicated in disease pathologies ranging from cancer11 to 

cardiovascular disease12 to neurodegeneration13. 

    In addition to S-nitrosylation, various other post-translational modifications can affect a 

protein’s reactive cysteines, often taking advantage of electrophilic Michael additions. 

Physiologic electrophiles that modify cysteines include nitro-fatty acids and α,β-unsaturated 

aldehydes, such as lipid peroxidation products (e.g., 4-hydroxynonenal).3 In addition, reactive 

cysteines may form thiol-protein mixed disulfides with glutathione or free cysteine14 or undergo 

reversible and irreversible oxidative modifications with partially reduced oxygen species (e.g., 

sulfenic acid). All of these modifications are influenced by the redox state of the cell, and 

alteration in protein structure and function occur as a result.  

Rather than targeting proteins at their canonical protein-protein interaction sites or 

ligand-binding pockets, the potential for targeting post-translational modifications that regulate a 

protein’s function or turnover remains a viable therapeutic option.  For example, the 

deubiquitinase USP9X was recently found to act on MCL-1, stabilizing its protein levels and 

promoting cell survival15. Therefore, targeting this interaction and blocking MCL-1 

deubiquitination would be one strategy to overcome cellular survival in cancer. Because aberrant 

lysine methylation is often involved in carcinogenesis, targeting protein lysine demethylases or 
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methyltransferases that act on proteins such as p53, NFKB, and E2F1 may prevent cancer 

progression15. Proteins that are S-nitrosylated present a unique opportunity for therapeutic 

targeting: irreversibly inhibiting the nitrosylation event by blocking the reactive cysteine with a 

covalent inhibitor.  

Irreversible small molecule inhibitors have gained attention recently, mainly for 

covalently modifying residues within enzyme active sites, inhibiting their functions. Covalent 

inhibitors possess many advantages, such as prolonged pharmacodynamics. This was shown 

recently by covalent inhibition of specific cysteine residues within the c-Jun N-terminal kinase 

protein family16. Previously, cysteine-modifying small molecules have been discovered to target 

the fibroblast growth factor receptor tyrosine kinases and Bmx kinase at cysteine residues17,18. 

While covalent inhibition is common for enzymes with ATP binding sites, other proteins have 

also been targeted covalently in the past. Intriguingly, a cysteine on the opposite binding face of 

the regulator of G protein signaling (RGS) protein was modified by CCG-4986, leading to an 

allosteric change in protein conformation and completely inhibiting its protein interaction with 

the Gα subunit of the G protein19. Furthermore, covalent cysteine targeting of the transcription 

factor NFκB has been proposed to result in inhibition of DNA recognition and binding20. 

The therapeutic utility of covalent small molecules remains promising, as long as off-

target effects can be prevented. This mode of small molecule inhibition has yet to be applied to 

the BCL-2 family of proteins, but the presence of physiologically important cysteines may allow 

for selective covalent targeting via a novel mechanism.  
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Results 

Select small molecules irreversibly bind MCL-1’s C286 

Chapter 2 described the high-throughput screen we undertook to discover small 

molecules that selectively target MCL-1, and Chapter 3 then focused on the biochemical and 

cellular characterization of MIM1, a small molecule that binds MCL-1 specifically at its 

canonical BH3 binding pocket. Intriguingly, some small molecules that emerged from the initial 

high-throughput screen demonstrated in vitro activity consistent with irreversible, covalent small 

molecule modification. Based on the analysis of their structural scaffolds, a subset of molecules 

were predicted to be reactive and thus could potentially modify MCL-1 at specific residues by 

Michael addition or other covalent reaction. To examine whether small molecule hits bound 

reversibly or irreversibly to MCL-1, a rapid dilution assay was applied. For this assay, MCL-1 

was incubated with compound for one hour to achieve equilibrium in a manner similar to the FP 

assay described in previous chapters. Next, the initial solution was diluted to 200 times the 

original binding volume, and the solution was then reconcentrated to the initial volume for 

binding analysis. Following the dilution and reconcentration procedure, the FITC-BID 

BH3/MCL-1 FP binding assay was repeated. If the small molecule was non-covalently bound 

and thus dialyzed away, FITC-BID BH3/MCL-1 would produce a binding curve similar to native 

unmodified MCL-1. If the molecule was covalently bound, inhibition of the FITC-BID 

BH3/MCL-1 interaction would persist after dilution (Figure 4.1).  

Specific structural classes and compounds were found to bind MCL-1 irreversibly. 

Compounds that behaved as covalent interactors in the dilution assay were advanced to mass 

spectrometry-based analysis to confirm covalent modification and the affected amino acid site. 

First, compounds alone were examined by LC/MS to confirm stability and document exact mass. 
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Figure 4.1. A rapid dilution assay was used as a screening tool to determine whether compounds 

bind MCL-1 reversibly or irreversibly. All molecules tested effectively inhibited FITC-BID 

BH3/MCL-1 binding prior to dilution. MCL-1 alone was used as a pre- and post-dilution control 

to ensure that protein concentration remained constant (curves shown in all panels in pink). 

Following dilution, a reversible inhibitor no longer inhibits FITC-BID BH3 binding, as the 

compound was effectively diluted to a concentration below its binding EC50 (left panel, SM-B1). 

Conversely, irreversible inhibitors remain bound to the protein regardless of dilution status and 

therefore continue to block FITC-BID BH3 binding to MCL-1 post-dilution (right panel, SM-

A3).  
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Next, unmodified recombinant MCL-1 and compound-treated MCL-1 (following gel filtration to 

remove excess compound) were spotted and run using both MALDI and LC/ESI/MS to confirm 

covalent modification. If modification was confirmed, a peak equal to the mass of MCL-1 plus 

the specific compound was apparent. Unmodified and modified MCL-1 were then subjected to 

trypsin digestion, and the fragments were analyzed by nano-LC/ESI/MS using a vented column 

assembly as described21. The most abundant precursors in each MS scan were subjected to 

collisionally-activated dissociation. The specific residue modified was determined using a 

separate, targeted nano-LC/ESI/MS in which doubly and triply charged modified peptides were 

subjected to higher energy collisionally-activated dissociation. (Figure 4.2) This approach 

provided further evidence for cysteine residue modification; for example, b6 and y14 ions were 

detected in specific cases (mass errors ~3 ppm or less), leaving cysteine as the only possible 

modification site.	  

 Applying the MS characterization described above, we determined that CSM-B2 

(covalent small molecule-B2, see structural scaffold classification in Chapter 2) disrupted the 

FITC-BID BH3/MCL-1ΔNΔC interaction as a result of covalent modification of C286 (Figure 

4.2). This unanticipated finding suggests that covalent cysteine modification could potentially 

regulate MCL-1 function in vivo and provides a novel approach to pharmacologic modulation of 

MCL-1’s pro-survival functionality. 

 

Covalent modification of C286 leads to BH3-only displacement from the canonical binding site 

 Synthetic or endogenous signaling molecules are capable of reacting with cysteine 

residues in proteins. Interestingly, MCL-1∆N∆C’s single cysteine is located on the face of the 

protein opposite to its canonical BH3 pocket (Figure 4.2), yet covalent binding of CSM-B2, 
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Figure 4.2. Mass spectrometry uncovers covalent modification of MCL-1’s C286 by select small 

molecules. CSM-B2 covalently modifies MCL-1ΔNΔC on the cysteine-containing tryptic 

fragment; ESI-MS analysis revealed a mass increase of ~450 Da. 
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among other molecules, led to displacement of FITC-MCL-1 SAHB or FITC-BID BH3 from the 

canonical BH3 binding pocket. This suggests that through possible allosteric modulation, 

cysteine binding induced a structural change within MCL-1 that blocked peptide binding to the 

canonical BH3 groove. 

 As demonstrated in Figure 4.2, MS analysis documented that CSM-B2 disrupted MCL-

1ΔNΔC/BH3 binding through covalent modification of C286. As C286 is not localized to the 

canonical BH3 binding pocket, I sought to determine whether the MCL-1 modulating effect was 

specific to the molecule’s interaction at the C286 region or was explicitly dependent on C286 

reactivity itself, supporting a more general role for cysteine modification in MCL-1 regulation. 

The effect of CSM-B2 treatment in a competitive FP assay was examined using FITC-BID BH3, 

MCL-1ΔNΔC, and MCL-1ΔNΔC C286S. Strikingly, CSM-B2 had no effect on MCL-1 binding 

activity in the absence of C286 (Figure 4.3). Additionally, the identical result was obtained 

when the reactive cysteine was alkylated with iodoacetamide (IAM) or when the molecule’s 

reactive moiety was reduced with dithiothreitol (DTT). These data confirm that specific chemical 

modification of C286 impacts the BH3-binding activity of MCL-1ΔNΔC.  

 Furthermore, two analogs of CSM-B2 were analyzed for their ability to bind MCL-1 by 

competitive FP assay (Figure 4.4A). CSM-B2b still binds MCL-1, albeit with lower affinity 

(IC50 = 4.4 µM) due to its less reactive molecular structure. Binding still occurs, however, owing 

to preservation of the compound’s fully conjugated resonance form at pH 8.0 (FP buffer), 

enabling covalent modification to proceed. In contrast, the diacetyl-modified analog of CSM-B2 

(CSM-B2c) does not bind to MCL-1 (IC50 >50 µM), consistent with its resonance conjugation 

being irreversibly lost. With no electron acceptors on the molecule, covalent modification does 

not occur, and correspondingly, FITC-BID BH3 is not displaced from MCL-1. Based on these 
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Figure 4.3. The C286S mutation, IAM treatment, and DTT treatment block FITC-BID BH3 

displacement from MCL-1 ΔNΔC by a cysteine-modifying small molecule. CSM-B2 treatment 

impairs FITC-BID BH3 binding to MCL-1ΔNΔC but not to the C286S mutant, as assessed by 

competitive FPA. DTT and IAM also disrupt binding by reducing the reactive compound core 

and blocking the reactive cysteine, respectively. 
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Figure 4.4. The reactive core of CSM-B2 is predicted by SAR analysis. (A) FP competition assay 

shows displacement of FITC-BID BH3 from MCL-1ΔNΔC in the presence of parental CSM-B2, 

but not upon exposure to an analog lacking the conjugated, reactive core. (B) A mechanism for 

cysteine modification of MCL-1ΔNΔC by CSM-B2 is proposed22,23. 
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results and established cysteine derivatization reactions, a proposed mechanism for cysteine 

binding and modification is proposed (Figure 4.4B). 

 

HSQC analysis reveals structural alteration upon covalent modification of C286  

As previously accomplished for the interaction between MCL-1ΔNΔC and MIM1, we 

applied HSQC NMR in an effort to map the site of interaction for CSM-B2 on the MCL-1ΔNΔC 

surface. As the NMR structure of MCL-1 has been previously determined24, we applied the 

amino acid assignments in HSQC experiments that employed 15N-labeled MCL-1 and titrations 

of small molecules. The topographic confluence of chemical shift changes is highly suggestive of 

a ligand binding site, which can then be further validated by protein mutagenesis and SAR 

analysis. This approach successfully localized the binding site of MIM1 to the canonical BH3 

binding groove of MCL-1ΔNΔC (Chapter 2). In this case, chemical shift changes were strictly 

localized to the topographic region of the BH3-binding groove, with the majority of MCL-

1 ΔNΔC remaining unperturbed at a 1:2 ratio of protein:molecule. In marked contrast, upon 

CSM-B2 titration, global structural changes were observed, precluding assignment of a discrete 

region for the CSM-B2 interaction (Figure 4.5). This result suggests that an allosteric 

mechanism may exist, whereby cysteine modification by CSM-B2 causes disruptive structural 

changes in the BH3 pocket, preventing BH3 peptide interaction and potentially altering MCL-1 

function in cells.  

 

MCL-1ΔNΔC is S-nitrosylated in vitro 

Among the physiologic mechanisms of cysteine modification, S-nitrosylation has 

previously been reported to impact the functional activity of several apoptotic regulators. Pilot 
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Figure 4.5. Comparative HSQC spectra of MCL-1∆N∆C alone and after CSM-B2 titration 

revealed a global structural alteration upon covalent modification. MCL-1∆N∆C alone is shown 

in black, and the 1:1 MCL-1∆N∆C/CSM-B2 titration is shown in red. 
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nitrosylation reactions were conducted, exposing MCL-1ΔNΔC and its C286S mutant to the NO 

donors S-nitroso-N-acetyl-D,L-penicillamine (SNAP) and S-nitrosoglutathione (GSNO) and the 

control non-NO donor, N-acetyl-D,L-penicillamine (NAP). Note that the endogenous C16 is not 

present in the truncated MCL-1ΔNΔC construct and was therefore not evaluated in this 

experiment. Biotinylation of nitrosylated sites followed by electrophoresis and blotting with 

streptavidin-HRP indeed revealed nitrosylation of MCL-1ΔNΔC, but not the C286S mutant, by 

SNAP and GSNO (Figure 4.6). Importantly, the negative control agent NAP did not nitrosylate 

MCL-1.  

  

MCL-1 is S-nitrosylated in cells 

To determine if cysteine modification of MCL-1 occurs in cells, a pilot 

immunoprecipitation experiment was performed and indeed revealed basal MCL-1 nitrosylation 

(Figure 4.7). MCL-1 was immunoprecipitated from OPM2 cells and probed with an anti-S-

nitrosylated cysteine (anti-SNO cys) antibody. Nitrosylation is detected at baseline conditions 

and upon bortezomib treatment. Deciphering the physiologic relevance of this process, including 

its regulation and phenotypic consequences, is an important next step to elucidating a potentially 

novel mode of MCL-1 post-translational regulation and its impact on apoptosis. 
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Figure 4.6. MCL-1ΔNΔC is S-nitrosylated in vitro. Wild-type MCL-1ΔNΔC, but not the C286S 

mutant, is nitrosylated by GSNO (40 µM) and SNAP (40 µM), but not by NAP (40 µM), as 

detected by the S-nitrosylated protein kit. 
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Figure 4.7. MCL-1 is S-nitrosylated in cells. MCL-1 was immunoprecipitated from OPM2 cells 

and probed with anti-SNO cysteine antibody. Basal nitrosylation in the presence and absence of 

the proteasome inhibitor, bortezomib, is shown. 
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Discussion 

Anti-apoptotic MCL-1 is subject to extensive post-translational regulation, with such 

modifications affecting the protein’s native interactions and cellular levels. Beyond MCL-1 

phosphorylation and ubiquitination, little is known about protein modifications that derive from 

oxidative stress. Oxidative stress leads to ROS production, which affects the structure and 

function of a vast number of proteins, especially those residing at the mitochondria. ROS 

production promotes cysteine modification of proteins, including apoptotic proteins such as 

BCL-2, whose modification leads to functional alteration. Targeting post-translational 

modification in cells is a clinically viable approach to promoting or preventing apoptosis, either 

by targeting the enzymes responsible for post-translational modification (which can produce off-

target effects) or by directly targeting the protein and preventing the modification. In the case of 

S-nitrosylation, covalent compounds that irreversibly bind cysteines could be used to block this 

modification and any functional downstream effects (e.g., altered degradation rates, increased 

apoptotic function, etc.). 

Here, we discovered that select small molecules identified in our high-throughput screen 

disrupted BH3 peptide interactions with MCL-1 through cysteine modification. An allosteric 

mechanism is proposed, whereby covalent cysteine modification alters the structure and function 

of the canonical BH3 pocket, precluding FITC-BID BH3 interaction. This discovery could lead 

to novel approaches for modulating apoptotic function by targeting a discrete and previously 

unrecognized binding site on MCL-1. Selective therapeutic targeting of MCL-1 has remained a 

challenge due to structural similarity among anti-apoptotic proteins; however, targeting MCL-1’s 

cysteine may provide a novel strategy for specific targeting, with important biological and 

therapeutic implications. Analogous to the insights derived from small molecule inhibition of 
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enzymes through cysteine modification, small molecule modulation of an anti-apoptotic target 

through cysteine-based covalent modification may not only serve as a therapeutic approach but 

also provide a powerful tool to dissect the functional impact of disrupting physiologic cysteine 

modification in cells. 
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Methods 

 

BCL-2 family protein production 

Recombinant MCL-1ΔNΔC was expressed and purified as previously reported28,29. Transformed 

Escherichia coli BL21 (DE3) were cultured in ampicillin-containing Luria Broth, and protein 

expression was induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The 

bacterial pellets were resuspended in buffer (1% Triton X-100 in PBS, complete protease 

inhibitor tablet), sonicated, and after centrifugation at 45,000xg for 45 min, the supernatants 

were applied to glutathione-sepharose columns (GE Healthcare). On-bead digestion of GST-

tagged protein was accomplished by overnight incubation at room temperature in the presence of 

thrombin (75 units) in PBS (3 mL). The tagless recombinant protein was purified by size 

exclusion chromatography (SEC) using a Superdex-75 column (GE Healthcare) with 150 mM 

NaCl, 50 mM Tris, pH 7.4 buffer conditions. 

 

Fluorescence polarization binding assays 

Fluorescence polarization assays (FPA) were performed as previously described28,30. Briefly, 

direct binding curves were first generated by incubating FITC-BID BH3 (15 nM) with serial 

dilutions of anti-apoptotic protein, and fluorescence polarization measured at 5 min on a 

SpectraMax M5 microplate reader (Molecular Devices). For competition assays, a serial dilution 

of small molecule or acetylated peptide was added to recombinant protein at ~EC75 

concentration, as determined by the direct binding assay (MCL-1ΔNΔC, 45 nM. Fluorescence 

polarization was measured at equilibrium and IC50 values calculated by nonlinear regression 

analysis of competitive binding curves using Prism software (Graphpad). 
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Rapid dilution assay 

Small molecule (excess) and MCL-1ΔNΔC (1 µM) were pre-incubated in 50 µL FPA buffer 

(150 mM NaCl, 50 mM Tris, pH 8.0, 0.0625% CHAPS). These samples were then diluted into a 

total volume of 10 mL and re-concentrated to their original volumes using Amicon Ultra-15 

Centrifugal Filter Units (Millipore). MCL-1 protein samples (in the presence and absence of 

small molecule, both pre- and post-dilution) were incubated with 15 nM FITC-BID BH3, and 

binding activity was determined by direct FP analysis, as described above.  

 

Mass spectrometry determination of covalent cysteine modification 

Excess small molecule was removed by gel filtration (Microbiospin column; Bio-Rad), and the 

protein was digested with trypsin overnight at 37ºC. Peptides were analyzed by nano-LC/ESI/MS 

using a vented column assembly as described21. Briefly, peptides were injected using an 

autosampler and HPLC (Waters NanoAcquity) onto a self-packed precolumn (4 cm, 100 µm 

I.D., POROS10R2, Applied Biosystems) and gradient eluted (0-30% B in 20 min, A = 0.2 M 

acetic acid in water, B = acetonitrile with 0.2 M acetic acid) to the resolving column (self-packed 

30 µm I.D., 12 cm of 5 µm Monitor C18, Column Engineering), followed by introduction to the 

mass spectrometer (Thermo Fisher LTQ-Orbitrap XL) via ESI (spray voltage = 2.2 kV). The top 

8 most abundant precursors in each MS scan (image current detection, resolution = 30,000) were 

subjected to CAD (electron multiplier detection, collision energy = 35%). A separate targeted 

nano-LC/ESI/MS experiment was performed in which the doubly and triply charged compound-

modified peptide TINQES*CIEPLAESITVVLVR (*C= modified cysteine) was subjected to 

HCD (higher energy collisionally-activated dissociation). 
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In vitro protein S-nitrosylation detection 

To test the chemical reactivity of MCL-1 cysteine residues, recombinant MCL-1ΔNΔC protein 

and its C286S mutant was expressed and purified as described previously31. MCL-1ΔNΔC 

cDNA was cloned into the pGEX-4T1 vector, followed by site directed mutagenesis to produce 

C286S (Stratgene’s Quikchange Mutagenesis kit), which was confirmed by DNA sequencing. To 

assess cysteine reactivity, the protein constructs were treated with serial dilutions of S-nitroso-N-

acetyl-D,L-penicillamine (SNAP) and S-nitrosoglutathione (GSNO), two effective nitric oxide 

donors, and the negative control N-acetyl-D,L-penicillamine (NAP) that does not donate nitric 

oxide. To monitor S-nitrosylation, the modified biotin switch method (Cayman S-nitrosylated 

protein detection kit) was employed. Unreacted free thiols were first blocked, and then S-NO 

bonds were reduced and labeled with biotin to capture the nitrosylated sites before NO loss32. 

Detection was readily achieved by electrophoresis and blotting with streptavidin-HRP. By 

comparing the results from the various MCL-1ΔNΔC constructs, the reactivity of the cysteine 

site was determined. 

 

Detection of in situ MCL-1 cysteine derivatization 

OPM2 cells were maintained in RPMI 1640 (ATCC) supplemented with 10% (v/v) FBS, 100 

U/mL penicillin, 100 mg/mL streptomycin, 0.1 mM MEM non-essential amino acids, and 50 

mM ß-mercaptoethanol. Cells (5x106) were incubated with vehicle or bortezomib (proteasome 

inhibitor) in the above-indicated culture medium at 37ºC for 8 h. After cellular lysis in Buffer A 

(50 mM Tris pH 7.4, 150 mM NaCl, 0.5% NP-40, complete protease inhibitor tablet), cellular 

debris was pelleted at 14,000g for 10 min at 4ºC. The supernatant was exposed to pre-

equilibrated protein A/G sepharose beads and the pre-cleared supernatant subsequently incubated 
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with anti-MCL-1 antibody (anti-MCL-1 S-19, Santa Cruz Biotechnology) overnight at 4ºC, 

followed by the addition of protein A/G sepharose beads for 1 h. The beads were pelleted and 

washed with lysis buffer 3 times for 10 min at 4ºC. The washed beads were then pelleted, heated 

to 90ºC for 10 min in SDS loading buffer, analyzed by SDS/PAGE, and then immunoblotted for 

anti-S-nitrosylated cysteine (anti-SNO cys, Sigma); the blots were then stripped and reprobed 

with anti-MCL-1 (sc-819).  
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Rationale and Discussion 

High-throughput screen for selective MCL-1 inhibitors  

Chapter 2 described the FP-based high-throughput screen I undertook to discover 

selective small molecule inhibitors of MCL-1. The screen was based on displacement of FITC-

MCL-1 SAHB from recombinant MCL-1 and was the first of its kind to utilize a stapled peptide 

as a screening ligand. A counter-screen examining displacement of FITC-BAD BH3 from BCL-

XL was concurrently performed, leading to the discovery of selective and potent small molecules 

for further studies. Small molecules were rigorously tested in secondary assays, including dose- 

response competitive FP assays and cellular toxicity screens. Molecular scaffolds that emerged 

from the screen allowed for categorization of compound subclasses that are capable of 

selectively binding MCL-1. From the screen, 28 potential small molecules were found to bind 

MCL-1 selectively, with varying efficacy in the functional assays.  

High-throughput screens have long been utilized to discover novel small molecules with 

specific biological functions, with growing interest in recent years due to new technology 

development and increased diversity of compound libraries1. Specifically, manipulation of 

protein-protein interactions has become an important means of modulating cellular function. In 

vitro biochemical high-throughput screening is based on a reductionist approach that examines 

disruption of a specific protein-protein interaction with the hopes that this activity will be 

recapitulated in cells. While a drawback of biochemical high-throughput screening is that the 

small molecule hits may be cell-impermeable or manifest off-target effects, a series of rigorous 

assays can be developed to increase the chances of identifying compounds with on-target 

mechanism(s) of action. Indeed, this was the rationale for undertaking an in vitro biochemical 

screen rather than a chemical genetic screen2. In a chemical genetic screen, for example, small 
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molecule activity in MCL-1 overexpressing cancer cells versus normal cells could have been 

examined to identify compounds capable of selectively killing MCL-1-dependent cells. Although 

this type of screen would provide candidate therapeutic agents, the compound’s mechanism of 

action would be unknown and require extensive investigation. Because MCL-1 is tightly 

regulated and is engaged by a variety of signaling pathways3-8, total loss of MCL-1 function is 

also expected to have off-target effects. The motivation behind the design of our in vitro high-

throughput screen was based on our discovery of a selective stapled peptide, which we reasoned 

may be deployed to effectively identify to potent and selective MCL-1-targeting small molecules 

for use as both research tools (e.g., to dissect the structural basis for differential molecular 

specificities among anti-apoptotic targets) and prototype therapeutics.  

 

MIM1 selectively targets MCL-1 in vitro and in MCL-1-dependent leukemia cells 

Chapter 3 described the application of our high throughput screen to identify a small 

molecule that directly binds and inhibits anti-apoptotic MCL-1 at its BH3-binding groove. MIM1 

demonstrated exquisite selectivity in both in vitro binding and functional assays. Importantly, 

MIM1 triggered caspase 3/7 activation and apoptosis induction of a cancer cell line dependent on 

MCL-1 for survival, but had no effect on the corresponding BCL-XL-dependent cell line, 

highlighting the molecule’s specificity-of-action. Thus, we report the application of MCL-1 

SAHB to identify a selective small molecule inhibitor of MCL-1 that exhibits anti-tumor activity 

in the specific context of MCL-1 dependence. We find that specific small molecule inhibition of 

MCL-1 is achievable, and further applications of this molecule could lead to next generation 

cancer therapeutics that, either alone or combined with ABT-737, could combat the apoptotic 

blockades of cancer. 
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Cancer cell dependence on MCL-1 is a prerequisite for successful single-agent MCL-1 

small molecule targeting and would explain why MCL-1 inhibition does not induce apoptosis in 

normal cells, such as MEFs, or cancer cells driven by other survival factors (Chapter 3). Cells 

that express one or more anti-apoptotic proteins aside from MCL-1 will remain capable of 

suppressing apoptosis in the face of MCL-1 inhibition. By identifying cancer cells that are 

uniquely dependent on MCL-1, using techniques such as BH3 profiling, optimal therapeutic 

matches can be made between anti-apoptotic inhibitors and susceptible cell lines9. For example, 

cells dependent on MCL-1 are resistant to ABT-737, while those cells dependent on BCL-2 are 

highly sensitive to ABT-7379. The p185+Arf-/-Mcl-1-deleted cell lines applied in this study are 

ideal cellular models to probe specificity-of-action because upon Mcl-1 deletion, the cells 

undergo apoptosis unless rescued by specific anti-apoptotic proteins, such as MCL-1 or BCL-XL.  

Thus, selective targeting of individual anti-apoptotic proteins should induce apoptosis. Recently, 

acute myelogenous leukemia (AML) cell lines were reported to be sensitive to deletion of MCL-

1 but not BCL-XL
10. MCL-1 was essential for sustained AML survival both in cultured cell lines 

and primary patient samples, and blockade of MCL-1 by an MCL-1-selective BIM mutant 

induced apoptosis in these cells10. The study again highlights the importance of MCL-1 in cancer 

pathogenesis and the need for selective agents (such as MIM1), applied singly or in combination, 

to reactivate apoptosis by overcoming MCL-1’s barrier to cell death. 

 

Irreversible cysteine modification of MCL-1 

Chapter 4 described the discovery of irreversible small molecule hits derived from our 

initial high-throughput screen for selective MCL-1 inhibitors. Small molecules were screened in 

a rapid dilution assay coupled with FP to determine if they bound to MCL-1 reversibly or 
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irreversibly. Potential irreversible binders were then subjected to mass spectrometry analysis. 

First, covalent modification was confirmed, and next, the site of modification was identified. 

One such compound, CSM-B2, was found to covalently modify MCL-1 at position C286. This 

cysteine is unique to MCL-1 and is present at the opposite face of the protein from the canonical 

BH3-binding groove. Interestingly, covalent cysteine modification led to displacement of the 

FITC-BID BH3 peptide from MCL-1 in a competitive FP assay. Dramatic structural changes 

within the protein were observed upon cysteine modification of MCL-1, as demonstrated by 

HSQC NMR analysis. Thus, covalent cysteine modification of MCL-1 could possibly serve as an 

allosteric mechanism for modulating the protein’s apoptotic function by altering access to the 

BH3-binding groove.  

Because small molecules can modulate cysteine residues on MCL-1, we sought to 

determine whether these residues are biologically important. As a number of proteins including 

anti-apoptotic BCL-2 are subject to S-nitrosylation, with resultant impact on their apoptotic 

functions11-13, we investigated whether MCL-1 could be S-nitrosylated in vitro and in cells. 

Interestingly, we found that MCL-1 is nitrosylated in vitro (upon incubation with nitric oxide 

donors) and in cells (basally), and mutation of the cysteine residue blocked nitrosylation, as 

expected. The rationale for examining covalent small molecules that inhibit BH3-binding to 

MCL-1 was to explore a potentially novel mechanism for MCL-1 inhibition. The Walensky 

laboratory’s recent discovery of a new BAX interaction site that triggers its pro-apoptotic 

activity14 suggests that functionally relevant, non-canonical binding surfaces could also be 

present on other apoptotic proteins. Given the importance of MCL-1 in cancer biology and 

organism homeostasis, uncovering novel modes of MCL-1 regulation may provide new insight 



	   132 

into a fundamental biological process, in addition to revealing new opportunities for modulating 

MCL-1 for therapeutic benefit.  
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Future directions 

MCL-1 lead optimization and the development of an MCL-1-selective therapeutic  

  Chapters 2 and 3 described our search for a highly selective and potent MCL-1 inhibitor 

and the discovery of MIM1. Using the structure of MIM1 as a lead point for MCL-1 targeting, 

next steps involve molecular derivatization and optimization in an effort to drive down its 

micromolar binding activity into the nanomolar or even subnanomolar range. In pursuing this 

medicinal chemistry effort, we hope to obtain novel constructs with increased affinity that will 

likewise retain MCL-1 specificity and cellular activity, as vetted by the series of rigorous assays 

developed for this thesis research. To further explore MIM1's cellular specificity for MCL-1, 

primary chronic lymphocytic leukemia (CLL) cells containing different levels of anti-apoptotic 

proteins will be examined. CLL cells manifest variable expression levels of distinct anti-

apoptotic proteins; for example, CLL cells with high BCL-2 and low MCL-1 levels are 

especially sensitive to ABT-737, whereas patient samples containing high levels of MCL-1 are 

resistant15. MIM1 and its analogs would be predicted to manifest the opposite activity profile, 

further supporting their capacity to selectively target MCL-1 and thereby reactivating apoptosis 

in CLL cells with an MCL-1-specific anti-apoptotic expression profile.  

  Lead small molecules will undergo pharmacokinetic (PK) testing in mice, performed in 

conjunction with the DF/HCC Clinical Pharmacology Core. LC/MS-based analytical assays are 

developed in order to detect and quantify compound levels in plasma. For PK analysis, small 

molecules (e.g., 10, 50, 100 mg/kg) will be injected by tail vein or intraperitoneally into male 

C57/BL6 mice. Blood samples will be withdrawn by retro-orbital bleed at various time points 

and plasma isolated for compound quantification, followed by calculation of plasma half-life, 

peak plasma levels, total plasma clearance, and apparent volume of distribution. Small molecules 
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that exhibit selective MCL-1 targeting in cells and exhibit a favorable pharmacokinetic profile 

will be advanced to in vivo testing. In addition, the potential need for further medicinal 

chemistry-based optimization of the compounds will be determined by such PK analyses. 

  The most potent and selective compound bearing the best PK properties will be advanced 

in to in vivo efficacy testing. First, MCL-1- and BCL-XL-dependent p185+Arf-/-Mcl-1-deleted 

leukemia cells will be engrafted into SCID beige mice. Once peripheral leukemia is observed 

(e.g., white blood count > 20K), as monitored by weekly complete blood counts, mice will be 

intravenously injected once daily with MIM1 or its analogs. We would expect selective reduction 

of peripheral leukemia in the MCL-1-dependent model but not in the corresponding BCL-XL-

dependent mice. ABT-737 would serve as an effective control compound that should manifest 

the opposite activity profile in vivo. Such studies would also explore the potential toxicity of 

MCL-1 targeting in vivo, as assessed by necropsy, performed in collaboration with the Rodent 

Histopathology Core of HMS, and monitoring of complete blood counts, including FACS-based 

analysis of lymphocyte and granulocyte subsets given the central role of MCL-1 in 

lymphopoiesis and granulopoiesis7,8. Additional mouse genetic and xenograft models would also 

be employed to evaluate the scope of MIM1 or its analogs’ activities in a variety of disease 

contexts.	  

 

Determining the crystal structure of MCL-1/small molecule complexes 

MIM1 and any promising analogs will be examined in complex with MCL-1∆N∆C in 

crystal-screening assays to achieve structural determination by X-ray crystallography, performed 

in collaboration with the Eck laboratory of the Dana-Farber Cancer Institute. The structures of 

small molecule/MCL-1 complexes may reveal key binding and selectivity determinants for 
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molecular engagement of the canonical BH3-binding pocket of MCL-1. 96-well crystal screens 

(Qiagen Protein Complex Suite, Qiagen Classics Suite, Hampton Research Index, and Eck1) 

have previously been performed using pure, recombinant MCL-1∆N∆C (6.5 mg/mL) and small 

molecule incubated at a ratio > 1:1 for one hour prior to plating. In pilot studies, needles, needle 

clusters, and rods were observed in discrete wells. As these wells contained similar conditions, 

24-well scale-up screens were then performed, altering polyethylene glycol (PEG) molecular 

weight, pH, and PEG concentration. Thin needles were again found using these conditions, so 

additive screens were explored in an attempt to grow diffraction-quality crystals. Such follow-up 

crystallization studies are currently in progress. Favorable co-crystals of MCL-1 with the small 

molecule will be flash frozen and subjected to initial data collection using the Eck laboratory 

screening X-ray source, and if suitable crystals are obtained, definitive data collection will be 

accomplished at the National Synchotron Light Source (Argonne National Laboratory). Data will 

be processed using HLK200016, and molecular replacement will be performed using PHASER17. 

Data will then be analyzed and refined using PHENIX18 and COOT19 software.  

In Chapter 4, I sought to determine the structural and biochemical consequences of 

cysteine modification of anti-apoptotic MCL-1. I advanced the covalent complex between CSM-

B2 and MCL-1∆N∆C to crystal-screening, including performing additive screens, streak seeding, 

and macroseeding to increase crystal size and three-dimensionality for X-ray analysis. 

Macroseeding crystal fragments and needles produced crystals with favorable appearance, but X-

ray diffraction did not result. Optimization of protein, compound, and complex purity, in 

addition to broadening the crystal screens, are currently underway to advance this structural 

work. Indeed, the structure of cysteine-modified MCL-1 may reveal a new mode of BH3-binding 

pocket regulation with direct implications on anti-apoptotic activity.  
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Determining the functional consequences of MCL-1 cysteine modification  

Future work will also interrogate the functional implications of cysteine modification on 

the pro-survival activity of MCL-1 in cells. HeLa cells were transfected with PCMV-10 vectors 

containing full-length MCL-1, or the C16S, C286S, C16S/C286S mutants. Initial optimization 

showed successful transfection (Figure 5.1) and FLAG immunoprecipitation to isolate both 

wild-type and mutant MCL-1 protein from cells (Figure 5.2). This system will be useful for 

future proteomic experiments that explore changes in MCL-1 binding partners upon cysteine 

mutagenesis, in addition to examining the in situ post-translational modifications of expressed 

MCL-1 isoforms.  

To further to investigate the cellular consequences of cysteine modification in stable cell 

lines, Mcl-1-/- MEFs will be reconstituted with wild-type MCL-1 and its cysteine mutants (C16S, 

C286S, and C16S/C286S). The full-length, wild-type Mcl-1 sequence has been cloned into the 

MSCV-IRES-GFP (pMIG) vector and verified by DNA sequencing. The desired cysteine 

mutations have been obtained in this vector using the designed mutagenesis primers and the 

QuikChange Site Mutagenesis Kit. The vectors, now in hand, will be retrovirally transduced into 

Mcl-1-/- MEFs so that the functional impact of cysteine modification on MCL-1’s pro-survival 

activity at baseline and in response to cellular stress can be explored.  
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Figure 5.1. FLAG-MCL-1 is successfully expressed in HeLa cells. Both 3:1 and 6:1 ratios of 

vector:FuGene produced the highest FLAG-MCL-1 expression levels by 24 hours post-

transfection (performed as per manufacturer’s protocol), as demonstrated by anti-MCL-1 

Western blot (sc-819). 
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Figure 5.2. FLAG-MCL-1 is immunoprecipitated effectively from HeLa cells transfected with 

FLAG-MCL-1 and its cysteine mutants. FLAG-MCL-1 protein was immunoprecipitated with 

anti-FLAG-agarose beads (Sigma) and probed with MCL-1 antibody (sc-819). 

Immunoprecipitation experimental methods are previously described in Chapters 3 and 4. 
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The potential cellular consequences of MCL-1 cysteine modification (either by 

nitrosylation or other chemical derivatization) include changes in ubiquitination status, 

degradation rates, and binding partners. I observed subtle changes in MCL-1 degradation and 

cleavage among the wild-type and cysteine mutant constructs upon HeLa cell transfection 

(Figure 5.3), a phenomenon that will be investigated further. Initial efforts will focus on 

documenting the presence or absence and type of cysteine modification on MCL-1. I previously 

used the S-nitrosylation kit to examine one possible mode of derivatization; however, a 

comprehensive approach will be undertaken to define which cysteines are modified and how 

using mass spectrometry. For example, cysteines can be labeled with cysteine-reactive probes, 

followed by LC/MS analysis to detect loss of labeling due to cellular cysteine modification, with 

further analyses applied to define the specific type of modification, as described20. Once specific 

cysteine locations and modifications are established, the reconstituted Mcl-1-/- MEF system 

described above will be applied to examine the potential functional consequences of disrupting 

cysteine modification. 
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Figure 5.3. Wild-type MCL-1 and the C16S/C286S double mutant display differential expression 

and cleavage levels post-transfection. Both constructs were transfected into HeLa cells as 

previously described, and MCL-1 levels were monitored by anti-FLAG Western blot (Sigma). 

The short N-terminal cleavage form of MCL-1 is not seen when the double mutant is 

overexpressed. 
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Conclusion 

Targeted inhibition of the BCL-2/BCL-XL subclass of anti-apoptotic proteins is a 

clinically validated approach to overcoming the survival advantage of select cancers driven by 

BCL-2-mediated apoptotic blockade. The emerging pathogenic role of MCL-1 in a remarkably 

broad range of human cancers has increased its importance as a high priority therapeutic target. 

Harnessing the potency and selectivity of a natural MCL-1 antagonist, the BH3 domain of MCL-

1 itself, we conducted the first competitive small molecule screen against a high affinity stapled 

peptide/protein complex. Applying a series of rigorous biochemical and cellular assays designed 

to evaluate MCL-1 vs. BCL-XL anti-apoptotic subclass specificity, we validated MIM1 as a 

potent and selective MCL-1 antagonist capable of preferentially blocking MCL-1-mediated 

suppression of pro-apoptotic BAX in vitro, and inducing caspase 3/7 activation and cell death of 

an MCL-1-dependent leukemia cell line. Thus, we find that specific small molecule inhibition of 

MCL-1 is attainable, and further applications of a selective molecule could lead to next 

generation cancer therapeutics that, either alone or in combination with ABT-737, could reverse 

cancer’s MCL-1-dependent apoptotic blockade. 
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