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Abstract

We study the perfect type-contingently public ex-post equilibrium (PTXE)
of repeated games where players observe imperfect public signals of the ac-
tions played, and both the payoff functions and the map from actions to
signal distributions depends on an unknown state. The PTXE payoffs when
players are patient are determined by the solutions to a family of linear pro-
gramming problems. Using this characterization, we develop conditions un-
der which play can be as if the players have learned the state. We provide a
sufficient condition for the folk theorem, and a characterization of the PTXE
payoffs in games with a known monitoring structure.
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1 Introduction

The fact that repeated interactions can allow new and more efficient equilibrium
outcomes is one of game theory’s most important insights. It has been shown to
apply in a range of settings, including games with imperfect public information
about opponents’ actions, and games where the monitoring structure- the map
from actions to signal distributions- is itself unknownt has also been shown

in games with private information about the payoff functiérhis paper studies
games with the combination of these features: both the monitoring structure and
the payoff functions can depend on an unknown state variable, and the players
may have initial private information about the state. This describes, for example, a
repeated partnership game where players observe group output but do not observe
each other’s effort, and each player has private information about the effect of her
effort on the probability distribution of output.

Our main goal in this paper is to understand how the information structure
of the game- meaning the combination of the monitoring structure and the initial
private information- determines the extent to which the player’s initial private in-
formation can be revealed in equilibrium. We address this question indirectly, by
computing the limit of the equilibrium payoffs when players are patient. More
specifically, we restrict attention to thgerfect type-contingently public ex-post
equilibriumor PTXE(Fudenberg and Yamamoto [17]). These are ex-post equilib-
ria where each player’s strategy depends only on the realized public outcomes and
his initial private information (hence “type-contingent”) but not on the player’s
private information about his own past actions.

PTXE generalizes several solution concepts: It reduces to the PPXE of [17]
if players have no private information, the belief-free equilibria of [21] and [22]
when actions are observédind the perfect public equilibrium (PPE) of Fuden-

IFor repeated games with public monitoring, see Green and Porter [19], Radner [29], Abreu,
Pearce, and Stacchetti [1,2], Fudenberg and Levine [14], Fudenberg, Levine, and Maskin [15],
Athey and Bagwell [3], and Fudenberg, Levine, and Takahashi [16]. Fudenberg and Yamamoto
[17] consider games where the monitoring structure is unknown.

2See Kohlberg [27], Forges [12], Sorin [32,33], Hart [20], Aumann and Maschler [5], Cripps
and Thomas [8], Gossnher and Vieille [18], Renault and Tomala [31], Wiseman [34,88}eH
and Lovo [21], and Hrner, Lovo, and Tomala [22] for games with private information.

3These equilibria are different than the belief-free equilibria of repeated games with private
monitoring (Piccione [28], Ely and &imaki [10], Ely, Horner, and Olszewski [9], Yamamoto
[36,37], and Kandori [25]), which require that players be indifferent.
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berg, Levine, and Maskin [15] (hereafter FLM) in complete-information games
with a known monitoring structure. As with ex-post equilibria more generally,
these equilibria are robust to the specification of the players’ prior beliefs: a PTXE
for a given prior distribution is a PTXE for an arbitrary prfor.

Any PPXE of the symmetric information game (where no player has initial
private information about the state) induces a PPXE of the game where some
players do have private information: these PPXE correspond to pooling equilib-
ria of the incomplete-information game. Thus the folk theorems of [17] apply to
games with private information. However, those theorems require that the dis-
tribution of signals vary with the state in a sufficiently rich way (essentially so
that the state can be learned from the signals generated by some fixed action pro-
file), and this is more restrictive than necessary when some players have private
information. For example, if one player knows the state, he may be able to com-
municate it to the others using a strategy that conditions on the player’s private
information. This paper takes the possibility of such implicit communication into
account, and so generates a larger set of equilibrium payoffs. In some cases, such
as the partnership games we define in Section 3, in which a player’s productivity
is private information, there often exist asymptotically efficient equilibria, while
equilibrium payoffs are bounded away from efficiency if the players ignore their
private information.

Moreover, we can characterize the limit payoffs of PTXE with linear program-
ming techniques. Specifically, the set of limit equilibrium payoffs is the intersec-
tion of maximal half-spaces in various directions, where the direction vegtors
assign weights on each player’s payoff in each state, the maximal half-space in di-
rectionA is all vectorsv with A - v no greater than the maximum score fgrand
this score is the highest weighted sum of payoffs that can be obtained with con-
tinuation payoffs that satisfy the incentive constraints and whose weighted sum is
no higher than the sum they are supporting.

Roughly speaking, there are PTXE where players learn the state if the score
is sufficiently large in “cross-state” directions that give non-zero weight to two or
more states. For this to be the case, informed players must be willing to reveal
their information, and uninformed players must not “jam” the information rev-
elation of their informed opponents. A key point is that the relevant conditions

4See Bergemann and Morris [6] for a discussion of various definitions of ex-post equilibrium.
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depend on whether the informed player’s payoff in a given state is given positive
or negative weight. With a positive weight the informed player wants to reveal
the state, and our conditions imply that other players cannot prevent this; with a
negative weight the informed player might prefer to hide the state, but under our
conditions this is not possible.

We use these results to prove a folk theorem. While the exact conditions are
complicated to state, the key assumption is that for each pair of playerd |
(where possibly = j) and each pair of states andw’ # w, either (i) there is a
playerl # i, j whose private information distinguishesand«’, and playet can
reveal this information regardless of the actions ahd j by choosing different
actions in statev and statew’, (ii) playeri or j (or both) can distinguislkw and
o' using initial private information, and the informed player is willing to reveal
this information while the other one cannot interfere, or (iii) there is an action pro-
file a (independent of the private information) that distinguishes (more formally,
“statewise identifies”j from «/. Conditions (i) and (ii) lead to a sort of “endoge-
nous learning” where players transmit their private information to the opponents,
while condition (iii) is a sort of “exogenous learning” based on the distribution of
signals at a fixed action profile. Note that condition (i) does not require that player
| is willing to reveal his information. This is because the condition can be used for
directions where playdfs continuation payoff has zero weight and hence is un-
constrained, and our “individual full rank” assumption ensures that there is some
specification of the continuation payoffs that induces playerplay the specified
actions in the two states. In contrast, if no third player can distinguish the states,
then the incentives of the revealing player become relevant, as without additional
conditions it may be that any continuation payoffs that induce playereveal
his information must increase or decrease plgigecontinuation payoff in a way
that lowers the score.

We then consider a few cases with additional structure that simplifies our char-
acterization. We begin with the case where the state space has one component that
only influences payoffs and a second component that only influences the monitor-
ing structure; here we show that when the full rank conditions are satisfied the
limit set can be determined for each payoff function separately. Next we consider
games with a product structure, where there is a separate and independent signal
associated with each player’s action, and moreover each player knows the effect



of his action on the signal distribution while the others do not. For example, in a
game of bilateral production and exchange, the public signal might be the quality
of a player’s output, with each player having private information about the prob-
ability that she will make a high-quality good when she exerts high effort. Here
we show that the scores for two classes of cross-state directions are high enough
to be compatible with the folk theorem, but that the scores in the remaining class
need not be. Finally, as an illustration of our characterization, we examine in de-
tail a repeated partnership example where only group output is observed, and the
state determines the productivity of playzrWe show that if playef’s private
information reveals play&’s productivity while2 has no private information (i.e.
“1 knows2's productivity”), then the folk theorem holds in general, while if only
player2 knows playel’s productivity, the folk theorem can fail, and moreover the
limit equilibrium payoffs can be bounded away from efficiency. Intuitively, player
2 cannot be induced to reveal the state when doing so would lower his equilibrium
payoff, and this leads to a bound on the extent to which equilibria can trade off
player2's payoffs between the two states; in some cases this bound is so strong
that it rules out the efficient outcome.

Finally, we specialize to the case of a known monitoring structure, where we
show that the set of limit equilibrium payoffs with imperfectly observed actions
is the same as in the observed-action case studied by [21] and [22] provided that
the monitoring structure satisfies a full-rank condition. [22] provide an equiva-
lent characterization (for observed actions) that has a much different form; each
characterization may be better suited for some applications. Our results show that
their conclusions about limit payoffs extend to imperfectly observed actions; their
work is complementary and more informative because it also explicitly constructs
equilibrium strategies. The assumption of a known monitoring structure also lets
us provide a sufficient condition for the folk theorem that is easier to verify: the
key is that for every pair of states andw’, there be at least three players whose
private information distinguishes betweanand w/'; [22] use this same condi-
tion to show in games with observed actions the set of ex-post perfect equilibria
is non-empty. In the case of one-sided incomplete information, we are able to
further extend and refine their results; for example, we find a simpler sufficient
condition for the existence of PTXE.



2 Framework

2.1 Model

Let | = {1,---,1} be the set of players. At the beginning of the game, Nature
chooses the state of the worafrom a finite setQ = {w, -+ ,wo}. Then each
player observes a private signal, which gives (possible imperfect) information
about the true states. The set of player’s private signals@;, is a partition

of Q, and given the true stai® € Q, he observes a private sign@lec ©; that
containsw. For notational convenience, 18 w) denote this;, i.e.,w € 6(w),

and letf(w) = (6(w))ic|. GivenB € ©;, playeri forms a prior about the true
statew, which is denoted by (6) € A6.

Each period, players move simultaneously, and player chooses an action
a; from a finite set.° Given an action profila = (&)icl € A= xjc| A, players
observe a public signglfrom a finite sety according to the probability function
n“(a) € AY; we call the functionn® the “monitoring structure.” Playets re-
alized payoff isu-‘”(a; y), so that her expected payoff conditional @e Q and
acAisg( Syey TP (@)u(a,y); g¥(a) denotes the vector of expected pay-
offs assomated with action profike If there arew’ # w such thatf, (w) = 6 (')
andu®(a;,y) # uf (a. y) for somea; € A; andy €Y, then we assume that player
i does not observe the realized valueupfas the game is playéd.If there are
no suchw' # w, it is immaterial whether or nat; is observed, as playercan
compute it froma;, y, andé,.”

In the infinitely repeated game, players have a common discount factor
(0,1). Let (a,y") be the realized pure action and observed signal in perjod
and denote playei’s private history from period one to peridd> 1 by hf =
(af,y")t_;. Leth? =0, and for each > 0, letH! be the set of all{. Likewise, a
public history up to perioti> 1 is denoted by = (y"),_,, andH' denotes the set

SAll of our results extend immediately to the case wh&rdepends oif;.

6As we explain in the next section, the equilibria we consider remain equilibria when players
are provided with additional channels of information about the state. Thus the assumption that
players do not observe their realized payoffs has no role in the results; it allows us to generalize
past work (such as most of the references in footnote 2) that did not require players observe their
realized payoffs.

"We call this the case of known own payoffs; note that it does not imply that each player
knows the their stage-game payoff functigfth as that payoff is an expected value with respect to
the possibly unknown distribution®.



of all ht. A strategy for playeris defined to be a mappirgy: ©; x Ui o H! — AA.
Let S be the set of all strategies for playieand letS= x¢|S.

We define the feasible payoff setin a given stat® beV® = co{(g¥(a))|ac
Al ={g”(n)|n € A(A)}, whereA(A) is the set of all probability distributions over
A2 and we define the set of feasible payoffs of the overall game to be

V = Xweng

Note that a feasible payoff vectorc V may be generated using different action
distributionsn® in each statev. If players observev at the start of the game and
are very patient, then any payoffi¥hcan be obtained by state-contingent strategy
of the infinitely repeated game.

2.2 Preliminaries

Playeri’s strategys € S is type-contingently publid it depends only org, € G
andht € HY, that is, ifs(8,h) = 5(8;,h) whenevemh! andh! correspond to the
same public history. A strategy profitec Sis type-contingently public i is
type-contingently public for eadhe |. Given a type-contingently public strategy
profilese S lets|g n) denote player's continuation strategy when his typeis
and the past public history i, and lets|g.nty = (Sil(g,1) iel 9 This paper studies
a special class of Nash equilibria callpdrfect type-contingently public ex-post
equilibria or PTXE

Definition 1. A strategy profiles € Sis a perfect type-contingently public ex-
post equilibrium(PTXE if s is type-contingently public, and if for ang € Q
andh' € H', s/(g(«) n) is @ Nash equilibrium of the infinitely repeated game with
Q= {w}.

Remark 1. PTXE is an ex-post equilibrium concept in the sense that it requires
each player’s strategy is a best response irrespective of the true value of the state.

8As in the standard case of a game with a known monitoring structure, the feasiv® et
both the set of feasible average discounted payoffs in the infinite-horizon game when players are
sufficiently patient and the set of expected payoffs of the stage game that can be obtained when
players use of a public randomizing device to implement distributiaver the action profiles.

9Here, the word “continuation strategy” is an abuse of language, becdusg) is not a

strategy for the entire game; it specifies a play for a given 8t not for6 # 6.
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For this reason, the set of PTXE is independent of the players’ beliefs about the
state, which makes the analysis of equilibria much simpler. The ex-post property
also implies that a PTXE for a given partiti@is also a PTXE for any finer par-
tition; in particular a PTXE for the trivial partition (where players have no private
information) remains a PTXE whe@ is informative. The PPXE we considered

in [17] are the same as the PTXE with the trivial partition; the point of this paper
is that finer partitions o® can support a larger set of PTXE, as in the examples
of Section 6.3, where there are efficient limit PTXE but the PPXE are bounded
away from efficiency uniformly ir®.

Remark 2. A second consequence of the ex-post nature of PTXE is that a PTXE
of the game where players do not observe their realized stage game payoffs re-
mains a PTXE if players do observe these realized payoffs and the payoffs reveal
information aboutv. That said, additional equilibrium outcomes could arise here
under a relaxed equilibrium definition that allowed players to condition on this
additional private information. We do not investigate that possibility in this paper.

Given a discount factod € (0,1), let E(d) denote the set of PTXE payoffs,
i.e., E(3) is the set of all vectors = (V?); u)c1 <o € R'/?l such that there is a
PTXE s satisfying(1— 8)E [ y;—1 8" 1g®(a')|s,w] = v for all i andw. Note
thatv € E(d) specifies the equilibrium payoff for all players and all states.

Let a; = (aie')e.eei Whereaie' e AA for each € ©;, and letd = (dj)ie;.
Thusd is an action profile contingent on private information; it specifies a mixed
actiona; for each private signa of each player. Letg(d) = (g°(a®®)) o)
denote the payoff vector of type-contingent profiie If the action profilea is
used independently of private information, we denote its payoff vectol by =
(9°(0)i,0)-

By definition, any continuation strate@ = (S|g(w),nt)weq Of @ PTXE is
also a PTXE. Thus any PTXE specifies PTXE continuation play after each signal
y, where the continuation payoftg(y) = (W®(Y))(i.w)ci xq cOrresponding to this
signal specify the payoffs for every player and every state. We will wittéa ) -

w for the the expected continuation payoff at st@tander action profiler.

In [17], we showed that the limit of the equilibrium payoffs@as- 1 is deter-
mined by the solutionk*(d, A, d) to the following family of linear programming
problems; for each type-contingent action profiledirectionA e R <€\ {0},
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ando € (0,1),

kK'(d,A,0)= max A-v subject to
VGRIX\Q|
wY—R!/ x|l
() v°=(1-98)g”(@®?)+on®(a’@) w (1)
for alli, w,

(i) V> (1-3)g(@,a’ )+ om%@,a’ ). W (2)
foralli, w, anda; € A;,

(i) A-v>A-w(y) forallyeY.
If there is no(v,w) satisfying the constraints, we skt(d,A,d) = —oo; if for
everyK > 0 there is(v,w) satisfying all the constraints ard- v > K, then let

K*(d,A,0) = co.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-
centive compatibility, and condition (iii) requires that the continuation payoffs lie
in half-space corresponding to direction vectoand payoff vector. Note that
whenA® # 0 and)\j““ # 0 for somew # «/, condition (iii) allows “utility transfer”
across states.

As argued in [17], the score€ (d,A,d) is independent 06, so we denote it
by k*(d,A). Letk*(A) = sups k(d, A) be the highest score attainable in direction
A for any choice ofd. For eachh € R'™*I9\ {0} andk € R, letH(A k) = {v e
RXIQIA v <k}, with H(A, k) = R™*®l for k= or A =0, andH (A, k) = 0 for
k= —o0o andA # 0. Now let

H*(A) =H(A,K*(A))
be the maximal half-space in directidn and let

Q= [ H'(A).

)\GRIX\Q\

The following proposition establishes that the intersecfoof the maximal half-
spaces is equal to the limit set of PTXE payoffsdas> 1. The proof is omitted,
as it is similar to [17], which builds on the techniques of [14].

Proposition 1. If dimQ =1 x |Q|, thenlims_,; E(d) = Q.

8



Our goal in this paper is to use this characterization to compuige,; E(d) in
some cases of interest. To do this we provide conditions under which the maximal
half-spaces in the various directions are “large.”

3 Examples

Before developing our general results, we provide a few examples of PTXE to
illustrate the ways that players can “learn the state” in equilibrium.

Example 1. Let | = {1,2} and Q = {w1,wp}, ©1 = {(w1),(wp)} and Oy =
{(wn,wn)}. Playerl chooses eithed or D, and player2 chooses eithek or
R. The payoffs for statey, are in the left panel, and those for statgare in the
right.

L R L R
Ul22|01 Ul11/01
D|1,0|11 D[1,0]|22

In this example, botiU,L) and(D,R) are static ex-post equilibria.

Assume tha¥ = A andri’(a) = ¢ if y # a. Note that the signal distribution
does not depend on the state here, so that players cannot learn the state from
state-independent actions. Instead, the efficient outcd®®),(2,2)) can be
approximated if playef reveals his private information to play2rthrough his
actions. Specifically, consider the following three-phase automaton.

e Phase 1. Playet choosed) if 6; = (w1), andD if 61 = (wp). Player2
choosed.. If the observed signal ig = (U,L) ory = (D,R), then go to
Phase 2. Iy = (D, L), then go to Phase 3. yf= (U, R), stay.

e Phase 2. Players choodg, L) in the rest of the game.

e Phase 3. Players chood®, R) in the rest of the game.

We claim that the strategy profile with initial state Phdsis a PTXE if &
is close to one and is close to zero. First, players do not want to deviate in
Phase? or Phase, as(U,L) and(D,R) are static ex-post equilibria. Also, player
1 with 6; = (w;) does not want to deviate in Phase Indeed, if he deviates

9



to D, then players are likely to go to Pha3eand play(D,R) forever, while if

he does not deviate, then players are likely to go to PRase that(U,L) is
played thereafter. Likewise, we can check that playesith 6; = (w,) does not
want to deviate in Phask Player2's prescribed play is always a static best
response, and sin@s play has no effect on the transitions between st2géses

not want to deviate either. Note that the payoffs of this equilibrium converge to
(2—¢€,2—¢),(2—¢€,2—¢)).

Example 2. The next example is a two-player partnership game with two actions
{Ci,Dj} per player, three possible outcontésM, L, and two state&® The real-
ized payoff functions are independentwfand given by

u(G,y)=ri(y)—e& and u(Di,y) =ri(y)

for eachi € I, w € Q, andy € Y. We assume that the state only influences the
productivity of player2's effort: If player 1 choosesC; instead ofD1 then the
probabilities ofH andM increase bypy and py, independent of the state. In
contrast, if playe2 choose<, instead ofD, then the probabilities off andM
increase byy andqy in statew, but they increase only hygy andfqy in state
wp. If B < 1, the states have different outcome distributions, so can be identified
by repeated observation. We impose restrictions on the realized payoffs so that
the stage game payoffs in each state correspond to a prisoner’s dildbnnsaa
dominant strategy, s@1, D7) is a static ex-post equilibriuniCy,Cy) is efficient,
andV* has a non-empty interidt

Using our results, we will show that a folk theorem holds if plagémows
the state and playet does not, but that PTXE payoffs are bounded away from
efficiency for some parameters if play2knows the state and play&rdoes not.
The key is that playe2 can learn whether the true stateusor wy, by playingC,
no matter what playet does, since playe&r’s marginal productivity is dependent
on the state but not on play#ss action. Thus for the case in which player odly

10/f there were only two outcomes as in Radner, Myerson, and Maskin [30], then payoffs are
bounded away from efficiency even if the state is known, while with three outcomes the folk
theorem holds for generic signal distributions as FLM shows.

Hspecifically we assumei(H) > ri(M) > ri(L); e1 > py(ri(H) —re(L)) + pm(ri(M) —
ri(L)); € > au(ra(H) —ra(L)) + am(r2(M) —r2(L)); e < pu(ra(H) + ra(H) —ra(L) —
ra(L)) + pm(ra(M) +ra(M) —ra(L) —ro(L)); andex < Ban(ra(H) +ra(H) —ra(L) —ra(L)) +
Bam(ra(M) +r2(M) —ry(L) —ra(L)).

10



knows the state, even if play#iries to hide his private information, play2ican
learn the true state from the signal distribution. On the other hand, if only player
2 knows the state and he tries to hide it then playeannot learn the true state.
That is, if player2 choosed,, then for given any playet’s action, the signal
distribution is the same for both states, and hence playannot learn from the
observed signals. See Section 6.3 for details.

4  Sufficient Conditions for Efficient State Learning

In this section we develop “distinguishability” conditions that are sufficient for
limit equilibria in which payoffs are as if players have learned the true state. In
Section 4.2, we relate these conditions to the incentives and information of the
players; roughly speaking, the distinguishability conditions are equivalent to as-
suming that if informed players are willing to reveal the state then uninformed
players cannot prevent them from doing so. When the distinguishability condi-
tions are satisfied, the maximal half-spaces in “cross-state” directions (those that
give non-zero weights to payoffs in two or more states) are the whole space, so
the cross-state directions impose no constraints on the limit equilibrium payoffs.
The maximal half-spaces in directions that give non-zero weights to a single state
are the same as in the known-state case considered by FLM, so combining FLM’s
assumptions, our distinguishability assumptions, and Proposition 1 establishes the
existence of limit equilibria with the desired properties.

4.1 Statewise Full Rank and Statewise Distinguishability

We begin with the statewise full rank condition, which is sufficient for the maxi-
mal score to be infinity for all cross-state directions. For gaah) € | x Q and
each type-contingent action profifec xic| xgeco, AA, let Mg, )( ) be a ma-
trix with rows (717 (aj, ael_i(w)))er for all a. € A. Let M w)(j,or)(a) be a matrix
constructed by stacking two matricé; ., (a) andlj o) (d).

Definition 2. For each(i, w) and(j, ') satisfyingw # «/, profiled hasstatewise
full rank for (i, w) and (j, ') if M 4)(j.ar) (@) has rankA| + |A;].

Statewise full rank implies that players can distinguishndw’ even if player
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i at statew or playerj at statew’ deviates. For each pajr,w) and(j, w'), there

is more likely to be a type-contingent profite that has statewise full rank as
the partitions®, for playerl become finer. The intuition is that if playémhas
more information, then it is easier for the players to learn the true state through
inferences based on playés actions. Note that PPXE does not allow players to
condition their play on their types, so it rules out this information channel. We
say more about learning from other players’ actions in Section 4.2.

The next lemma shows that statewise full rank is sufficient for the maximal
score to be infinity for all cross-state directions. We say that a type-contingent pro-
file d is ex-post enforceabiiéthere arev e R'™*19, & € (0,1), andw = (W®) yeq :

Y — R'*I9 such that (1) holds for allandw, and (2) holds for all, w, anda;.
The proof of the lemma is omitted, as it is very similar to Lemma 6 of [17].

Lemma 1. Suppose profilé is ex-post enforceable and has statewise full rank
for (i, w) and(j, o) satisfyingw # o'. Thenk*(d,A) = oo for A such that\,* # 0
andA ]‘*" #0.

While the statewise full rank condition is sufficient for efficient learning, it re-
quires at leasfAj| + |Aj| signals. The following condition, statewise distinguisha-
bility, can be satisfied with fewer signals and is sufficient for the maximal score
to be infinity for all cross-state directions that have at least one positive compo-
nent. We will soon relax this condition even further, but this definition is a useful
expositional tool for explaining the more complicated definitions to come.

Definition 3. Profiled statewise distinguishgs, w) from (j, o) if there is§ =
(&(Y))yer € RIYl such that

() m®(a®@).& > nv(a®@). ¢,

(i) m(a®@).& = n@(a;,a’'?).& > n¥ (&, a% ))& forall & e suppr ¥
anda € A,

(i) m(a®@)).& = 1 (a5, 0% ). £ forall 3 € Ay

To interpret this condition, without loss of generality we assurfiga®(«)) .
& = 0. Clause (i) of this condition assures that the signals generated ig-
tistically distinguishw from w’, and moreover picks out a directignwhere the
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difference has a particular sign. Clause (ii) says that changing pfaysntinu-
ation payoff function in statev from w®(y) to w(y) + & (y) preserves incentive
compatibility for playeti, and clause (iii) says that the change in plaigecontinu-
ation payoff (ofAw®(y) = & (y)) can be offset to preserve the feasibility constraint
(ACAW® (y) + A J‘*" Awf)(y) = 0) without changing playej’s expected continuation
payoff to any action. Since clause (i) implie&(a®®). & > 0, this change in
the continuation payoffs increases playsrexpected continuation payoff at state
w, which implies an increases in the score fosuch that* > 0. Note that this
definition is not symmetric betweerand j because condition (ii) is an inequality
and condition (iii) is an equality. When this condition is satisfied, scaling up the
vectoré can generate arbitrarily large scores for all cross-state direchidhat
have at least one positive component.

Our next step is to replace statewise distinguishability with an ensemble of
three weaker conditions- this ensemble is weaker because it will allow different
action profiles to be used in different directions.

Definition 4. Profile & m-statewise distinguishe§, w) from (j,«') if there is
& = (£(y))yev € R such that

() m®(a®@).& > nv(a®@). ¢,

(i) m@(ab@).& =n9(q;, ae‘ ). &> n(a, al ))-Eforalla;esupmia(w)
andal € A,

(iiiy ' (a®@)

supmfj((‘/) andal € Aj.

)&= n‘*’(aj,af*j"(d))-f > n‘“/(a’j,af*ji(m)-é for all aj €

Note that this condition relaxes statewise distinguishability by replacing the
last equality in (iii) with an inequality. Lemma 4(a) below shows that a profile that
m-statewise distinguishes, w) from (j,w') can be used to generate an infinite
score for allA such thatA® > 0 and /\j‘*’/ < 0; the “m’" refers to the fact that
positive and negative components are “mixed” in these directions.

Definition 5. Profile & p-statewise distinguishe§, w) from (j, ') if there is
& = (£(y))yev € R such that

() m®(a®@).& > nv(a®@). ¢,

13



(i) m@(af@).g = n@(a,a’ ). £ > o, a® )& foralla e supp™

anda € A,
(i) m(a®@)). & = ¥ (a;,a®)). € < n¥(a,a® ) € for all 4 €
supml—ej(d) andal € A;.

Lemma 4(b) below shows that a profile thastatewise distinguishes, w)
from (j,w') can be used to generate an infinite score for all “positive” directions
A such thal® > 0 and)\j‘”/ > 0. As this suggests, this condition is symmetric:

Lemma 2. Supposed p-statewise distinguishes, w) from (j,«’). Thend p-
statewise distinguish€g, ) from (i, w).

Proof. Let £ be a vector utilized tq-statewise distinguiski, w) from (j,«/).
Then the vector-¢ satisfies all the conditions gi-statewise distinguishability of
(j,a) from (i, w). Q.E.D.

Note that ifd statewise distinguishg$, w) from (j, '), then itm-statewise
distinguishes this pair angtstatewise distinguishes this pair.

As we will explain later, the combination oft and p-statewise distinguisha-
bility is sufficient for a static-threat folk theorem. However, it is not sufficient
for a perfect folk theorem, because the maximal score might not be high enough
in cross-state directions where all the non-zero components are negative. The
following condition is sufficient for the score to be infinitely large for these direc-
tions.

Definition 6. Profile @ n-statewise distinguishe@, w) from (j, o) if there is
&= (&(Y))yey € RYl such that

() m®(a®@).& > nv(a®@). ¢,

(i) m(af@).§ =n@(a,a’ ). £ <@, a® ) & foralla e supp @

anda € A,
(i) m(a®@)). & = ¥ (a;,a®'). € > n¥(a,a® ) £ for all 4 €
supp:xjej(m andal € Aj.
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Lemma 4(c) below shows that a profile thastatewise distinguishe$, w)
from (j,w') can be used to generate an infinite score for all “negative” directions
A suchthap® <0 and)\j‘d < 0. Also, n-statewise distinguishability is symmetric,
as the next lemma shows. We omit the proof, since it is very similar to that of
Lemma 2.

Lemma 3. Supposed n-statewise distinguishe$, w) from (j,«’). Thend n-
statewise distinguish€g, o) from (i, w).

Now we state the main result of this section, which shows that the score for
cross-state directions can be infinity if the corresponding statewise condition is
satisfied. The proof can be found in the appendix.

Lemma 4.

(a) Supposéi is ex-post enforceable amd-statewise distinguish€s, w) from
(j,@). Thenk*(a,A) = e for A such tha® > 0 andA{” <.

(b) Supposé is ex-post enforceable amuistatewise distinguishés, w) from
(j,@'). Thenk*(a,A) = oo for A such that\® > 0andA® > 0.

(c) Supposé is ex-post enforceable anmdstatewise distinguishes, w) from
(j,@). Thenk*(a,A) = e for A such thah® < 0andA{ <.

4.2 Sufficient Conditions for Statewise Distinguishability

In games with incomplete information, players have three possible sources of in-
formation about the state: (i) inference based on the public signals at a state-
independent action profile; (ii) the information contained in their own types; and
(iii) inferences based on the correlation between the opponents’ actions and the
opponents’ types. The first information source is studied by [17]. The second
information source is sufficient for perfect learning if every player can distinguish
w andw'. (Note that this corresponds to assumption (ii) of condition (SFR) in
Section 5.) Here we investigate the third information source: inferences based on
the correlation between the opponents’ actions and the opponents’ types. For this
information to generate large scores in cross-state directions, the informed player
must be willing to reveal his information, and uninformed players must not “jam”
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the information revelation of their informed opponents. We address these issues
by providing simple sufficient conditions under which a type-contingent action
profile satisfies the various distinguishability conditions.

Definition 7. Playeri can reveal whethew or «' if there area € A andal € A
such thar®(a) # n% (al,a ;).

This says that playdrcan generate different signal distributionsuagnd o/,
using a type-contingent action. Note that this is necessary for playesiearn
the state from the correlation between playsractions and his types. As the
next lemma shows, this condition is sufficient fpistatewise distinguishability
for (i,w) and(i, ).

Lemma 5. Supposé (w) # 6;(w') and playeri can reveal whethes or /. Then
there isd that p-statewise distinguishds, w) from (i, ).

Proof. Leta c A anda € A be such that®(a) # n%(a/,a ;). Then there is
& € RV such thatn®(a) - & > n/(&,a) - €. Leta; € argmaxy (&', ai)- &
anda™ € arg mirbiu n‘”’(a{’,aLi) -&. Let a be a type-contingent action profile
such that players plage;,a i) at statew and (&™,a_;) at statew’. Then this
d p-statewise distinguishes, w) from (i, w’). Indeed, clause (i) follows from
n®(af,a i) £ >n®)-& >n¥(a,a)-& >n¥(a*,a ) &. Also, clauses (ii)
and (iii) hold, by definition ol anda;*. Q.E.D.

To get the intuition, recall thgt-statewise distinguishability is relevant to di-
rectionsA that put positive weights on payoff f¢r, w) and (i, «w’). In these di-
rections, playei's payoffs atw andw’ are both maximized, so she is willing to
reveal her information at both states.

In contrast, even if playerr can reveal whethew or w' there might be no
profile thatm-statewise distinguishe$, w) from (i, w’). The reason is that ik
puts negative weight on payoffs @ «’), playeri’s payoffs atw’ is minimized in
the corresponding LP problem so that he might not want to reveal the true state.
However, the following condition is sufficient fan-statewise distinguishability;
the idea is that player at statew’ cannot conceal his private information if he
cannot generate the same signal distribution as in siate

Definition 8. Playeri at w' cannot hide statev if there isa € A such thatt®(a)
is not in the convex hull o{n‘*”(a{,a;i)}a{eAi.
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Lemma 6. Supposé (w) # 6(«') and playeri at &' cannot hide stateo. Then
there isd thatm-statewise distinguishes, w) from (i, ).

Proof. Letae Abe such thati®(a) is not in the convex hull of n (&, ai)taen-

Then from the separating hyperplane theorem, theég ssch that®(a) - £ >

n¥(a,a ;)& foralla e A. Leta carg may, 1”(af,a-i)-§ anda™ € argmax nv (al,a ;)
. Letd be atype-contingent action profile such that players fdéya_;) at state

w and(a™,a_;) at statew. We claim that thisi m-statewise distinguishds, w)

from (i,w'). Clause (i) follows fronm®(a;,a ;) - € > n®(a)- & > ¥ (a*,a;) -

¢. Also, clauses (ii) and (iii) hold, by definition & anda;*. Q.E.D.

A similar idea applies to-statewise condition; here a relevant directioputs
negative weights on payoffs &t w) and (i, w’), so we need to take into account
playeri’s incentive for information revelation at both states.

Definition 9. Playeri cannot shuffle state® and «/ if there isa € A such that
the convex hull off m*(aj,ai) }4c4 and the convex hull o{rr‘*"(a{,a_i)}ai/eAi do
not intersect.

Lemma 7. Supposé (w) # 6(«') and playeri cannot shuffle state® and w'.
Then there it that n-statewise distinguishés, w) from (i, ).

Proof. Leta € Abe such that the convex hull ¢f1”(af,ai) } 5 and the convex
hull of {rt‘*)/(ai’,aLi)}ai/eAi do not intersect. Then from the separating hyperplane
theorem, there i§ such thatt®(a,a ;) - & > n%(al’,a_;) - & for all & € A and

a' € Ai. Leta € argminy (&, ai) - £ anda™ € argmayy n¥(a,a ;)-&. Let

d be a type-contingent action profile such that players p&lya ;) at statew
and(a,a_;) at statew. Then as in the proof of the last lemma, we can show that
this @ n-statewise distinguishés, w) from (i, /). Q.E.D.

Next we consider statewise distinguishability farw) and(j, w') wherei # |
and only player knows the state; i.e (w) # 6(«w') andf;(w) = 6 ().

Definition 10. Player j at statew' is irrelevant for (i, w) if there area € A and
a € A such thatt®(a) is not a linear combination qfn“’(ai’,a’j,auj)}a/j eA-

This says that there is an action profdesuch that if playeii wants to re-
veal whether the true state is or o/ by choosinga; at w and & at «/, the
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uninformed playerj cannot interfere, in the sense that a change in plaiger
action at statew’ cannot result in the overall distribution wherplays & be-
ing the same as the distribution in undera. For an example where this con-
dition fails, suppose that there are two players wih= {&/,a/’} for eachi,
and thatr®(a), a,) = n®(a},ay) = n® (al,ay) = n¥ (&}, a,) and (&, a}) =
n®(al,a,) = n(a;,a,) = n* (a,aj). Here playerj at statew is not irrelevant
for (i,w). On the other hand this condition can be satisfied even if playas
an option to “jam” playei’s information revelation: Suppose that there are two
states,cn and wp, and that played knows the state while other players do not.
Let A = {U,D} andA, = {J,NJ}. Suppose that playdrs action is observable
if player 2 choosedNJ, while it is unobservable if playe2 chooses). Suppose
that playerl’s actions are always observable for edchl. Leta be an action
profile such thaty = U anday = NJ, and leta) = D. Thenmn®:(a) is not a linear
combination of{n‘*’Z(a’l,a’z,ale)}afngj, so that playeP at statew, is irrelevant
for (1, ).

The following lemma shows that this irrelevance condition is sufficient for
statewise distinguishability (and hence sufficient perand m-statewise distin-
guishability).

Lemma 8. Supposé (w) # 6(«') and playerj # i at o' is irrelevant for (i, w).
Then there igi that statewise distinguishés w) from (j, /).

Proof. Leta € A anda) € A be such thati(a) is not a linear combination of
{nw,(a{,aﬁ,&ij)}aﬁeAj. Then there i€ such that®(a) > 0andn® (a, &, a_ij)-

¢ =0forall & € Aj. Leta € argmaxa 1°(a',a-i) - &, and letd be a type-
contingent action profile such that players play,a_;) at statewo and(a,a_) at
statew’. We claim that thisi statewise distinguishe$, w) from (j, ). Clause
(ii) of statewise distinguishability follows frors € argmaxyca n“(a’,a)-&.
Also, sincen®(&,a_;) > n“(a) > 0 and n“'(ai’,a’j,apij) -§ =0for all aj € Aj,
clause (i) and (iii) hold. Q.E.D.

The intuition is as follows. Recall that statewise distinguishability is a combi-
nation of p- andm-statewise distinguishability, so the corresponding direcion
gives positive weight to playeis payoff at statew. Therefore, player at state
w is willing to reveal his private information. Also, playgrat statew’ cannot
interfere with this information revelation.
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For n-statewise distinguishability, we need a stronger assumption, since the
corresponding\ puts negative weight on play@s payoff at statew, so that he
might want to hide his private information.

Definition 11. Player j at statew is strongly irrelevant for(i, w) if there are
(ai,a-i) € Asuch that any convex combination{of®(a;, a i) }x, is not a linear
combination of{ 1% (a, &, a_j Vaca;-

This condition is a combination of “cannot hide” and “irrelevant” conditions:
here player at statew cannot conceal his private information and playat state
o' is irrelevant to playei’s information revelation.

Lemma 9. Supposé? (w) # 6(w') and playerj # i at o' is strongly irrelevant
for (i,w). Then there it thatn-statewise distinguishés, w) from (j, o).

Proof. Letac Aanda € A be such that any convex combination{@f”(a’,a i) } rca
is not a linear combination o{fn"”(a{,a’j,a_ij)}a/jeAj. Then there i€ such that
n®(a’,a_;) > 0 for all &’ € A and (&, a},a i) - & =0 for all & € Aj. Let

a € argminca n®(a’,a_i)- &, and letd be a type-contingent action profile such
that players playa’,a i) at statew and(a/,a_;) at statew’. Then as in Lemma
8, we can show that thig n-statewise distinguishds w) from (j,«’). Q.E.D.

When playerj knows the state and playedoes not (i.e.f;(w) # 6;(«w') and
6 (w) = 6(w)), the statewise conditions are satisfied under the same conditions
as the case where playeknows the state. Recall that andn-statewise condi-
tions are symmetric (Lemmas 2 and 3), so the sufficient conditions for the previous
case apply. For therstatewise condition, we obtain the following lemma.

Lemma 10. Suppos&;(w) # 6j(w') and playeri # j at w is strongly irrelevant
for (j,w’). Then there it that m-statewise distinguishes, w) from (j, «').

Proof. Letae Aanda € Aj be such that any convex combination{a*’ (aj,aj )}a/j/GAj
is r/1ot a linear combination ofni(a;,aj,a-ij) }qca- Then there i such that
n®(af,aj) <0 for/aII al € Aj andn®(af,&,aij)- & = 0for all & € A, Let

aj € arg maXrea, m (a;,a’j’,a_ij) -&, and letd be a type-contingent action pro-
file such that players plaej,aj) at statew and(aj,a;) at statew’. Then we

can show that thisi n-statewise distinguished$ w) from (j, ). Q.E.D.
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Finally we consider pair§, w) and(j, ') where there is a playér i, j who
knows the state (here possibly: j). If either playeri or j can distinguistw from
o/, then the previous lemmas still apply. Thus the interesting case is when both
playeri andj do not know the state.

Definition 12. Both playeri at w and playerj at ' are irrelevant for information
revelation by playel #1, j if there area € Aanda/ € A; such that any linear com-
bination of{ ®(a],a,a_j )}a{eA; is not a linear combination qm“"(a’j,ai’,aL“ )}a/j eA;-

This says that if player wants to reveal his private information then neither
playeri at w nor playerj at w' can interfere. The next lemma shows that this
condition is sufficient fop-, m-, andn-statewise distinguishability.

Lemma 11. Suppose thereisc |, j € 1,1 #i, j such thatf (w) # 6 («') and that
both playeri at w and playerj at ' are irrelevant for information revelation by
playerl. Then there is a@ that p-, m, andn-statewise distinguishds, w) from
(j, o).

Proof. Letac Aandaj € A be such that any linear combination{of® (&, &y, a_j )}q_/eA‘.
is not a linear combination dfni®’ (a aj, af,aj| )}a ea;- Thenthere aré andk >0

such thatn®(a,a;,a_j) = k for all & € A andn“"( a,a,a_j)-& =0 for all
aJ € A;. Letd be a type-contingent action profile such that players playstate
w and(aj,a_) at statew’. Then it is easy to check that thés satisfies all the
conditions ofp-, m-, andn-statewise distinguishability. Q.E.D.

5 Ex-Post Folk Theorems

In this section we provide two sorts of folk theorem in PTXE: The first shows

that all feasible individually rational payoffs can be approximated by payoffs of

PTXE, and the second uses weaker conditions to obtain a “static-threats” version.

In both cases, the key is finding the appropriate conditions on the combination of

initial private information and the information revealed by the public outcomes.
Recallthaﬂ( o) (@) is amatrix with rows(11°(&, a” ( )))er forall g € A,

and thafl; ., (j.«r) (@) is @ matrix constructed by stacklng two matridasg,,) (d)

andrj o) (a)
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Definition 13. Profile & hasindividual full rank for (i, w) if M ., (d) has rank
|Ai|. Profiled hasindividual full rankif it has individual full rank for all players
and all states.

This condition implies that at each state, every possible deviation of any one
player leads to a statistically different distribution on outcomes.

Definition 14. For each(i,w) and(j, w) satisfyingi # j, profile @ haspairwise
full rank for (i, w) and (j, w) if M 4 (j,) (0) has rankA | + |Aj| — 1.

Note that pairwise full rank implies individual full rank; it implies that devia-
tions by one player can be distinguished from deviations by another.

Condition IFR. Every pure action profilé has individual full rank.

Condition PFR. For each(i, w) and(j, w) satisfyingi # j, there is a profile
that has pairwise full rank fofi, w) and( j, w).

Condition SFR. For each pair of statesv, ') satisfyingw # «/, at least one of
the following two conditions holds: (i) For eacland | (possiblyi = j), there is a
profile @ that has statewise full rank f@r, w) and(j, w'), or (ii) 6 (w) # 6 ()
foralll eI.

(SFR) requires that for each pair of stateandw’ # w, either (i) for every
(i, ]) there is a profile that lets players distinguish statieom statew’, regardless
of whether playeii deviates in statev or playerj deviates in stateJ, or (ii)
players can distinguish theseandw’ using their private informatio®.

Note that (SFR) fails fofi, w) and (i, «’) if % is independent ofv (so that
the monitoring structure is known) arfj(w) = 6;(«’) for all j (so no player’s
private information distinguishes betweerandw’). We say more about the case
of a known monitoring structure in Section 7.

The next proposition establishes a general folk theorem in PTXEVLEet
{veVVielVwe Q v* > v®} wherev® = ming ; maxg g(a,0_i). A subset
W of R'*19l js smoothif it is closed and convex; it has a non-empty interior; and
there is a unique unit normal for each point oMhé?

12A sufficient condition for each point on W to have a unique unit normal is that\Wdis a
C?-submanifold ofR' <1,
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Proposition 2. Suppose (IFR), (PFR), and (SFR) hold. Then for any smooth strict
subseW of V*, there isd € (0,1) such thaW C E(J) for all & € (5,1).

To prove this proposition, we compute the maximal scores for each direction.
The key point is that (SFR) implies the maximal score for cross-state directions
can be made large enough to establish the folk theorem. When the first condition
in (SFR) holds, that conclusion comes from Lemma 1. When the second condition
holds, the following lemma applies:

Lemma 12. Suppose (PFR) and (IFR) hold. Létbe such that(w) # 6 (w')
foralli €1, we Q and & # w satisfying(A®)jc; # 0 and (A¥)jc; # 0. Then
K*(A) > maxey+ A - V.

This lemma shows that the maximal score in cross-state directions doesn’t
exclude any feasible payoffs if all players know the state. The intuition behind
the lemma is simple. If each playercan distinguishw and ' using private
information@, players can choose different action profiles contingent on whether
the true state iso or w’. Therefore we expect that the score on statwill not
constrain the score on staté so that the maximal score for directions vectors
that only weight these two states will be high enough to achieve the folk theorem.
The formal proof is delegated to the appendix.

Combining this lemma and Lemma 1 shows that the maximum score in all
cross-state directions is at leastixcy+ A - v. This implies that the se is de-
termined byA that has non-zero components only for a single state. The follow-
ing lemmas show that (IFR) and (PFR) imply that the maximal score for such
directions ismaxcyv+ A -v. The proofs are omitted, as they are straightforward
generalizations of FLM.

Lemma 13. Suppose (PFR) holds. Thi&h(A) = max,cy+ A -vforall A such that
(i) (A®)ier # 0 for somew and (A?)ic) = 0 for all & # w, and (i) (A®)ici has
at least two non-zero components or at least one positive component.

Lemma 14. Suppose (IFR) holds. Thé#(A) = maxey+ A -vfor all A such that
A® < 0 for some(i, w) andA = 0 for all (j, ) # (i, w).

From these lemmas, we obta@= V* and hence Proposition 2 follows. Thus
the folk theorem obtains if (IFR), (PFR), and (SFR) hold andfifis full dimen-
sional.
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As we have seen in Section 4.1, statewise full rank is stronger than needed for
efficient learning, and can be replaced with statewise distinguishability.

Condition Pointwise-SD. For eachw and ' satisfyingw # «/, at least one of
the following conditions holds: (i) For eaghand j (possiblyi = j), there is an
ex-post enforceable action profite that m-statewise distinguishe§, w) from
(j,a), there is an ex-post enforceable action profilethat p-statewise distin-
guishes(i, w) from (j, '), and there is an ex-post enforceable action pratile
thatn-statewise distinguish€s w) from (j, &), or (i) 6 (w) # 6(«) foralll € 1.

This says that for each pair of stat@sand w’ # w, either (i) for every(i, j)
there is a profile that lets players distinguish statérom statew’, regardless of
whether player deviates in statey or playerj deviates in statey, or (ii) players
can distinguish thes® andw’ using their private informatiof.

Note that (Pointwise-SD) is weaker than (SFR), sincgé lias statewise full
rank, then it satisfies the-, p-, andn-statewise distinguishability conditions, but
the converse is false, as the pointwise condition allows different profiles to be used
for different directions. On the other hand, (Pointwise-SD) is a “strong” form of
statewise distinguishability as it requires thatatewise condition.

Proposition 3. Suppose (IFR), (PFR), and (Pointwise-SD) hold. Then for any
smooth strict subséW of V*, there isd € (0,1) such thatW C E(J) for all & €
(3,1).

The proof of this proposition parallels to that of Proposition 2, with the dif-
ference that Lemma 4 is used instead of Lemma 1 for the conclusion that the
maximum scores in cross-state directions is infinite.

An even weaker condition is sufficient for a static-threat folk theorem: For that
result it is sufficient that then and p-statewise conditions can each be satisfied
for some profile.

Condition Pointwise-WeakSD. For eachw and o’ satisfyingw # «/, at least
one of the following conditions holds: (i) For eachnd | (possiblyi = j), there
is an ex-post enforceable action profdethat m-statewise distinguishe@, w)
from (j, ') and there is an ex-post enforceable action praiiléhat p-statewise
distinguishegi, w) from (j, '), or (ii) 6 (w) # (') forall | € 1.
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Lemmas 5, 6, 8, and 11 imply that (Pointwise-WeakSD) holds if the condition
(1), (i), or (iii) we stated in the introduction is satisfied.

Proposition 4. Suppose (PFR) and (Pointwise-WeakSD) hold. Assume that there
is an ex-post equilibriun@®, i.e., @ such thataig'((’” € argma, gi‘"(ai,aff(w))
foralliclandwe Q. LetVO={veV[vicl,Ywec Q v* > g®(a}. Then,
for any smooth strict subs@¥ of VO, there isd € (0,1) such thatW C E(J) for

all 5 € (5,1).

The proof of this proposition is similar to that of Proposition 3, with the fol-
lowing differences. In this proposition, we do not assume (IFR) or (Pointwise-
SD), so that Lemma 4(c) and Lemma 14 may not apply. Therefore, it might be
thatk*(A) < max.ey- A -vfor eachA # 0 such tha® <Oforall (i, w). For these
directions, we apply the next lemma to show tkigfA ) > max,,0 A -v. The proof
is straightforward and hence omitted.

Lemma 15. Suppose there is a static ex-post equilibridfh Then, for any direc-
tion A, k*(@%A) > A -g(@9).

Also, since Proposition 4 does not assume (IFR), Lemma 12 does not apply,
so it might be thak*(A) < maxey- A - v for some cross-state directions For
these directions, we use the following lemma to show khgk ) > max,.0A - V.

The proof of the lemma can be found in the appendix.

Lemma 16. Suppose (PFR) holds. Lat be such that(w) # 6(w') for all
icl, weQandw # wsatisfying(A®)jc; #0and(A)je # 0. Thenk*(A) >
max,coA - V.

6 Applications and Examples

This section explores the effect of some plausible assumptions about the moni-
toring structure. The first two cases are fairly general; the third illustrates how to

apply the general results by determining the limit payoffs in the partnership game
described in Section 3.
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6.1 Separable State Space

In general, the set of limit payoffs depends on the state’s impact on both the moni-
toring structure and the payoff functions. When these dependencies are separable,
the characterization of the limit set can be simplified. To see this, suppose that the
state consists of two components, one that influences realized payoffs but not the
monitoring structure and one that influences the monitoring structure but has no
effect on the realized payoffs. That 8,= ® x W, whereu(a;,y) = ui‘*’/(a;,y) if
¢=¢,andn’(a) = n{,"'(a) if ¢ = y'. For example, this separability condition is
consistent with a quantity-setting oligopoly game where players do not know the
probability distribution of the market price, and each player knows their own cost
function but not the cost function of the opponents: Here the price is the public
signaly, and the state (cost parameters) has no effect on the distribution of prices
at fixed output levels. Similar examples arise in partnership games where players
know their own effort cost but not that of the opponents.

Condition -SFR. For each(i, w) and(j,«') satisfyingy # ¢/, there is an ex-
post enforceable profilg that has statewise full rank fdr, w) and(j, o).

For eachp € W, letQ(y) denote the seap for the known monitoring structure
game corresponding tg, i.e., the game where the state space is restricted to
Q = @ x {Y} and the payoff functions* and the monitoring structurg® for
a givenw € Q are the same as those of the original game. The next proposition
shows that the equilibrium payoff s& of the entire game is a product Qf( ()
over all . Proposition 7 in Section 7 gives a formula to calculate eac&gt
when the monitoring structure® has “strong full rank.”

Proposition 5. Suppose the state spa@es separable and@-SFR) holds. Then
Q=x wer(Lﬂ)-

Proof. As Lemma 1 shows, if a profilg is ex-post enforceable and has statewise
full rank for (i, w) and(j, ') satisfyingw # &/, thenk*(d,A) = o for direction

A such thatAj(w) # 0 andAj(w') # 0. Thus from (J-SFR),k*(A) = o for all A
such thatAj(w) # 0 andAj(«') # 0 for (w,w') satisfyingy # ¢'. This proves
Q= xyeypQ(1). Q.E.D.
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6.2 Games with a Product Structure

In this section, we briefly discuss games with a product structure, in which there is
a separate signg associated with the action of each playerach player knows

the distribution of “her” signal, and no playgr# i has any private information
about the distribution of;. This case is of interest as a number of economic
situations have this extra structure; it applies for example to bilateral production
and exchange, where the public signal is the quality of a player’s output, and each
player has private information about the probability that she will make a high-
quality good when she exerts high effort. This structure on its own is not sufficient
for the various folk theorems in Section 5, becamsstatewise distinguishability

can fail, but there is full statewise distinguishability in all of the other cross-state
directions.

Formally, we assume that {f)= xic|¥i; (i) Q = Xie1 Qi; (iii) Yy ey, rg‘;’(a) =
Sy ey n;"’(a) foreachiel,ac Ay €Y, we Q,andw € Q such thaty = ;
and (iv) i’(a) = [Miei Yy ey, T§°(a) for eachac A,y €Y, andw € Q. Note
that the distribution of; depends only o andw here. We also assume that
O = {6 w € Qi} where6” = {w/|of = w }; that is, playei knows the distri-
bution ofy; but not the distribution of_;. We also assume that every state has
some impact on the distribution of signals in the following sense: for each
andw' # w, there isa € A such that®(a) # ' (a). Note that this rules out the
case where the signal distribution is known and the states refer only to the player’s
payoffs.

Intuitively, in this setup each playeis able to signal his private informatian
whenever he wants, as no other player’s action can be confused with his own. Thus
we might expect that the main obstacle to information revelation comes when
playeri’s information will be used to lower his payoff. We verify these intuitions
in the on-line supplementary material. Specifically we provide an example where
m-statewise distinguishability fails, and prove the following lemma.

Lemma l7.

(a) Let(i,w)and(j,w') be such that# j andw # «f. Then there is a profile
d that statewise distinguishés w) from (j, /).

(b) Let(i,w) and (j,w’) be such thato_j # aJLij (and possibly = j). Then
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there is a profiled that p-, m-, and n-statewise distinguishe$, w) from
(J, ).

(c) Let(i,w) and(j,w’) be such thatj # wj (and possibly = j). Then there
is a profiled that p-statewise distinguishés, w) from (j, o).

6.3 A Two-Player, Two-Actions Partnership

Now we apply our results to Example 2 from Section 3 to illustrate the effect
of players knowing their own productivity. There are two players, two actions
A = {G;,D;i}, two states, and three outcomés= {H,M, L}, and the state only
influences the productivity of play@'s effort. We will show that the PTXE folk
theorem holds when playéfs private information distinguishes; from w,. On
the other hand, when play&is private information distinguishes; from w, but
playerl’s does not, PTXE cannot approximate the efficient outcome for a range of
parameters. Intuitively, play@ cannot be induced to reveal the state when doing
so would lower his equilibrium payoff, and this leads to a bound on the extent to
which equilibria can trade off play&'s payoffs between the two states; in some
cases this bound is so strong that it rules out the efficient outcome.

If player 1 choose<£; instead oD, the probabilities oH andM increase by
py and pu, independent of the state. In contrast, if plagehoose<C; instead
of Dy, the probabilities oH andM increase bygy andqy in statews, but they
increase only by3gy andBqy in statew,.'3 We assume that the vectdsy, pv)
and(gu,qm) are linearly independent; this implies that individual full rank and
pairwise full rank are satisfied at every profile and every state. However, as [17]
show, no type-independent profifestatewise distinguishegd, w) and (2, ay),
and as aresult, the set of PPXE payoffs is bounded away from efficiency uniformly
in the discount factor.

6.3.1 The Case where Playet Knows the State

Suppose that playdrknows the state and player 2 does not, tha®is+ { (w), () }
and®; = {(w1, wp)}. The following table shows whether statewise distinguisha-
bility conditions are satisfied or not in this case; see the on-line supplementary

13Thus while the state space has a product structure the signals do not.
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material for the formal proof.

(i,w), (j,w) p-statewise | m-statewise
(1), (1, %) (C1,C2) (C1,C2)
(1, wp), (1, 1) (C1,C2) (C1,C2)
(2,am), (2,an) | ((C1,D1),C2) (C1,C2)
(2,a), (2,wr) | ((C1,D1),C2) | ((C1,D1),Cp)
(1,an), (2,wp) | ((C1,D1),Co) (C1,C2)
(2,an), (1,wn) | ((C1,D1),C2) | Not satisfied
(2,0m), (1, ap) (C1,C) (C1,C2)
(1,a2), (2,01) (C1,C2) ((C1,D1),C2)

Sincem-statewise distinguishability does not hold {2, wy), (1, w;)), the max-

imal scores for the corresponding directions are not infinitely large. Nevertheless,
as shown in the on-line supplementary material, these scores are high enough to
achieve the ex-post folk theorem for afiyc (0,1). Very roughly speaking, this

is because the state-independent prdiide,C,) yields sufficiently high payoffs

in the corresponding directions (i.&.; g(D1,C2) > max,y- A - v for directionsA

such that,? > 0, A;* < 0, A;2 =0, andA;* < 0) and hence players need not to
learn the state to obtain high scores for these directions. This example shows that
the statewise conditions are sufficient but not necessary for the folk theorem.

6.3.2 The Case where Playe2 Knows the State

Suppose next that play@rknows the state and play&rdoes not. The following
table shows whether statewise conditions are satisfied or not. Again, see the on-
line supplementary material for the formal proof.

(i,w), (j,) p-statewise | m-statewise
(Lan), (Lap) | (C,Cy) (C1,C)
(1,0»), (1,mn) (C1,C) (C1,C2)
(2,m), (2,ap) | (C1,(C1,D2)) | (C1,Cp)
(2,wp), (2,w1) | (C1,(C1,D2)) | Not satisfied
(1,om), (2,02) | (C1,(C1,D2)) (C1,C2)
(2,w2), (L, @) | (C1,(Cq,D2)) | (C1,(Cq,D2))
(2,m), (1, 00) (C1,C2) (C1,C2)
(1, ap), (2,w) (C1,C2) Not satisfied




In this case the on-line supplementary material shows that the folk theorem fails
because the maximum score in directidn= ((0,—1),(0,1)) is too low. The
reason is that state-contingent play is needed to generate high payoffs toward this
direction and the failure ah-statewise distinguishability implies that learning the
true state is somewhat costly. Moreover, if the cost of effort is high, then for
A =((0,—¢),(1,0)) the maximal score can be so low that it rules out equilibrium
with the payoffs of the efficient action profil&;,C,). Specifically, this is the
case if playerl’s effort cost is high enough so thgi"z(Dl,Cg) — g‘l*’Z(CLCz) IS

close to zerd? Intuitively, player2 cannot be induced to reveal the state when
doing so would lower his equilibrium payoff, and as a result the maximal score
for directionA with /\2‘*’1 < Ois lower tham - g(Cq,Cy).

7 Known Monitoring Structure

So far we have studied a general model, where both payoffs and monitoring struc-
ture can depend on the state of the world, and provided sufficient conditions for
the folk theorems. However, these sufficient conditions may not be satisfied in
some games. One notable example is the case of a known monitoring structure;
here a state-independent profitecannot induce different signal distributions for
different states, so for players to distinguish the states they must have “enough”
private information. In this section we provide conditions for the limit equilib-
rium payoffs of games with a known monitoring structure to coincide with the
limit equilibrium payoffs of the game with observed actions. This shows that the
results of [21] and [22] are robust to imperfect monitoring, as PTXE reduces to
the belief-free equilibria of those papers for perfect-monitoring games. Also we
provide sufficient condition for folk theorems with a known monitoring structure.

Formally, themonitoring structure is knowif 17°(a) = nf,*"(a) forallyeY,
acA we Q, andw # w. We maintain this assumption throughout this section.
Sincen® does not depend am, we denote it byr.

In this section, we often impose the following strong full rank condition. As
we will see, under this condition the case of a known but imperfect monitoring

14The derivation of this bound on the maximal score is very similar to the proof of Claims
12 and 13 which are used to prove Proposition 12; all of these proofs are in the supplementary
materials.
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structure is very similar to that where actions are perfectly observedli(a}
denote the matrix with rowérg,(af,a_i))yey for all & € A. Also, for eachi € 1,
jel,acA andd € A let Mi.a)j,a) denote the matrix constructed by stacking
two matriced;(a) andn;(&).

Definition 15. The monitoring structurer hasstrong full rankif
() M aja hasrankAi| +|Aj| —Lforalli,j € | anda € A; and

(ii) foranyi,j,€ I, if thereisl #1, j, thenl; 5 @ a ) has rankAi + [Aj]
foralll #i,j,ac A andaf # .

Note that we allow = j in this definition, and hence the second clause is not
vacuous even in two-player games. The first clause imposes FLM'’s pairwise full
rank condition on every action profile. The second clause implies that the state-
wise full rank condition holds fofi, w) and(j,«) if player| can distinguish the
statesw andw’.1® The strong full rank condition is obviously satisfied for games
with perfectly observable actions. It is also satisfied if the signals are isomor-
phic to the actions and players observe the intended action with a small noise, i.e.
Y =Aandrg(a) < ¢ for all a € Aandy # awheres is close to zero.

7.1 Known Monitoring Structure and Strong Full Rank

In this subsection, we show that games with a known monitoring structure and
strong full rank have the same set of limit equilibrium payoffs as games with
observed actions. Specifically, we have the following proposition.

Proposition 6. Suppose that the monitoring structure is known and has strong full
rank. Suppose also th&l is full dimensional. Then the limit PTXE payoff set for
this gamejims_,1E(d) = Q, is equal to the limit set of PTXE payoffs (or belief-
free equilibrium payoffs) for the game that has the same information structure
(Q,(6)icr) and the same expected paydifis)ic; but with perfectly observable
actions.

15To see this, ledl be such thatr® @) = aanda®“) = (a,a ). Then thisd has statewise full
rank for (i, w) and(j, w'), as the corresponding matrix has rdAl + |A;].
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This shows that with a known monitoring structure and strong full rank, the
analysis of the observed-action case carries over in the obvious way. When strong
full rank fails, the known-monitoring-structure game can have a strictly smaller set
of limit equilibrium payoffs than when actions are perfectly observable, for much
the same reason that this can occur when the structure of the game is known.

To prove this proposition, we compute the maximal score for each direttion
and show that the score does not depend on the monitoring imperfection. For this,
it is helpful to classify the directions so that the maximal score can be computed
in the same way for all directions in a given class. As shown by FLM, when the
state is known, there are three sorts of directions to consider: (i) maximizing the
payoff of some player(A; > 0andA; = Oforall j #1), (i) minimizing the payoff
of some player (Ai < 0andA; = 0 for all j # i), or (iii) trading off the payoffs
of two or more playersA; # O for at least two players) In our analysis here we
combine all three sorts of directions together into the clessf “single-state”
directions; the maximal scores for sutltan be computed as in FLM\? through
N* are the sets of cross-state directions that satisfy the relevant version of statewise
distinguishability, so the maximal scores in these directions are infinitely laRye.
and/\® are directions that (i) weight only the the payoffs of a single playet do
so in more than one state and (ii) do not satisfy the relevant version of statewise
distinguishability.A” is all of the directions that do not fit into classkshrough
6. The maximal scores fok°, A®, and/A\’ are not necessarily high enough for the
folk theorem.

Let A! be the set ot € R'™¥/?l such that(A®)ic; # 0 for somew € Q and
()\iwl))iel = O for all o’ # w. Since these directions consider only a single state,
Lemmas 5.2 and 5.4 of FLM show that the maximum score is the maximum fea-
sible score. As a result we obtain the following lemma.

Lemma 18. Suppose the monitoring structure is known and has strong full rank.
Then for eachh € AL, k*(A) = maxey+A - V.

LetA? be the set oA such thatthereatie |, j 1,1 #i, ], we Q, andw € Q
such thatA® # 0, )\j“)' # 0, and 6 (w) # 6 («'). Here playerl can distinguish
betweenw andw/, and the strong full rank condition implies that if playeries
to reveal this information by a state-contingent action, both plagestatew and
player j at statew’ are irrelevant to the information revelation. Thus playsr
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private information can be fully revealed, and as a result the maximal scores for
these directions are infinity.

Lemma 19. Suppose the monitoring structure is known and has strong full rank.
Then for each € A2, k*(A) = oo.

Proof. LetA e A%, andleticl, jel, | #i,j, we Q, andw € Q be such that
AP #0, /\j‘“’ #0, andf (w) # 6 (w'). Since monitoring structure has strong full
rank, both player at w and playerj at ' are irrelevant for players information
revelation. Then from Lemmas 11 theredsthat p, m, andn-statewise distin-
guisheq(i, w) from (j, ') and from Lemma 4, we hav€ (A ) = . Q.E.D.

Let A3 be the set ofA such that there ariec |, j #1i, w € Q, andw’ # w such
thatA® > 0, /\j‘*’/ # 0, and6(w) # 6(w'). Here playeii can distinguish between
w and «/, and the score is increasing in play&r payoff in statew. Since the
strong full rank condition implies that play¢rat «' is irrelevant to(i, w), player
i's private information can be fully revealed and the maximal scores for these
directions are infinity as wef®

Lemma 20. Suppose the monitoring structure is known and has strong full rank.
Then for each € A3, k¥(A) = oo

Proof. LetA € A3, and leti € I, j #i, w € Q, andw € Q be such thap® > 0,
/\j"’/ # 0, and6(w) +# 6(w'). Sine the monitoring structure has strong full rank,
playerj atw' is irrelevant for(i, w). Then from Lemma 8, there & that statewise
distinguishegi, ) from (j, w'). SinceA® > 0, Lemma 4 applies. Q.E.D.

Let A* be the set ofA such that there arec |, o' € Q, andw” # «' such
thatA®” >0, A" > 0, (A®)eq = Ofor all j #i, and6 (') # 6 (w”). Here only
playeri’s payoffs matter, the score is increasingi'm payoff in w and «/, and
playeri can distinguish between these two states. Once again, the maximal scores
for these directions are infinity, as strong full rank implies that playan reveal
whetherw or «'.

Lemma 21. Suppose the monitoring structure is known and has strong full rank.
Then for each\ € A% k*(A) = oo.

16The intersection oA? andA® might be non-empty but this is irrelevant as the maximal score
is infinity for either case.
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Proof. Let A € A% and leti € |, o € Q, andw” € Q be such thad®” > 0,
AY >0, and8 (o) # 6 (w”). Since the monitoring structure has strong full rank,
playeri can reveal whether the statecifor «’. Then from Lemma 5, there
that p-statewise distinguishes, o) from (i,w”). SinceA® > 0 andA®" > 0,
Lemma 4(b) applies. Q.E.D.

Let AS(i) be the set oA such thaf{A®)eq <0, (A®)weq # 0, (A)awea =0
for all j #i, and6j(w) = 6j(«) for all j #i, we Q, andw’ # w satisfying
AP #0 and/\iw’ # 0. Here only player’s payoffs matter, the score is decreasing in
i's payoff, and no other player can distinguish between the states; these directions
determine the minmax payoff for playiertaking into account a trade-off between
the minmax level in one state and the payoffs in other states\t.etJ;c; A°(i).

Lemma 22. Suppose the monitoring structure is known and has strong full rank.
Then for eachi and A € A3(i), K*(A) = maxy_, Ming ¥ wea A% (W)g° (&, a—i),
that is,k*(A) = —ming ; maxy ¥ weo —AX9”(ai,a_;).

The proof is delegated to the appendix. The intuition is as follows: Strong
full rank implies that constraints (i) and (ii) can be satisfied for ja# i, and
becaus€A ) weq = 0 the continuation payoffs assigned fa« i are irrelevant.
Thus we only need to consider continuation payoffs for playdat satisfy (i)
and (i) for w such thatA® # 0, and the feasibility constraint (iii). Note also
that playerj # i has to use the same action for all statesw with A® # 0, as
he cannot distinguish these states by definition®(fi). Summing the incentive-
compatibility constraints over the stategtaking into account that® < 0) yields
a “weaker aggregate incentive condition,” which corresponds to a game with a
known state where playés payoff is Y ,cq —A*“g(a). Using this analogy, we
can show that the maximal score in the direction of minimizing this payoff (that
is, maximizing— S ,cq —A®V®) is at most the corresponding minmax payoff,
namely—ming , maXy S weq —A“0" (ai, a—i). We then use the strong full rank
assumption to show that this bound is attained.

Let A® be the set oA such that there isc | such thatz,* > 0 for somew € Q,
(AP)weq =0forall j £i, 6(w) = 6(w") forall ' € Q andw” # ' satisfying
AY >0andA®" >0, andj(w) = Bj(w”) forall j #i, o € Q, andw” # w
satisfying/\i‘*" #0 and)\i‘"" # 0. In words, this says that only playes payoff has
non-zero weights, that playeicannot distinguish between any two states where
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his utility gets positive weight, and no other player can distinguish between any
two states where play&s utility gets non-zero weight.

Finally, we construct a set’ that we show contains all directions that do not
belong to one of the preceding sets. We defirido be the set of alk satisfying
the following properties.

(i) (A®)weq #0and(A{’)weq # 0 for somei € | andj # 1.
(i) A9 )er 20and(A?") ¢ # 0for somew € Q andw” # W'

(i) 6(w") =6 (") forl €1, w” € Q, andw” # ", if AY" # 0 for some
I”#1 andA%" # 0 for somel” #1.

(iv) 6(w")=6(w")forlel,w” € Q, andw” + " if A¥" >0andA®" #
| |
0 for somel’ #1.

In words, this is the set of directions where the score depends on the payoffs of
playersi and j in some statev, and where it also depends on the payoff of some
player| (possiblyi or j) in two other statesy’ and w”, but this played cannot
distinguish between any state$’ and w”” if either (condition (iii)) in each of
these states there is at least one other player whose payoff matters or (condition
(iv)) the score is increasing irs payoff in statew” and depends on the payoff of
somel’ in statew”.

Lemma 23. J7_; A" = R'*12\ {(0,---,0)}

Proof. Let A be such that # (0,---,0) andA ¢ A’. It suffices to show that
A€ Uﬁzll\”. If A does not satisfy the clause (i) of the definition/sf, then
A € AL If A does not satisfy (iii), thed € A, If A does not satisfy (iv), then
A € N3, If A satisfies (iii) and (iv) but not (i), theh € A*|JASJAS. Q.E.D.

Lemma 24. Suppose the monitoring structure is known and has strong full rank.
Then for eachA € ASJA7, k*(A) = maxy A -g(a).

The proof is given in the appendix. The first step of the proof is to show that
for eachA € ASUA’, there is a single “type® that is relevant; we use this to
show that the upper and lower bounds on the score arerbath A - g(ao).

Combining the above lemmas yields the following characterization of the
maximal scores in each direction and thus of theet
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Proposition 7. Suppose the monitoring structure is known and has strong full
rank. Then

maxsey+ A -V if AeAl

() = 00 if A eNYUASUA?
Mavg | Ming, 3 we ACGE (8, a1) i A € A%() |
maxq A -g(a) if A eASUA’

andQ = MNicq1,...7p.0en H(A).

This proposition shows that the monitoring imperfection does not affect the
maximal score. Then the s@tdoes not depend on the monitoring imperfection
as well, and hence Proposition 6 follows.

7.2 One-Sided Incomplete Information

In this subsection we consider the case where only plajgepayoff function
is uncertain, and he knows his own payoff function while the other players do
not. Formally, we say the game has one-sided incomplete informatit{al) =
gi‘*“(a) foralliz1,ac A we Q, andw # w, and thatt; (w) = (w) for all w, and
O, = {(Q)} for all i # 1. This is the assumption made iroHher and Lovo (2009,
Section 4) and HArner, Lovo and Tomala (2009, Section 6) analysis of reputations,
SO once again our results can be seen as extending theirs.

Section 5 of [22] derives several sufficient conditions@fdenoted by * in
their paper) to be non-empty,which implies that there is a PTXE in the undis-
counted case. However these conditions do not assure the existence of PTXE with
the discounted payoff criterion used in this paper, bec&usaight not be full
dimensional and in that case their existence result and our Proposition 1 would
not apply. In this subsection, we give a simple sufficient conditiorQtw be full
dimensional; under this conditio@ equals the set of limit PTXE payoffs so that
there are PTXE for sufficiently large.

LetVVY be the set of feasible payoffs of the stage game with public randomiza-
tion, that isVY = co{g(a)|a € A}. Note that dinvV is at mos{Q| + 1 — 1, since

"They also give tight conditions faD to be non-empty by imposing restrictions on the payoff
functions as well as on the information structure.
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g”(a) =g¥(a)foralliz1,acA we Q, andw # w. Let

VU* = {ve VY vida_ Vo, v > maxg;” (8, a-i)}-

Condition Non-E. The setvV* has dimensionQ| 41 — 1.

This condition is likely to be satisfied if there is an action; that gives low
payoffs to played for every statev. The next proposition shows that (Non-E) is
sufficient for the se@ to be full dimensional; then Proposition 1 applies, and so
(Non-E) is a sufficient condition for the existence of PTXE.

Proposition 8. Suppose that the monitoring structure is known and has strong
full rank, and that there is one-sided incomplete information. Suppose also that
(Non-E) holds. Then di@=1 x |Q|.

Proof. Letv be in the relative interior o7V *. It suffices to show that*(A) > A -v
forall A.

First, consideiA € AL. SinceVV* C V*, vis an interior point olV*. Then
A-v<maxeysA -V =Kk(A) for A € AL Likewise, sincevV* C VY, vis an
interior point of VY. Then,A -v < max,cyu A -V = maxy A -g(a) = k*(A) for
A eNbanda e N,

Sincek*(A) = o for A € A2 YA3JA4, it remains to considek € A°. By
the definition ofA>, (AP)weq #0, A <Oforall we Q, and()\j‘*’)weg =0 for
all j # 1. Also, sincev is in the relative interior o¥/V*, there isa_1 such that
v > max, 05°(a1,a—_1) for all w € Q. Taken together, we obtain

Av= S APV < Y Amaxgr(asa-1) = 5 minAfgr(ar,a-1)

weQ we weQ

<maxmin 5 ApgP(as.aly) =K'(A),
aly A gen

as desired. Here, the equality in the third line comes from
Af’maxgi’(ag, a-1) = —A;’min(—gf'(as, a-1)) = [A1’| min(—g7’(ag, a-1))
= min|A?| (g (ax, a-1)) = MinA'gf (ar, a-1)).

Q.E.D.
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Remark 3. If there is a “commitment typeto*, for which there is some] ¢

Aq such thatg? (af,a 1) is independent o&_; andgy (aj,a 1) > g¥ (a) for

all a3 € A1, the minimax payoff of this commitment type equals his best payoff
0¥ (a,a_i). In this case the s& does not have full dimension, and our results
do not applyt8 Moreover, in this case the set of PTXE is often empty. Suppose
that there are two players, and playdras a unique best reply agaia$t and call

it a5. In a PTXE, player in statew* always playaj, so that playe2 must play

a; after every history, independently of the state. Then plajgeoptimal strategy

for statew # w* is to choos&’ € argmax, ca, 95 (a1,a5) after every history. For
this strategy profile to be a PTXB; must be a best reply ta° for all w # w*,

but such a condition is not satisfied in general. Thus we conclude that there is no
PTXE for any discount factos®

7.3 The Folk Theorem with Known Monitoring Structure

Our general folk theorem uses (SFR) or (Pointwise-SD), which require either that
all players can distinguish every pair of states, or that there are prafilest sat-

isfy various full rank conditions. With a known monitoring structure (and strong
full rank) the following simpler condition is sufficient.

Proposition 9. Suppose that the monitoring structure is known and has strong full
rank. Suppose also that for eat, o) satisfyingw # «/, there are at least three
players who can distinguistv and «/, i.e., there aré@ € |, j #i, andl #i, j such
that 6 (w) # 6(w'), Bj(w) # 6;(w'), and G (w) # 6 («'). Then, for any smooth
strict subsew of V*, there exist® € (0,1) such thaWw C E(J) forall § € (3, 1).

Proof. Since there are at least three players who can distinguiahd «/, any

cross-state direction is an element of\?. Then, from Proposition 7, we have

k*(A) = 0. Sincek*(A) = maxey:A -v for any A € Al, we obtainQ = V*,
Q.E.D.

Theorem 5.3 of [22] shows th& is non-empty for games with perfect mon-
itoring, if there are there are at least three players who can distinguéstd «/

18[21] make essentially this point on page 475.

191f there are observed actions, these same assumptions imply that there is not a belief-free
equilibrium. [21] note that there is a belief-free equilibrium with a commitment type in strictly
dominant action games with a unique Stackelberg type.
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for each(w, ') satisfyingw # «'; our result shows that the assumptions of that
proposition are in fact sufficient for a folk theorem.

In the next proposition, we consider the case in which there are at least two
players who can distinguish states. Recall ¥atis the set of feasible payoffs of
the stage game with public randomization, tha¥i$,= co{g(a)|a € A}.

Proposition 10. Suppose that the monitoring structure is known and satisfies
strong full rank. Suppose also that for eaeh, «') satisfyingw # «’/, there are at
least two players who can distinguishand w/, i.e., there aré € | and j # i such
that 6 (w) # 6(w') and 6(w) # 6;(w'). LetV** = {ve V*|3T e VVVi e IVw €

Q, v¥ > {®}. Then, for any smooth strict subgat of V**, there isd € (0,1)
such thaW C E(5) forall & € (5,1).

Note that if there is a “bad outcome”c AAsuch thag°(a) <v® foralli € |
andw € Q, then we hav&/** =V*, so that the folk theorem obtains. Theorem
5.11 of [22] shows tha® is non-empty for games with perfect monitoring and a
bad outcome, if there are there are at least two players who can distirgaist
o' for each(w, w') satisfyingw # «'. Again our result shows that the assumptions
of the proposition are sufficient for a folk theorem.

Proof. It suffices to show tha¥** C Q. To do so, we compute the maximal score
k*(A) for every direction, using Proposition 7.

First, considen € AL It follows from Proposition 7 that* (A) =maxey+A -v
for this direction. Next, consider such that.® # 0 andA®" # 0 for somei € I,

w € Q, andw” # o', and(A ) weq = Ofor all j #i. Since there are at least two
players who can distinguistv’ and w”, there isl # i such thatf («') # 6 (w").
ThusA € A?, and hencé*(A) = o for this direction.

ConsiderA such tha® # 0 andA{" # 0 for somei € I, j #i, & € Q, and
W' # &, and G (w') # 6 (w") for somel #i,j. Again, A € A? in this case, so
thatk*(A) = . ConsiderA such that® > 0 and)\j‘"" #0forsomei e l, j #1i,
W €Q,andw” # o, andf (w') = G (w”) for all | #1i, j. Since there are at least
two players who can distinguist’ and«”, it must be tha8 (') # 6 («”) and
0j(w') # 6;(w"). This implies thath € A3, and hencé*(A) = .

Finally, considen such thad <0, A <0andA{”" < 0for somei € I, j #1i,
' € Q,andw” # o/, and for any paifi, w”) and(j, w"") satisfyingw” + ",
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i

A@" <0, andA@" <0, and for anyl %1, j,  (w”) = 6 (). By definition,
A € ATin this case, so th&t (1) = maxy A -g(a) = max,.yu A - V.

From the above arguments, obviously we hevé C H*(A) for all A. There-
fore,V** C Q. Q.E.D.

8 Conclusion

This paper shows how to extend the insights and techniques of the repeated games
literature to games with imperfectly observed actions, an unknown monitoring
structure, and private information. Our analysis is based on the fact that the set
of PTXE payoffs has a recursive structure, and says little about the entire set of
equilibrium payoffs. When the folk theorem holds in PTXE, or more generally
when there are asymptotically efficient PTXE, the restriction to PTXE may be

of less concern, especially given their desirable robustness properties. When the
set of PTXE is small or empty, it would be nice to know more about the entire
set of sequential equilibrium payoffs; that more difficult problem is still unre-
solved. Another open question is to extend the analysis of PTXE to other settings
where repeated play has been shown to support more efficient outcomes, such as
games with long-run and short-run players (Fudenberg, Kreps, and Maskin [13]
and [14]), games with overlapping generations of players (Kandori [24]), commu-
nity enforcement (Kandori [23] and Ellison [11]), games with imperfect private
monitoring (Compte [7] and Kandori and Matsushima [26]), and games where the
state evolves according to a finite Markov chain (Athey and Bagwell [4]).

Appendix

A.1 Proof of Lemma 4

Lemma 4.

(a) Supposé is ex-post enforceable amd-statewise distinguishés, w) from
(J,a'). Thenk*(a,A) = o for A such thatn® > Oand)\j‘“/ < 0.

(b) Supposé is ex-post enforceable anuistatewise distinguishés, w) from
(J,a'). Thenk*(a,A) = o for A such thatn® > Oand)\j‘“/ > 0.
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(c) Supposé is ex-post enforceable andstatewise distinguishds, w) from
(j,). Thenk*(a,A) = e for A such tha,® < 0andA ¥ <.

Proof. For part (a), let€ = (£(y))yevy be as in the definition ofm-statewise dis-
tinguishability. Without loss of generality, assurné"(a) £ =0. Letz? =
(Z°(y))yey andz” = (27 (y))yey be such that

K / K

2°0) = Sramay. gt and Zﬁ*’(y>:—5,\jwnw(a)_55<y)

forallyeY. Sincen®(a)-& = n®(a,a_i)-& > 0for & € supmi, we have

n“(a,a-i) -z = mﬁw”w(ai,ai)'f = %Iw

for all & € suppm;. Also, sincen®(a)-& > 0andn®(a)-& > n®(&,a_;) - & for
a ¢ supm;, we have

n(a,a-i)-z° =

3)

K K

Wﬂ“(a,mi)-f §5Tiw (4)

for all & ¢ supmi. Likewise, sincen®(a)-& >0, n“(aj,a_j)- & = 0 for all
aj € supmj, andn® (aj,a_;) - & < Ofor all aj ¢ supmj,

/ K
N D T o). _
n (aj,a_j) j 5)\J@/nw(a>_£”d(ajya j)-éy)=0 (5)
for all aj € supj, and
/ / K /
n® (aj,a_j)-Z° :_5)\jwnw(a).g"w(ai’a—i)'fSO (6)
for all aj ¢ suppj. Finally, it is obvious that
AOZ(y)+ A2 (y) = (7)

forallyeY.
Let (V,W) be a pair of a payoff vector and a function such tiieénforces
(V,a). LetK > maxey A -W(y) — A -V. Then, let

: +Z|w(y) if (|7m):(ivw)
W (y) =4 W (y) +2(y) i (I,0") = (j,o)
W (y) otherwise
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for eachy € Y. Also, let

\7i°’+£ it (,0)=(i,w)

otherwise

We claim that thigv,w) satisfies all the constraints in the LP problem. Obvi-
ously, constraints (i) and (ii) are satisfied for@liw) € (I x Q) \ {(i,w), (j, ')},
asv’ = v‘“ andw“’(y) W‘*’ (y). Also, since (3) and (4) hold and@ enforces
(a,V), we obtain

(1-9)g” (&, ai) +om”(a,ai) -w”
K

= (1= 0)g"(ay, a-i) + 07 (&, o) - (W + 27) = T 4 555 = W°

for all & € supp;, and
(1-0)g”(a, 0i) + 6m*(ay, i) - W
~ - K
= (1-8)gf (&, ai) + 8T(a, 01) - (W +2°) < W+ 5 = i
|
for all & ¢ supm;. Hence,(v,w) satisfies constraints (i) and (ii) fdr, w). Like-
wise, it follows from (5) and (6) thatv,w) satisfies constraints (i) and (ii) for
(J,&'). Furthermore, using (7) arll > maxcy A -W(y) — A -V,
AW(y) = A W(y) +ACZ(y) + A (y) = A W(y) <A THK=A-v

for ally € Y, and hence constraint (iii) holds. Therefok&a,A) > A -v=A -V+
K. SinceK can be arbitrarily large, we conclué& a, A ) = o, which proves part
(a) of the lemma.

For parts (b) and (c), lef = (¢(y))yey be as in the definition op- or n-
statewise distinguishability. Without loss of generality, assutfi€a) - £ = 0.
The rest of the proof is the same as in part (a). Q.E.D.

A.2 Proof of Lemma 12

Lemma 12. Suppose (PFR) and (IFR) hold. L&tbe such that (w) # 6(w)
foralliel, we Qandw # w satisfying(A)je| # 0 and (/\jw/)jg # 0. Then,
K*(A) > maxey+ A - V.
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Proof. For eachw € Q, let A (w) = ()\i‘*“(w))(w) be such thatA®(w))ic| =
(A®)ic) and(A¥ (w))ie; = O for all o’ # w. Let Q* be the set of alto such that
A (w) # 0. We claim

K'(@,A)> Y K(aA(w) (8)
we*
for eachd. In words,k*(d,A) is at least the sum of the maximal scores when we
solve the LP problem for each statein isolation. To prove this, consider the LP
problem for(d, A) but constraint (iii) is replaced with a more restrictive condition

(iii") Z)\i‘"vf" > Z)\i‘*’wi‘*’(y) forallwe QandyeY.
e le

LetkY (a,A) denote the solution to this new problem. Since conditiof) @ibes

not allow utility transfer across different states, considering this new LP problem
is equivalent to solving a separate LP problem for each stateQ* in isolation.
Thus we havek (@,A) = S y,co- K (@,A (w)). Sincek*(d,A) > kY (a,A), (8)
follows.

Recall thatA (w) considers only a single state. Thus the maximal score
k*(&,A (w)) depends om ®(@ but not ona? for otherd’. This observation, to-
gether with the fact that all players can distinguish any state in th@'seémplies
that

sup %*k*(&,)\(w)) = %*sypk*(a,/\(w)).

a
It follows from Lemmas 13 and 14 thaup; k*(d,A (w)) = maxey+ A (w) - V.
Therefore,

sup K*(0,A (w)) = maxA (w) - V= maxA - .
d weh* wety VEV” vev?
Using (8), we obtain the desired result. Q.E.D.

A.3 Proof of Lemma 16

Lemma 16. Suppose (PFR) holds. L&t be such thatf(w) # 6(w') for all
i€l, we Qandw # w satisfying(A{*)je #0 and()\j‘”'),-e. #0. Thenk*(A) >
max,coA - V.
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Proof. The proof is very similar to Lemma 12. The only difference is that in
the last step of the proof, we may not hatey k* (4, A (w)) = maxev+ A (w) - v,

since (IFR) might fail. Instead, we use Lemmas 13 and 15 to showtigak*(d,A (w)) >
max,cyoA (W) - V. Q.E.D.

A.4 Proof of Lemma 22

Lemma 22. Suppose the monitoring structure is known and has strong full rank.
Then for eachi and A € A3(i), K*(A) = maxy ; Ming ¥ wea A% (W)0° (&, a_i),
that is,k*(A) = —ming_; maXy ¥ weq —AC9” (&, a_;).

To prove this lemma, we use the following claims.

Claim 1. LetA € AS(i). Then for eachj # i, there is6; € ©; that contains allw
such that\,® # 0.

Proof. Suppose not, so that there atec Q and w’ # w such that such that
6;(w) # Bj(w), A® 0, andA? 0. ThenA ¢ A5(i), since it does not satisfy the
last condition of the definition oA>(i). A contradiction. Q.E.D.

Claim 2. Suppose the monitoring structure is known. Ret AS(i). Then for
eachd = ((Olie')e.eei)iel, K*(G,A) < ming A -g(a;,afi*i) where8*; is chosen as
: : 6, 0;

in Claim 1 anda _j' = (@’ ) jxi.

Proof. Leta/ € argmin, A -g(a,-,aiji). If k*(d,A) = —o then the result is obvi-
ous. Ifk*(d,A) > —oo, we can choosév,w) to satisfy constraints (i) through (iii)
in the LP problem associated witl@, A, d) for somed € (0,1). It follows from
constraint (ii) that

VO > (1-8)g®(ai, a’ ) + om(a, a’;') - we

for all i, &, and w such that # 0, since 6j(w) = 6] for j # i for such w.
Multiplying both sides by\,“, summing over altv, and using the fact tha'tj‘" =0
forall j #i, we have

Av=% APVP < (1-9) > Aiwgi{'J(af7a_eiji)+5 > ”i’(ai/’afiii))‘iwwﬂy)

weQ AT=L0) WEQYE

—(1-8)A-g(d,a’)+5 ;rwa:,afm w(y),
ye
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so from (iii),
Av< (1-8)A-g@d,a’ ) +8) v
Subtractlngc‘SA -v from both sides and dividing byl — ), we getA -v< A -
g(a,a *') Thereforek*(d,A,d) < g(&, af*') Q.E.D.

Foreachj €1, let§j(a) = — Y wca A0}’ (a). LetA € R be such thad; = —1
andAj =Ofor all j #i. Consider the following LP problem:

~ ~

k*(a,A,0) = max A-¥  subjectto

Wz(GEIR'
(i) =(1-9)gj(a)+om(a)-w; forall j,
(i) V= (1-9)Gj(aj,a—j)+om(aj,a_j)-Ww; forall janda;,
(i) AU> AW w(y) forally.

This is the problem of finding the maximum score for a known-state game (i.e.,
|Q| = 1) for directionA, so its value (which does not depend @nfollows from
past work:

Claim 3. Suppose the monitoring structure is known and has strong full rank.
Thensup, k*(a,A) = —ming . maxy Gi(a,a )

Proof. Strong full rank implies that every pure action profile has individual full

rank. Then from FLM Lemma 6.3, the maximal score for directiois given

by playeri’s minimax score. Therefor&*(a,A) = —ming_;, maxy §i(aj, a_i).
Q.E.D.

Claim 4. Suppose the monitoring structure is known and has strong full rank. Let
A € A5(i). Thenk*(@,A) =k*(a,A) if @ is a state-independent actian

Proof. First, we showk*(d,A) < k*(a, 7). Whenk*(d,A) = —oo, then this in-
equality obviously follows. So assuné(d,A) > —o. Choose(v,w) to sat-
isfy constraints (i) through (iii) in the LP problem fqo,A,d), and letV; =
—YweaAP VP andWj = — 3y APWP(y) for all j € | fimdy evy. Therlthis
(V,W) satisfies all the constraints of the LP problem(arA,d), andA -v=A -V.
This shows thak (@, A) < k*(a,A).
Next, we shOV\k*(a A)> R*(a,i\ ). As before we restrict attention to the case

of k*(a, A)
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We claim there aréz”(y)) 4,y such that

1-9 (-390 aay)-snaa) 2 ©
Y weQ A
forall w € Q anda; € A, and
S A0Z(y) =0 (10
we

for all y € Y. To see that this system has a solution, chaossuch tha’r)\i‘d #0,
and eIiminate;-‘" using (10). Then we can check that (9) fof are redundant
equations; that is, (9) fow’ automatically holds if (9) holds for ath # /. This
leaves(|Q| — 1) x |Ai| equations and|Q| — 1) x |Ai| unknowns, and strong full
rank assures that the coefficient matrix has full rank. Therefore, the system has a
solution.

Choose(\7 W) to satisfy all the constraints of the LP problem for,A,5), let
VP = —Sai® /\w, andw®(y) = —ZZ)VE'—% +Z°(y). SinceA -v= A -V, it suffices to
show that thls(v w) satisfies all the constraints of the LP problem fdr A, ).
(We can ignore the adding-up constraint and the incentive compatibility constraint
for playerj # 1, as strong full rank holds.) Note that

(1-9)g”(a, a-i)+ om(a,a_i) - W
(1 8)g¥(a, ai) + 5@, (z"’— : ~<y>)

> wea A
~i i, U— w 6 i, U—j '~I
—(1-8)g(a,a )+ (1-0) (—%—q (@) ) - O
__(A-9)G(a,a-i) +oma,ai) Wi W _
S wea A’ T SecA®

for all & € A; with equality ifa; € supm;. Here, the second equality comes from
(9), and the inequality comes from the fact tif@tw) satisfies the constraints of
the LP problem for(a,;\,é). Therefore, thigv,w) satisfies constraints (i) and
(i). Also,

w w Wi (Y) ~ ~
A w;Q)\ W wgg)\ ( Zweg/\i“> =W -h=Aw
Here, the third equality comes from (10) and the inequality comes from the fact
that(V, W) satisfies the constraints of the LP problem(fa(;\ ,0). Therefore, this
(v,w) satisfies constraint (iii). Q.E.D.
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It follows from Claims 3 and 4 angj(a) = — Y wco A“9}’(a) that

K'(A) > sugk (a1, A) = — minmaxg(ai, o)
; _

= —minmax—A -g(a, a-i) = maxminA - g(a, ).

On the other hand, Claim 2 shows tlk&tA ) < max,_ ming A -g(a;, a—_;). There-
fore,k*(A) = maxy_, ming A -g(a;, a_).

A.5 Proof of Lemma 24

Lemma 24. Suppose the monitoring structure is known and has strong full rank.
Then for each\ € ASUA7, k*(A) = maxq A -g(a).

The proof consists of a series of claims.

Claim 5. LetA € A8, and leti € | be such thatA®)eeq # 0. Then

a) there Is6* € ©; such thatf, (w) = 6" for all w such thatA.* > 0; an
(a) there is6 € @ such that8 (w) = 6 for all h that\® > 0; and

(b) for eachj #1i, there is6;" € ©; that contains allkw such thatA,* # 0.
LetA € A’. Then

(c) for eachi € 1, there isg" € ©; that contains allw such thatA® # 0 for
somej #i; and

(d) this 8* contains allw such that,” > 0.

Proof. For part (a), suppose not, so that there@afe= Q and w” # w such that
6(w) # B(w"), AY >0, andA®" > 0. ThenA ¢ A®, as forA to be inAS,
6(w) = 6(w") forall w € Q andw” # w satisfyingA® > 0andA®" > 0. A
contradiction.

For part (b), suppose that there aec Q andw” # w’ such thatf;(w') #
6(w"), A% #0,andA¥" 0. ThenA ¢ AS, as forA to be inA8, 6;(w') = 6;(w”)
forall j #i, o € Q, andw” # w satisfyingA® # 0andA®" # 0. A contradiction.

For part (c), suppose that there dijew’) and (I, ") such thatj #1i, | #1,

6 () # 6(0"), /\j‘*" #0, andA®" # 0. ThenA ¢ A7, as the last condition of the
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definition of A’ requires that (') = 6(w”) forallic |, o € Q, andw” # o/
such that @ # 0 for somej #i andA“" # 0 for somel # i. A contradiction.

For part (d), suppose that there are | andw’ € Q such that/\iw/ > 0 and
wée 6. Let(j,w”) be such thaj # i and/\j‘*w # 0. Then from part (c)w” € 67,
so thatf (o) = 6* # 6,(«'). This implies thath ¢ A’, as the last condition of the
definition of A’ requires thaB, (w/) = 6(w”) foralli € 1, o’ € Q, andw” # &/
such that,® >0 and)\j‘"” # 0 for somej #i. A contradiction. Q.E.D.

Claim 6. Suppose the monitoring structure is known, andilet A8 JA’. Then
for eachd = ((a)gco,)ic, k*(@,A) <A -g(a®) where6* is chosen as in Claim
5anda® = (a” ).

Proof. Choose(v,w) to satisfy constraints (i) through (iii) in the LP problem as-
sociated with(d, A, &) for somed € (0,1). It follows from constraint (i) that

V> (1-8)g®(a,a’ ) + on(a, o) - we

foralliel, & €A, andw € Q such that® # 0, sinced;(w) = Gj* for j #1i for
suchw. In particular, we have

v > (1-8)gP(a®) +oma®) -wP (11)
foralli e | andw € Q such that* # 0. Also, from constraint (i), we obtain
v = (1-8)gP(a®) +oma®) - wf’ (12)

foralli € | andw € Q such thatA,* > 0, since8(w) = 6* for suchw € Q. It
follows from (11) and (12) that

A V<Z )3 /\w{(1—5)g$’(a9*)+5n(a9*).wiw

weQ

=(1-90)A -g(a +5 Z(rg,
Using constraint (iii),

A-v<(1-9)A-g(a +62(rg, YA v=(1-08)A-g(a?)+6A v

SubtractingdA - v from both sides and dividing byl — J), we getA -v< A -
g(a?). Thereforek*(@,A,8) < g(a?). Q.E.D.
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Claim 7. Suppose the monitoring structure is known and has strong full rank. Let
A € A8, Thenk*(A) > max, A -g(a).

Proof. Leta € argmax: A -g(a’). Without loss of generality we can assume that
a is a pure action profile, so that we denote ithyin what follows, we show that
k*(a,A) > A -g(a).

Let A € A8, and let(i,«') be such thad® > 0. Consider the LP problem
associated witlia, A, ). Note that we can ignore constraints (i) and (ii) fo£ i,
as(A{)weq =0.

Let v = g¥(a) for eachw € Q. Forw # o/, let (W®(y))yev be such that

o”(a) = (1-9)g’(a,a—i) + om(a,ai) - w(y) (13)

forall & € Ai. Also, let

w (y) = /\% (A CCEEDY Ai‘*’wi‘*’<y>> (14)
i w#wW
forallyeY.
We claim that thigv, w) satisfies constraints (i) through (iii) in the LP problem.
First, constraints (i) and (ii) hold fap # «/, since (13) holds. Also, as in the proof
of Claim 4, we have

(1-8)g (o, ai)+dm(g],ai)-w (y)

— ¥ (a) + (1 &)1 92 ~A-9(@)

X <g’(a)

for all & € A with equality ifa’ = &. Here, the inequality is from the fact that
a maximizesargmax - g(&) andA® > 0. This shows that constraints (i) and
(i) hold for «'. Finally, constraint (iii) follows from (14). Thus we conclude
K'(@,A) > ueaA®v? = A -g(a), as desired. Q.E.D.

Claim 8. Suppose the monitoring structure is known and has strong full rank. Let
A € N7. Then for eachw, k*(a,A) > A -g(a).

Proof. Let A € A7, and given thisA, let A w)(j,r) D€ @ direction such that the
components fofi, w) and(j,«’) are equal to those of and the remaining com-
ponents are zero. (Thus the directidf,(j,«r) has at most two non-zero compo-
nents.) In order to prove the claim, it suffices to show tina¢ enforceable with
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respect to the hyperplane orthogonalitat g(a). This enforceability follows
from the following two facts: (i) If the monitoring structure has strong full rank,
thena is enforceable with respect to the hyperplane orthogonal;tg)(; .y) at
g(a) for each(i, w) and(j, w’) such that # j (but possiblyw = w'), A® # 0, and

A j‘”’ # 0. (ii) a is enforceable with respect to the hyperplane orthogonal &b
g(a) if o is enforceable with respect to the hyperplane orthogona};tg)j )
atg(a) for each(i, w) and(j, ') such thai # j, A® # 0, and)\j‘*" # 0. Note that

(i) follows from Lemma 5.4 of FLM, since here we assume that the monitoring
structure does not depend an Likewise, (ii) follows from Lemma 5.3 of FLM,
sinceA € A7 implies that for eachii,w) such that\® # 0, there is(j, ') such
thati # j andA & # 0. Q.E.D.

The statement of Lemma 24 follows from Claims 6, 7, and 8.
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