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1 Introduction

The fact that repeated interactions can allow new and more efficient equilibrium

outcomes is one of game theory’s most important insights. It has been shown to

apply in a range of settings, including games with imperfect public information

about opponents’ actions, and games where the monitoring structure- the map

from actions to signal distributions- is itself unknown.1 It has also been shown

in games with private information about the payoff functions.2 This paper studies

games with the combination of these features: both the monitoring structure and

the payoff functions can depend on an unknown state variable, and the players

may have initial private information about the state. This describes, for example, a

repeated partnership game where players observe group output but do not observe

each other’s effort, and each player has private information about the effect of her

effort on the probability distribution of output.

Our main goal in this paper is to understand how the information structure

of the game- meaning the combination of the monitoring structure and the initial

private information- determines the extent to which the player’s initial private in-

formation can be revealed in equilibrium. We address this question indirectly, by

computing the limit of the equilibrium payoffs when players are patient. More

specifically, we restrict attention to theperfect type-contingently public ex-post

equilibriumor PTXE(Fudenberg and Yamamoto [17]). These are ex-post equilib-

ria where each player’s strategy depends only on the realized public outcomes and

his initial private information (hence “type-contingent”) but not on the player’s

private information about his own past actions.

PTXE generalizes several solution concepts: It reduces to the PPXE of [17]

if players have no private information, the belief-free equilibria of [21] and [22]

when actions are observed,3 and the perfect public equilibrium (PPE) of Fuden-

1For repeated games with public monitoring, see Green and Porter [19], Radner [29], Abreu,
Pearce, and Stacchetti [1,2], Fudenberg and Levine [14], Fudenberg, Levine, and Maskin [15],
Athey and Bagwell [3], and Fudenberg, Levine, and Takahashi [16]. Fudenberg and Yamamoto
[17] consider games where the monitoring structure is unknown.

2See Kohlberg [27], Forges [12], Sorin [32,33], Hart [20], Aumann and Maschler [5], Cripps
and Thomas [8], Gossner and Vieille [18], Renault and Tomala [31], Wiseman [34,35], Hörner
and Lovo [21], and Ḧorner, Lovo, and Tomala [22] for games with private information.

3These equilibria are different than the belief-free equilibria of repeated games with private
monitoring (Piccione [28], Ely and V̈alimäki [10], Ely, Hörner, and Olszewski [9], Yamamoto
[36,37], and Kandori [25]), which require that players be indifferent.
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berg, Levine, and Maskin [15] (hereafter FLM) in complete-information games

with a known monitoring structure. As with ex-post equilibria more generally,

these equilibria are robust to the specification of the players’ prior beliefs: a PTXE

for a given prior distribution is a PTXE for an arbitrary prior.4

Any PPXE of the symmetric information game (where no player has initial

private information about the state) induces a PPXE of the game where some

players do have private information: these PPXE correspond to pooling equilib-

ria of the incomplete-information game. Thus the folk theorems of [17] apply to

games with private information. However, those theorems require that the dis-

tribution of signals vary with the state in a sufficiently rich way (essentially so

that the state can be learned from the signals generated by some fixed action pro-

file), and this is more restrictive than necessary when some players have private

information. For example, if one player knows the state, he may be able to com-

municate it to the others using a strategy that conditions on the player’s private

information. This paper takes the possibility of such implicit communication into

account, and so generates a larger set of equilibrium payoffs. In some cases, such

as the partnership games we define in Section 3, in which a player’s productivity

is private information, there often exist asymptotically efficient equilibria, while

equilibrium payoffs are bounded away from efficiency if the players ignore their

private information.

Moreover, we can characterize the limit payoffs of PTXE with linear program-

ming techniques. Specifically, the set of limit equilibrium payoffs is the intersec-

tion of maximal half-spaces in various directions, where the direction vectorsλ
assign weights on each player’s payoff in each state, the maximal half-space in di-

rectionλ is all vectorsv with λ ·v no greater than the maximum score forλ , and

this score is the highest weighted sum of payoffs that can be obtained with con-

tinuation payoffs that satisfy the incentive constraints and whose weighted sum is

no higher than the sum they are supporting.

Roughly speaking, there are PTXE where players learn the state if the score

is sufficiently large in “cross-state” directions that give non-zero weight to two or

more states. For this to be the case, informed players must be willing to reveal

their information, and uninformed players must not “jam” the information rev-

elation of their informed opponents. A key point is that the relevant conditions

4See Bergemann and Morris [6] for a discussion of various definitions of ex-post equilibrium.
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depend on whether the informed player’s payoff in a given state is given positive

or negative weight. With a positive weight the informed player wants to reveal

the state, and our conditions imply that other players cannot prevent this; with a

negative weight the informed player might prefer to hide the state, but under our

conditions this is not possible.

We use these results to prove a folk theorem. While the exact conditions are

complicated to state, the key assumption is that for each pair of playersi and j

(where possiblyi = j) and each pair of statesω andω ′ , ω, either (i) there is a

playerl , i, j whose private information distinguishesω andω ′, and playerl can

reveal this information regardless of the actions ofi and j by choosing different

actions in stateω and stateω ′, (ii) player i or j (or both) can distinguishω and

ω ′ using initial private information, and the informed player is willing to reveal

this information while the other one cannot interfere, or (iii) there is an action pro-

file α (independent of the private information) that distinguishes (more formally,

“statewise identifies”)ω from ω ′. Conditions (i) and (ii) lead to a sort of “endoge-

nous learning” where players transmit their private information to the opponents,

while condition (iii) is a sort of “exogenous learning” based on the distribution of

signals at a fixed action profile. Note that condition (i) does not require that player

l is willing to reveal his information. This is because the condition can be used for

directions where playerl ’s continuation payoff has zero weight and hence is un-

constrained, and our “individual full rank” assumption ensures that there is some

specification of the continuation payoffs that induces playerl to play the specified

actions in the two states. In contrast, if no third player can distinguish the states,

then the incentives of the revealing player become relevant, as without additional

conditions it may be that any continuation payoffs that induce playeri to reveal

his information must increase or decrease playerj ’s continuation payoff in a way

that lowers the score.

We then consider a few cases with additional structure that simplifies our char-

acterization. We begin with the case where the state space has one component that

only influences payoffs and a second component that only influences the monitor-

ing structure; here we show that when the full rank conditions are satisfied the

limit set can be determined for each payoff function separately. Next we consider

games with a product structure, where there is a separate and independent signal

associated with each player’s action, and moreover each player knows the effect
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of his action on the signal distribution while the others do not. For example, in a

game of bilateral production and exchange, the public signal might be the quality

of a player’s output, with each player having private information about the prob-

ability that she will make a high-quality good when she exerts high effort. Here

we show that the scores for two classes of cross-state directions are high enough

to be compatible with the folk theorem, but that the scores in the remaining class

need not be. Finally, as an illustration of our characterization, we examine in de-

tail a repeated partnership example where only group output is observed, and the

state determines the productivity of player2. We show that if player1’s private

information reveals player2’s productivity while2 has no private information (i.e.

“1 knows2’s productivity”), then the folk theorem holds in general, while if only

player2 knows player2’s productivity, the folk theorem can fail, and moreover the

limit equilibrium payoffs can be bounded away from efficiency. Intuitively, player

2 cannot be induced to reveal the state when doing so would lower his equilibrium

payoff, and this leads to a bound on the extent to which equilibria can trade off

player2’s payoffs between the two states; in some cases this bound is so strong

that it rules out the efficient outcome.

Finally, we specialize to the case of a known monitoring structure, where we

show that the set of limit equilibrium payoffs with imperfectly observed actions

is the same as in the observed-action case studied by [21] and [22] provided that

the monitoring structure satisfies a full-rank condition. [22] provide an equiva-

lent characterization (for observed actions) that has a much different form; each

characterization may be better suited for some applications. Our results show that

their conclusions about limit payoffs extend to imperfectly observed actions; their

work is complementary and more informative because it also explicitly constructs

equilibrium strategies. The assumption of a known monitoring structure also lets

us provide a sufficient condition for the folk theorem that is easier to verify: the

key is that for every pair of statesω andω ′, there be at least three players whose

private information distinguishes betweenω andω ′; [22] use this same condi-

tion to show in games with observed actions the set of ex-post perfect equilibria

is non-empty. In the case of one-sided incomplete information, we are able to

further extend and refine their results; for example, we find a simpler sufficient

condition for the existence of PTXE.
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2 Framework

2.1 Model

Let I = {1, · · · , I} be the set of players. At the beginning of the game, Nature

chooses the state of the worldω from a finite setΩ = {ω1, · · · ,ωO}. Then each

player observes a private signal, which gives (possible imperfect) information

about the true stateω. The set of playeri’s private signals,Θi , is a partition

of Ω, and given the true stateω ∈ Ω, he observes a private signalθi ∈ Θi that

containsω . For notational convenience, letθi(ω) denote thisθi , i.e.,ω ∈ θi(ω),
and letθ(ω) = (θi(ω))i∈I . Givenθi ∈ Θi , player i forms a prior about the true

stateω, which is denoted byµi(θi) ∈4θi .

Each period, players move simultaneously, and playeri ∈ I chooses an action

ai from a finite setAi .5 Given an action profilea = (ai)i∈I ∈ A≡×i∈I Ai , players

observe a public signaly from a finite setY according to the probability function

πω(a) ∈ 4Y; we call the functionπω the “monitoring structure.” Playeri’s re-

alized payoff isuω
i (ai ,y), so that her expected payoff conditional onω ∈ Ω and

a∈ A is gω
i (a) = ∑y∈Y πω

y (a)uω
i (ai ,y); gω(a) denotes the vector of expected pay-

offs associated with action profilea. If there areω ′ , ω such thatθi(ω) = θi(ω ′)
anduω

i (ai ,y) , uω ′
i (ai ,y) for someai ∈ Ai andy∈Y, then we assume that player

i does not observe the realized value ofui as the game is played.6 If there are

no suchω ′ , ω, it is immaterial whether or notui is observed, as playeri can

compute it fromai , y, andθi .7

In the infinitely repeated game, players have a common discount factorδ ∈
(0,1). Let (aτ

i ,y
τ) be the realized pure action and observed signal in periodτ,

and denote playeri’s private history from period one to periodt ≥ 1 by ht
i =

(aτ
i ,y

τ)t
τ=1. Let h0

i = /0, and for eacht ≥ 0, let Ht
i be the set of allht

i . Likewise, a

public history up to periodt ≥ 1 is denoted byht = (yτ)t
τ=1, andHt denotes the set

5All of our results extend immediately to the case whereAi depends onθi .
6As we explain in the next section, the equilibria we consider remain equilibria when players

are provided with additional channels of information about the state. Thus the assumption that
players do not observe their realized payoffs has no role in the results; it allows us to generalize
past work (such as most of the references in footnote 2) that did not require players observe their
realized payoffs.

7We call this the case of known own payoffs; note that it does not imply that each playeri
knows the their stage-game payoff functiongω

i as that payoff is an expected value with respect to
the possibly unknown distributionπω .
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of all ht . A strategy for playeri is defined to be a mappingsi : Θi×
⋃∞

t=0Ht
i →4Ai .

Let Si be the set of all strategies for playeri, and letS=×i∈I Si .

We define the feasible payoff set in a given stateω to beVω ≡ co{(gω(a))|a∈
A}= {gω(η)|η ∈∆(A)}, where∆(A) is the set of all probability distributions over

A,8 and we define the set of feasible payoffs of the overall game to be

V ≡×ω∈ΩVω .

Note that a feasible payoff vectorv∈V may be generated using different action

distributionsηω in each stateω. If players observeω at the start of the game and

are very patient, then any payoff inV can be obtained by state-contingent strategy

of the infinitely repeated game.

2.2 Preliminaries

Playeri’s strategysi ∈ Si is type-contingently publicif it depends only onθi ∈ Θi

andht ∈ Ht , that is, ifsi(θi ,ht
i) = si(θi , h̃t

i) wheneverht
i andh̃t

i correspond to the

same public history. A strategy profiles∈ S is type-contingently public ifsi is

type-contingently public for eachi ∈ I . Given a type-contingently public strategy

profiles∈ S, let si |(θi ,ht) denote playeri’s continuation strategy when his type isθi

and the past public history isht , and lets|(θ ,ht) = (si |(θi ,ht))i∈I .9 This paper studies

a special class of Nash equilibria calledperfect type-contingently public ex-post

equilibria or PTXE.

Definition 1. A strategy profiles∈ S is a perfect type-contingently public ex-

post equilibrium(PTXE) if s is type-contingently public, and if for anyω ∈ Ω
andht ∈ Ht , s|(θ(ω),ht) is a Nash equilibrium of the infinitely repeated game with

Ω = {ω}.

Remark 1. PTXE is an ex-post equilibrium concept in the sense that it requires

each player’s strategy is a best response irrespective of the true value of the state.

8As in the standard case of a game with a known monitoring structure, the feasible setVω is
both the set of feasible average discounted payoffs in the infinite-horizon game when players are
sufficiently patient and the set of expected payoffs of the stage game that can be obtained when
players use of a public randomizing device to implement distributionη over the action profiles.

9Here, the word “continuation strategy” is an abuse of language, becausesi |(θi ,ht ) is not a
strategy for the entire game; it specifies a play for a given typeθi but not forθ̃i , θi .
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For this reason, the set of PTXE is independent of the players’ beliefs about the

state, which makes the analysis of equilibria much simpler. The ex-post property

also implies that a PTXE for a given partitionΘ is also a PTXE for any finer par-

tition; in particular a PTXE for the trivial partition (where players have no private

information) remains a PTXE whenΘ is informative. The PPXE we considered

in [17] are the same as the PTXE with the trivial partition; the point of this paper

is that finer partitions onΘ can support a larger set of PTXE, as in the examples

of Section 6.3, where there are efficient limit PTXE but the PPXE are bounded

away from efficiency uniformly inδ .

Remark 2. A second consequence of the ex-post nature of PTXE is that a PTXE

of the game where players do not observe their realized stage game payoffs re-

mains a PTXE if players do observe these realized payoffs and the payoffs reveal

information aboutω. That said, additional equilibrium outcomes could arise here

under a relaxed equilibrium definition that allowed players to condition on this

additional private information. We do not investigate that possibility in this paper.

Given a discount factorδ ∈ (0,1), let E(δ ) denote the set of PTXE payoffs,

i.e., E(δ ) is the set of all vectorsv = (vω
i )(i,ω)∈I×Ω ∈ RI×|Ω| such that there is a

PTXE s satisfying(1− δ )E
[

∑t=1δ t−1gω
i (at)

∣∣s,ω
]

= vω
i for all i andω. Note

thatv∈ E(δ ) specifies the equilibrium payoff for all players and all states.

Let ~αi = (αθi
i )θi∈Θi whereαθi

i ∈ 4Ai for eachθi ∈ Θi , and let~α = (~αi)i∈I .

Thus~α is an action profile contingent on private information; it specifies a mixed

actionαi for each private signalθi of each playeri. Let g(~α) = (gω
i (αθ(ω)))(i,ω)

denote the payoff vector of type-contingent profile~α. If the action profileα is

used independently of private information, we denote its payoff vector byg(α) =
(gω

i (α))(i,ω).

By definition, any continuation strategys|ht = (s|θ(ω),ht )ω∈Ω of a PTXE is

also a PTXE. Thus any PTXE specifies PTXE continuation play after each signal

y, where the continuation payoffsw(y) = (wω
i (y))(i,ω)∈I×Ω corresponding to this

signal specify the payoffs for every player and every state. We will writeπω(α) ·
wω

i for the the expected continuation payoff at stateω under action profileα.

In [17], we showed that the limit of the equilibrium payoffs asδ → 1 is deter-

mined by the solutionsk∗(~α,λ ,δ ) to the following family of linear programming

problems; for each type-contingent action profile~α, directionλ ∈ RI×|Ω| \ {0},
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andδ ∈ (0,1),

k∗(~α,λ ,δ ) = max
v∈RI×|Ω|

w:Y→RI×|Ω|

λ ·v subject to

(i) vω
i = (1−δ )gω

i (αθ(ω))+δπω(αθ(ω)) ·wω
i (1)

for all i, ω,

(ii) vω
i ≥ (1−δ )gω

i (ai ,α
θ−i(ω)
−i )+δπω(ai ,α

θ−i(ω)
−i ) ·wω

i (2)

for all i, ω, andai ∈ Ai ,

(iii) λ ·v≥ λ ·w(y) for all y∈Y.

If there is no(v,w) satisfying the constraints, we setk∗(~α ,λ ,δ ) = −∞; if for

everyK > 0 there is(v,w) satisfying all the constraints andλ · v > K, then let

k∗(~α ,λ ,δ ) = ∞.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-

centive compatibility, and condition (iii) requires that the continuation payoffs lie

in half-space corresponding to direction vectorλ and payoff vectorv. Note that

whenλ ω
i , 0 andλ ω ′

j , 0 for someω ,ω ′, condition (iii) allows “utility transfer”

across states.

As argued in [17], the scorek∗(~α ,λ ,δ ) is independent ofδ , so we denote it

by k∗(~α ,λ ). Let k∗(λ ) = sup~α k(~α ,λ ) be the highest score attainable in direction

λ for any choice of~α. For eachλ ∈ RI×|Ω| \ {0} andk ∈ R, let H(λ ,k) = {v∈
RI×|Ω||λ ·v≤ k}, with H(λ ,k) = RI×|Ω| for k = ∞ or λ = 0, andH(λ ,k) = /0 for

k =−∞ andλ , 0. Now let

H∗(λ ) = H(λ ,k∗(λ ))

be the maximal half-space in directionλ , and let

Q =
⋂

λ∈RI×|Ω|
H∗(λ ).

The following proposition establishes that the intersectionQ of the maximal half-

spaces is equal to the limit set of PTXE payoffs asδ → 1. The proof is omitted,

as it is similar to [17], which builds on the techniques of [14].

Proposition 1. If dimQ = I ×|Ω|, thenlimδ→1E(δ ) = Q.
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Our goal in this paper is to use this characterization to computelimδ→1E(δ ) in

some cases of interest. To do this we provide conditions under which the maximal

half-spaces in the various directions are “large.”

3 Examples

Before developing our general results, we provide a few examples of PTXE to

illustrate the ways that players can “learn the state” in equilibrium.

Example 1. Let I = {1,2} and Ω = {ω1,ω2}, Θ1 = {(ω1),(ω2)} and Θ2 =
{(ω1,ω2)}. Player1 chooses eitherU or D, and player2 chooses eitherL or

R. The payoffs for stateω1 are in the left panel, and those for stateω2 are in the

right.

L R

U 2, 2 0, 1

D 1, 0 1, 1

L R

U 1, 1 0, 1

D 1, 0 2, 2

In this example, both(U,L) and(D,R) are static ex-post equilibria.

Assume thatY = A andπω
y (a) = ε if y , a. Note that the signal distribution

does not depend on the state here, so that players cannot learn the state from

state-independent actions. Instead, the efficient outcome((2,2),(2,2)) can be

approximated if player1 reveals his private information to player2 through his

actions. Specifically, consider the following three-phase automaton.

• Phase 1. Player1 choosesU if θ1 = (ω1), andD if θ1 = (ω2). Player2

choosesL. If the observed signal isy = (U,L) or y = (D,R), then go to

Phase 2. Ify = (D,L), then go to Phase 3. Ify = (U,R), stay.

• Phase 2. Players choose(U,L) in the rest of the game.

• Phase 3. Players choose(D,R) in the rest of the game.

We claim that the strategy profile with initial state Phase1 is a PTXE if δ
is close to one andε is close to zero. First, players do not want to deviate in

Phase2 or Phase3, as(U,L) and(D,R) are static ex-post equilibria. Also, player

1 with θ1 = (ω1) does not want to deviate in Phase1. Indeed, if he deviates
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to D, then players are likely to go to Phase3 and play(D,R) forever, while if

he does not deviate, then players are likely to go to Phase2 so that(U,L) is

played thereafter. Likewise, we can check that player1 with θ1 = (ω2) does not

want to deviate in Phase1. Player2’s prescribed play is always a static best

response, and since2’s play has no effect on the transitions between stages2 does

not want to deviate either. Note that the payoffs of this equilibrium converge to

((2− ε,2− ε),(2− ε,2− ε)).

Example 2. The next example is a two-player partnership game with two actions

{Ci ,Di} per player, three possible outcomesH, M, L, and two states.10 The real-

ized payoff functions are independent ofω and given by

ui(Ci ,y) = r i(y)−ei and ui(Di ,y) = r i(y)

for eachi ∈ I , ω ∈ Ω, andy ∈ Y. We assume that the state only influences the

productivity of player2’s effort: If player 1 choosesC1 instead ofD1 then the

probabilities ofH andM increase bypH and pM, independent of the state. In

contrast, if player2 choosesC2 instead ofD2 then the probabilities ofH andM

increase byqH andqM in stateω1, but they increase only byβqH andβqM in state

ω2. If β < 1, the states have different outcome distributions, so can be identified

by repeated observation. We impose restrictions on the realized payoffs so that

the stage game payoffs in each state correspond to a prisoner’s dilemma:Di is a

dominant strategy, so(D1,D2) is a static ex-post equilibrium,(C1,C2) is efficient,

andV∗ has a non-empty interior.11

Using our results, we will show that a folk theorem holds if player1 knows

the state and player2 does not, but that PTXE payoffs are bounded away from

efficiency for some parameters if player2 knows the state and player1 does not.

The key is that player2 can learn whether the true state isω1 or ω2 by playingC2

no matter what player1 does, since player2’s marginal productivity is dependent

on the state but not on player1’s action. Thus for the case in which player only1

10If there were only two outcomes as in Radner, Myerson, and Maskin [30], then payoffs are
bounded away from efficiency even if the state is known, while with three outcomes the folk
theorem holds for generic signal distributions as FLM shows.

11Specifically we assumer i(H) > r i(M) > r i(L); e1 > pH(r1(H)− r1(L)) + pM(r1(M)−
r1(L)); e2 > qH(r2(H) − r2(L)) + qM(r2(M) − r2(L)); e1 < pH(r1(H) + r2(H) − r1(L) −
r2(L)) + pM(r1(M) + r2(M)− r1(L)− r2(L)); ande2 < βqH(r1(H) + r2(H)− r1(L)− r2(L)) +
βqM(r1(M)+ r2(M)− r1(L)− r2(L)).
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knows the state, even if player1 tries to hide his private information, player2 can

learn the true state from the signal distribution. On the other hand, if only player

2 knows the state and he tries to hide it then player1 cannot learn the true state.

That is, if player2 choosesD2, then for given any player1’s action, the signal

distribution is the same for both states, and hence player1 cannot learn from the

observed signals. See Section 6.3 for details.

4 Sufficient Conditions for Efficient State Learning

In this section we develop “distinguishability” conditions that are sufficient for

limit equilibria in which payoffs are as if players have learned the true state. In

Section 4.2, we relate these conditions to the incentives and information of the

players; roughly speaking, the distinguishability conditions are equivalent to as-

suming that if informed players are willing to reveal the state then uninformed

players cannot prevent them from doing so. When the distinguishability condi-

tions are satisfied, the maximal half-spaces in “cross-state” directions (those that

give non-zero weights to payoffs in two or more states) are the whole space, so

the cross-state directions impose no constraints on the limit equilibrium payoffs.

The maximal half-spaces in directions that give non-zero weights to a single state

are the same as in the known-state case considered by FLM, so combining FLM’s

assumptions, our distinguishability assumptions, and Proposition 1 establishes the

existence of limit equilibria with the desired properties.

4.1 Statewise Full Rank and Statewise Distinguishability

We begin with the statewise full rank condition, which is sufficient for the maxi-

mal score to be infinity for all cross-state directions. For each(i,ω) ∈ I ×Ω and

each type-contingent action profile~α ∈ ×i∈I ×θi∈Θi 4Ai , let Π(i,ω)(~α) be a ma-

trix with rows (πω
y (ai ,α

θ−i(ω)
−i ))y∈Y for all ai ∈ Ai . Let Π(i,ω)( j,ω ′)(~α) be a matrix

constructed by stacking two matrices,Π(i,ω)(~α) andΠ( j,ω ′)(~α).

Definition 2. For each(i,ω) and( j,ω ′) satisfyingω ,ω ′, profile~α hasstatewise

full rank for (i,ω) and( j,ω ′) if Π(i,ω)( j,ω ′)(~α) has rank|Ai |+ |A j |.

Statewise full rank implies that players can distinguishω andω ′ even if player
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i at stateω or player j at stateω ′ deviates. For each pair(i,ω) and( j,ω ′), there

is more likely to be a type-contingent profile~α that has statewise full rank as

the partitionsΘl for player l become finer. The intuition is that if playerl has

more information, then it is easier for the players to learn the true state through

inferences based on playerl ’s actions. Note that PPXE does not allow players to

condition their play on their types, so it rules out this information channel. We

say more about learning from other players’ actions in Section 4.2.

The next lemma shows that statewise full rank is sufficient for the maximal

score to be infinity for all cross-state directions. We say that a type-contingent pro-

file ~α is ex-post enforceableif there arev∈ RI×|Ω|, δ ∈ (0,1), andw= (wω)ω∈Ω :

Y → RI×|Ω| such that (1) holds for alli andω , and (2) holds for alli, ω, andai .

The proof of the lemma is omitted, as it is very similar to Lemma 6 of [17].

Lemma 1. Suppose profile~α is ex-post enforceable and has statewise full rank

for (i,ω) and( j,ω ′) satisfyingω ,ω ′. Then,k∗(~α,λ ) = ∞ for λ such thatλ ω
i , 0

andλ ω ′
j , 0.

While the statewise full rank condition is sufficient for efficient learning, it re-

quires at least|Ai |+ |A j | signals. The following condition, statewise distinguisha-

bility, can be satisfied with fewer signals and is sufficient for the maximal score

to be infinity for all cross-state directions that have at least one positive compo-

nent. We will soon relax this condition even further, but this definition is a useful

expositional tool for explaining the more complicated definitions to come.

Definition 3. Profile~α statewise distinguishes(i,ω) from ( j,ω ′) if there isξ =
(ξ (y))y∈Y ∈ R|Y| such that

(i) πω(αθ(ω)) ·ξ > πω ′
(αθ(ω ′)) ·ξ ,

(ii) πω(αθ(ω))·ξ = πω(ai ,α
θ−i(ω)
−i )·ξ ≥ πω(a′i ,α

θ−i(ω)
−i )·ξ for all ai ∈ suppαθi(ω)

i

anda′i ∈ Ai ,

(iii) πω ′
(αθ(ω ′)) ·ξ = πω ′

(a j ,α
θ− j (ω ′)
− j ) ·ξ for all a j ∈ A j .

To interpret this condition, without loss of generality we assumeπω ′
(αθ(ω ′)) ·

ξ = 0. Clause (i) of this condition assures that the signals generated by~α sta-

tistically distinguishω from ω ′, and moreover picks out a directionξ where the

12



difference has a particular sign. Clause (ii) says that changing playeri’s continu-

ation payoff function in stateω from wω
i (y) to wω

i (y)+ ξ (y) preserves incentive

compatibility for playeri, and clause (iii) says that the change in playeri’s continu-

ation payoff (of∆wω
i (y)≡ ξ (y)) can be offset to preserve the feasibility constraint

(λ ω
i ∆wω

i (y)+λ ω ′
j ∆wω̃

j (y) = 0) without changing playerj ’s expected continuation

payoff to any action. Since clause (i) impliesπω(αθ(ω)) · ξ > 0, this change in

the continuation payoffs increases playeri’s expected continuation payoff at state

ω, which implies an increases in the score forλ such thatλ ω
i > 0. Note that this

definition is not symmetric betweeni and j because condition (ii) is an inequality

and condition (iii) is an equality. When this condition is satisfied, scaling up the

vectorξ can generate arbitrarily large scores for all cross-state directionsλ that

have at least one positive component.

Our next step is to replace statewise distinguishability with an ensemble of

three weaker conditions- this ensemble is weaker because it will allow different

action profiles to be used in different directions.

Definition 4. Profile~α m-statewise distinguishes(i,ω) from ( j,ω ′) if there is

ξ = (ξ (y))y∈Y ∈ R|Y| such that

(i) πω(αθ(ω)) ·ξ > πω ′
(αθ(ω ′)) ·ξ ,

(ii) πω(αθ(ω))·ξ = πω(ai ,α
θ−i(ω)
−i )·ξ ≥ πω(a′i ,α

θ−i(ω)
−i )·ξ for all ai ∈ suppαθi(ω)

i

anda′i ∈ Ai ,

(iii) πω ′
(αθ(ω ′)) · ξ = πω ′

(a j ,α
θ− j (ω ′)
− j ) · ξ ≥ πω ′

(a′j ,α
θ− j (ω ′)
− j ) · ξ for all a j ∈

suppαθ j (ω ′)
j anda′j ∈ A j .

Note that this condition relaxes statewise distinguishability by replacing the

last equality in (iii) with an inequality. Lemma 4(a) below shows that a profile that

m-statewise distinguishes(i,ω) from ( j,ω ′) can be used to generate an infinite

score for allλ such thatλ ω
i > 0 and λ ω ′

j < 0; the “m” refers to the fact that

positive and negative components are “mixed” in these directions.

Definition 5. Profile~α p-statewise distinguishes(i,ω) from ( j,ω ′) if there is

ξ = (ξ (y))y∈Y ∈ R|Y| such that

(i) πω(αθ(ω)) ·ξ > πω ′
(αθ(ω ′)) ·ξ ,
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(ii) πω(αθ(ω))·ξ = πω(ai ,α
θ−i(ω)
−i )·ξ ≥ πω(a′i ,α

θ−i(ω)
−i )·ξ for all ai ∈ suppαθi(ω)

i

anda′i ∈ Ai ,

(iii) πω ′
(αθ(ω ′)) · ξ = πω ′

(a j ,α
θ− j (ω ′)
− j ) · ξ ≤ πω ′

(a′j ,α
θ− j (ω ′)
− j ) · ξ for all a j ∈

suppαθ j (ω ′)
j anda′j ∈ A j .

Lemma 4(b) below shows that a profile thatp-statewise distinguishes(i,ω)
from ( j,ω ′) can be used to generate an infinite score for all “positive” directions

λ such thatλ ω
i > 0 andλ ω ′

j > 0. As this suggests, this condition is symmetric:

Lemma 2. Suppose~α p-statewise distinguishes(i,ω) from ( j,ω ′). Then~α p-

statewise distinguishes( j,ω ′) from (i,ω).

Proof. Let ξ be a vector utilized top-statewise distinguish(i,ω) from ( j,ω ′).
Then the vector−ξ satisfies all the conditions ofp-statewise distinguishability of

( j,ω ′) from (i,ω). Q.E.D.

Note that if~α statewise distinguishes(i,ω) from ( j,ω ′), then itm-statewise

distinguishes this pair andp-statewise distinguishes this pair.

As we will explain later, the combination ofm- andp-statewise distinguisha-

bility is sufficient for a static-threat folk theorem. However, it is not sufficient

for a perfect folk theorem, because the maximal score might not be high enough

in cross-state directions where all the non-zero components are negative. The

following condition is sufficient for the score to be infinitely large for these direc-

tions.

Definition 6. Profile ~α n-statewise distinguishes(i,ω) from ( j,ω ′) if there is

ξ = (ξ (y))y∈Y ∈ R|Y| such that

(i) πω(αθ(ω)) ·ξ > πω ′
(αθ(ω ′)) ·ξ ,

(ii) πω(αθ(ω))·ξ = πω(ai ,α
θ−i(ω)
−i )·ξ ≤ πω(a′i ,α

θ−i(ω)
−i )·ξ for all ai ∈ suppαθi(ω)

i

anda′i ∈ Ai ,

(iii) πω ′
(αθ(ω ′)) · ξ = πω ′

(a j ,α
θ− j (ω ′)
− j ) · ξ ≥ πω ′

(a′j ,α
θ− j (ω ′)
− j ) · ξ for all a j ∈

suppαθ j (ω ′)
j anda′j ∈ A j .
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Lemma 4(c) below shows that a profile thatn-statewise distinguishes(i,ω)
from ( j,ω ′) can be used to generate an infinite score for all “negative” directions

λ such thatλ ω
i < 0 andλ ω ′

j < 0. Also,n-statewise distinguishability is symmetric,

as the next lemma shows. We omit the proof, since it is very similar to that of

Lemma 2.

Lemma 3. Suppose~α n-statewise distinguishes(i,ω) from ( j,ω ′). Then~α n-

statewise distinguishes( j,ω ′) from (i,ω).

Now we state the main result of this section, which shows that the score for

cross-state directions can be infinity if the corresponding statewise condition is

satisfied. The proof can be found in the appendix.

Lemma 4.

(a) Suppose~α is ex-post enforceable andm-statewise distinguishes(i,ω) from

( j,ω ′). Thenk∗(α ,λ ) = ∞ for λ such thatλ ω
i > 0 andλ ω ′

j < 0.

(b) Suppose~α is ex-post enforceable andp-statewise distinguishes(i,ω) from

( j,ω ′). Thenk∗(α ,λ ) = ∞ for λ such thatλ ω
i > 0 andλ ω ′

j > 0.

(c) Suppose~α is ex-post enforceable andn-statewise distinguishes(i,ω) from

( j,ω ′). Thenk∗(α ,λ ) = ∞ for λ such thatλ ω
i < 0 andλ ω ′

j < 0.

4.2 Sufficient Conditions for Statewise Distinguishability

In games with incomplete information, players have three possible sources of in-

formation about the state: (i) inference based on the public signals at a state-

independent action profile; (ii) the information contained in their own types; and

(iii) inferences based on the correlation between the opponents’ actions and the

opponents’ types. The first information source is studied by [17]. The second

information source is sufficient for perfect learning if every player can distinguish

ω andω ′. (Note that this corresponds to assumption (ii) of condition (SFR) in

Section 5.) Here we investigate the third information source: inferences based on

the correlation between the opponents’ actions and the opponents’ types. For this

information to generate large scores in cross-state directions, the informed player

must be willing to reveal his information, and uninformed players must not “jam”
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the information revelation of their informed opponents. We address these issues

by providing simple sufficient conditions under which a type-contingent action

profile satisfies the various distinguishability conditions.

Definition 7. Player i can reveal whetherω or ω ′ if there area∈ A anda′i ∈ Ai

such thatπω(a) , πω ′
(a′i ,a−i).

This says that playeri can generate different signal distributions atω andω ′,
using a type-contingent action. Note that this is necessary for players−i to learn

the state from the correlation between playeri’s actions and his types. As the

next lemma shows, this condition is sufficient forp-statewise distinguishability

for (i,ω) and(i,ω ′).

Lemma 5. Supposeθi(ω), θi(ω ′) and playeri can reveal whetherω or ω ′. Then

there is~α that p-statewise distinguishes(i,ω) from (i,ω ′).

Proof. Let a ∈ A anda′i ∈ Ai be such thatπω(a) , πω ′
(a′i ,a−i). Then there is

ξ ∈ R|Y| such thatπω(a) ·ξ > πω ′
(a′i ,a−i) ·ξ . Let a∗i ∈ argmaxa′′i πω(a′′i ,a−i) ·ξ

and a∗∗i ∈ argmina′′i πω ′
(a′′i ,a−i) · ξ . Let ~α be a type-contingent action profile

such that players play(a∗i ,a−i) at stateω and (a∗∗i ,a−i) at stateω ′. Then this

~α p-statewise distinguishes(i,ω) from (i,ω ′). Indeed, clause (i) follows from

πω(a∗i ,a−i) ·ξ ≥ πω(a) ·ξ > πω ′
(a′i ,a−i) ·ξ ≥ πω ′

(a∗∗i ,a−i) ·ξ . Also, clauses (ii)

and (iii) hold, by definition ofa∗i anda∗∗i . Q.E.D.

To get the intuition, recall thatp-statewise distinguishability is relevant to di-

rectionsλ that put positive weights on payoff for(i,ω) and(i,ω ′). In these di-

rections, playeri’s payoffs atω andω ′ are both maximized, so she is willing to

reveal her information at both states.

In contrast, even if playeri can reveal whetherω or ω ′ there might be no

profile thatm-statewise distinguishes(i,ω) from (i,ω ′). The reason is that ifλ
puts negative weight on payoffs at(i,ω ′), playeri’s payoffs atω ′ is minimized in

the corresponding LP problem so that he might not want to reveal the true state.

However, the following condition is sufficient form-statewise distinguishability;

the idea is that playeri at stateω ′ cannot conceal his private information if he

cannot generate the same signal distribution as in stateω.

Definition 8. Playeri at ω ′ cannot hide stateω if there isa∈ A such thatπω(a)
is not in the convex hull of{πω ′

(a′i ,a−i)}a′i∈Ai
.
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Lemma 6. Supposeθi(ω) , θi(ω ′) and playeri at ω ′ cannot hide stateω. Then

there is~α thatm-statewise distinguishes(i,ω) from (i,ω ′).

Proof. Leta∈Abe such thatπω(a) is not in the convex hull of{πω ′
(a′i ,a−i)}a′i∈Ai

.

Then from the separating hyperplane theorem, there isξ such thatπω(a) · ξ >

πω ′
(a′i ,a−i)·ξ for all a′i ∈Ai . Leta∗i ∈argmaxa′i πω(a′i ,a−i)·ξ anda∗∗i ∈argmaxa′i πω ′

(a′i ,a−i)·
ξ . Let~α be a type-contingent action profile such that players play(a∗i ,a−i) at state

ω and(a∗∗i ,a−i) at stateω. We claim that this~α m-statewise distinguishes(i,ω)
from (i,ω ′). Clause (i) follows fromπω(a∗i ,a−i) ·ξ ≥ πω(a) ·ξ > πω ′

(a∗∗i ,a−i) ·
ξ . Also, clauses (ii) and (iii) hold, by definition ofa∗i anda∗∗i . Q.E.D.

A similar idea applies ton-statewise condition; here a relevant directionλ puts

negative weights on payoffs at(i,ω) and(i,ω ′), so we need to take into account

playeri’s incentive for information revelation at both states.

Definition 9. Player i cannot shuffle statesω and ω ′ if there isa ∈ A such that

the convex hull of{πω(a′i ,a−i)}a′i∈Ai
and the convex hull of{πω ′

(a′i ,a−i)}a′i∈Ai
do

not intersect.

Lemma 7. Supposeθi(ω) , θi(ω ′) and playeri cannot shuffle statesω andω ′.
Then there is~α thatn-statewise distinguishes(i,ω) from (i,ω ′).

Proof. Let a∈A be such that the convex hull of{πω(a′i ,a−i)}a′i∈Ai
and the convex

hull of {πω ′
(a′i ,a−i)}a′i∈Ai

do not intersect. Then from the separating hyperplane

theorem, there isξ such thatπω(a′i ,a−i) · ξ > πω ′
(a′′i ,a−i) · ξ for all a′i ∈ Ai and

a′′i ∈ Ai . Let a∗i ∈ argmina′i πω(a′i ,a−i) ·ξ anda∗∗i ∈ argmaxa′i πω ′
(a′i ,a−i) ·ξ . Let

~α be a type-contingent action profile such that players play(a∗i ,a−i) at stateω
and(a∗∗i ,a−i) at stateω. Then as in the proof of the last lemma, we can show that

this~α n-statewise distinguishes(i,ω) from (i,ω ′). Q.E.D.

Next we consider statewise distinguishability for(i,ω) and( j,ω ′) wherei , j

and only playeri knows the state; i.e.,θi(ω) , θi(ω ′) andθ j(ω) = θ j(ω ′).

Definition 10. Player j at stateω ′ is irrelevant for(i,ω) if there area∈ A and

a′i ∈ Ai such thatπω(a) is not a linear combination of{πω ′
(a′i ,a

′
j ,a−i j )}a′j∈A j

.

This says that there is an action profilea such that if playeri wants to re-

veal whether the true state isω or ω ′ by choosingai at ω and a′i at ω ′, the
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uninformed playerj cannot interfere, in the sense that a change in playerj ’s

action at stateω ′ cannot result in the overall distribution wheni plays a′i be-

ing the same as the distribution inω undera. For an example where this con-

dition fails, suppose that there are two players withAi = {a′i ,a′′i } for each i,

and thatπω(a′1,a
′
2) = πω(a′′1,a

′′
2) = πω ′

(a′1,a
′′
2) = πω ′

(a′′1,a
′
2) andπω(a′1,a

′′
2) =

πω(a′′1,a
′
2) = πω ′

(a′1,a
′
2) = πω ′

(a′′1,a
′′
2). Here playerj at stateω ′ is not irrelevant

for (i,ω). On the other hand this condition can be satisfied even if playerj has

an option to “jam” playeri’s information revelation: Suppose that there are two

states,ω1 andω2, and that player1 knows the state while other players do not.

Let A1 = {U,D} andA2 = {J,NJ}. Suppose that player1’s action is observable

if player 2 choosesNJ, while it is unobservable if player2 choosesJ. Suppose

that playerl ’s actions are always observable for eachl , 1. Let a be an action

profile such thata1 = U anda2 = NJ, and leta′1 = D. Thenπω1(a) is not a linear

combination of{πω2(a′1,a
′
2,a−12)}a′2∈A j

, so that player2 at stateω2 is irrelevant

for (1,ω1).
The following lemma shows that this irrelevance condition is sufficient for

statewise distinguishability (and hence sufficient forp- and m-statewise distin-

guishability).

Lemma 8. Supposeθi(ω) , θi(ω ′) and playerj , i at ω ′ is irrelevant for(i,ω).
Then there is~α that statewise distinguishes(i,ω) from ( j,ω ′).

Proof. Let a ∈ A anda′i ∈ Ai be such thatπω(a) is not a linear combination of

{πω ′
(a′i ,a

′
j ,a−i j )}a′j∈A j

. Then there isξ such thatπω(a) > 0 andπω ′
(a′i ,a

′
j ,a−i j ) ·

ξ = 0 for all a′j ∈ A j . Let a∗i ∈ argmaxa′′i ∈Ai
πω(a′′i ,a−i) · ξ , and let~α be a type-

contingent action profile such that players play(a∗i ,a−i) at stateω and(a′i ,a−i) at

stateω ′. We claim that this~α statewise distinguishes(i,ω) from ( j,ω ′). Clause

(ii) of statewise distinguishability follows froma∗i ∈ argmaxa′′i ∈Ai
πω(a′′i ,a−i) ·ξ .

Also, sinceπω(a∗i ,a−i) ≥ πω(a) > 0 andπω ′
(a′i ,a

′
j ,a−i j ) · ξ = 0 for all a′j ∈ A j ,

clause (i) and (iii) hold. Q.E.D.

The intuition is as follows. Recall that statewise distinguishability is a combi-

nation of p- andm-statewise distinguishability, so the corresponding directionλ
gives positive weight to playeri’s payoff at stateω. Therefore, playeri at state

ω is willing to reveal his private information. Also, playerj at stateω ′ cannot

interfere with this information revelation.
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For n-statewise distinguishability, we need a stronger assumption, since the

correspondingλ puts negative weight on playeri’s payoff at stateω, so that he

might want to hide his private information.

Definition 11. Player j at stateω ′ is strongly irrelevant for(i,ω) if there are

(ai ,a−i)∈A such that any convex combination of{πω(a′i ,a−i)}a′i∈Ai
is not a linear

combination of{πω ′
(ai ,a′j ,a−i j )}a′j∈A j

.

This condition is a combination of “cannot hide” and “irrelevant” conditions:

here playeri at stateω cannot conceal his private information and playerj at state

ω ′ is irrelevant to playeri’s information revelation.

Lemma 9. Supposeθi(ω) , θi(ω ′) and player j , i at ω ′ is strongly irrelevant

for (i,ω). Then there is~α thatn-statewise distinguishes(i,ω) from ( j,ω ′).

Proof. Leta∈Aanda′i ∈Ai be such that any convex combination of{πω(a′′i ,a−i)}a′′i ∈Ai

is not a linear combination of{πω ′
(a′i ,a

′
j ,a−i j )}a′j∈A j

. Then there isξ such that

πω(a′′i ,a−i) > 0 for all a′′i ∈ Ai andπω ′
(a′i ,a

′
j ,a−i j ) · ξ = 0 for all a′j ∈ A j . Let

a∗i ∈ argmina′′i ∈Ai
πω(a′′i ,a−i) ·ξ , and let~α be a type-contingent action profile such

that players play(a∗i ,a−i) at stateω and(a′i ,a−i) at stateω ′. Then as in Lemma

8, we can show that this~α n-statewise distinguishes(i,ω) from ( j,ω ′). Q.E.D.

When playerj knows the state and playeri does not (i.e.,θ j(ω) , θ j(ω ′) and

θi(ω) = θi(ω ′)), the statewise conditions are satisfied under the same conditions

as the case where playeri knows the state. Recall thatp- andn-statewise condi-

tions are symmetric (Lemmas 2 and 3), so the sufficient conditions for the previous

case apply. For them-statewise condition, we obtain the following lemma.

Lemma 10. Supposeθ j(ω) , θ j(ω ′) and playeri , j at ω is strongly irrelevant

for ( j,ω ′). Then there is~α thatm-statewise distinguishes(i,ω) from ( j,ω ′).

Proof. Leta∈Aanda′j ∈A j be such that any convex combination of{πω ′
(a′′j ,a− j)}a′′j∈A j

is not a linear combination of{πω(a′i ,a
′
j ,a−i j )}a′i∈Ai

. Then there isξ such that

πω ′
(a′′j ,a− j) < 0 for all a′′j ∈ A j andπω(a′i ,a

′
j ,a−i j ) · ξ = 0 for all a′i ∈ Ai . Let

a∗j ∈ argmaxa′′j∈A j
πω ′

(ai ,a′′j ,a−i j ) · ξ , and let~α be a type-contingent action pro-

file such that players play(a′j ,a− j) at stateω and(a∗j ,a− j) at stateω ′. Then we

can show that this~α n-statewise distinguishes(i,ω) from ( j,ω ′). Q.E.D.

19



Finally we consider pairs(i,ω) and( j,ω ′) where there is a playerl , i, j who

knows the state (here possiblyi = j). If either playeri or j can distinguishω from

ω ′, then the previous lemmas still apply. Thus the interesting case is when both

playeri and j do not know the state.

Definition 12. Both playeri at ω and playerj at ω ′ are irrelevant for information

revelation by playerl , i, j if there area∈ A anda′l ∈ Al such that any linear com-

bination of{πω(a′i ,al ,a−il )}a′i∈Ai
is not a linear combination of{πω ′

(a′j ,a
′
l ,a− jl )}a′j∈A j

.

This says that if playerl wants to reveal his private information then neither

player i at ω nor player j at ω ′ can interfere. The next lemma shows that this

condition is sufficient forp-, m-, andn-statewise distinguishability.

Lemma 11. Suppose there isi ∈ I , j ∈ I , l , i, j such thatθl (ω) , θl (ω ′) and that

both playeri at ω and playerj at ω ′ are irrelevant for information revelation by

playerl . Then there is an~α that p-, m-, andn-statewise distinguishes(i,ω) from

( j,ω ′).

Proof. Leta∈Aanda′l ∈Al be such that any linear combination of{πω(a′i ,al ,a−il )}a′i∈Ai

is not a linear combination of{πω ′
(a′j ,a

′
l ,a− jl )}a′j∈A j

. Then there areξ andκ > 0

such thatπω(a′i ,ai ,a−il ) = κ for all a′i ∈ Ai and πω ′
(a′j ,a

′
l ,a− jl ) · ξ = 0 for all

a′j ∈ A j . Let~α be a type-contingent action profile such that players playa at state

ω and(a′l ,a−l ) at stateω ′. Then it is easy to check that this~α satisfies all the

conditions ofp-, m-, andn-statewise distinguishability. Q.E.D.

5 Ex-Post Folk Theorems

In this section we provide two sorts of folk theorem in PTXE: The first shows

that all feasible individually rational payoffs can be approximated by payoffs of

PTXE, and the second uses weaker conditions to obtain a “static-threats” version.

In both cases, the key is finding the appropriate conditions on the combination of

initial private information and the information revealed by the public outcomes.

Recall thatΠ(i,ω)(~α) is a matrix with rows(πω
y (ai ,α

θ−i(ω)
−i ))y∈Y for all ai ∈Ai ,

and thatΠ(i,ω)( j,ω ′)(~α) is a matrix constructed by stacking two matrices,Π(i,ω)(~α)
andΠ( j,ω ′)(~α).
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Definition 13. Profile~α hasindividual full rank for (i,ω) if Π(i,ω)(~α) has rank

|Ai |. Profile~α hasindividual full rank if it has individual full rank for all players

and all states.

This condition implies that at each state, every possible deviation of any one

player leads to a statistically different distribution on outcomes.

Definition 14. For each(i,ω) and( j,ω) satisfyingi , j, profile~α haspairwise

full rank for (i,ω) and( j,ω) if Π(i,ω)( j,ω)(~α) has rank|Ai |+ |A j |−1.

Note that pairwise full rank implies individual full rank; it implies that devia-

tions by one player can be distinguished from deviations by another.

Condition IFR. Every pure action profile~α has individual full rank.

Condition PFR. For each(i,ω) and( j,ω) satisfyingi , j, there is a profile~α
that has pairwise full rank for(i,ω) and( j,ω).

Condition SFR. For each pair of states(ω,ω ′) satisfyingω , ω ′, at least one of

the following two conditions holds: (i) For eachi and j (possiblyi = j), there is a

profile~α that has statewise full rank for(i,ω) and( j,ω ′), or (ii) θl (ω) , θl (ω ′)
for all l ∈ I .

(SFR) requires that for each pair of statesω andω ′ , ω, either (i) for every

(i, j) there is a profile that lets players distinguish stateω from stateω ′, regardless

of whether playeri deviates in stateω or player j deviates in stateω ′, or (ii)

players can distinguish theseω andω ′ using their private informationθ .

Note that (SFR) fails for(i,ω) and(i,ω ′) if πω is independent ofω (so that

the monitoring structure is known) andθ j(ω) = θ j(ω ′) for all j (so no player’s

private information distinguishes betweenω andω ′). We say more about the case

of a known monitoring structure in Section 7.

The next proposition establishes a general folk theorem in PTXE. LetV∗ ≡
{v∈V|∀i ∈ I∀ω ∈ Ω vω

i ≥ vω
i } wherevω

i = minα−i maxai g
ω
i (ai ,α−i). A subset

W of RI×|Ω| is smoothif it is closed and convex; it has a non-empty interior; and

there is a unique unit normal for each point on bdW.12

12A sufficient condition for each point on bdW to have a unique unit normal is that bdW is a
C2-submanifold ofRI×|Ω|.
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Proposition 2. Suppose (IFR), (PFR), and (SFR) hold. Then for any smooth strict

subsetW of V∗, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

To prove this proposition, we compute the maximal scores for each direction.

The key point is that (SFR) implies the maximal score for cross-state directions

can be made large enough to establish the folk theorem. When the first condition

in (SFR) holds, that conclusion comes from Lemma 1. When the second condition

holds, the following lemma applies:

Lemma 12. Suppose (PFR) and (IFR) hold. Letλ be such thatθi(ω) , θi(ω ′)
for all i ∈ I , ω ∈ Ω and ω ′ , ω satisfying(λ ω

j ) j∈I , 0 and (λ ω ′
j ) j∈I , 0. Then

k∗(λ )≥maxv∈V∗ λ ·v.

This lemma shows that the maximal score in cross-state directions doesn’t

exclude any feasible payoffs if all players know the state. The intuition behind

the lemma is simple. If each playeri can distinguishω and ω ′ using private

informationθi , players can choose different action profiles contingent on whether

the true state isω or ω ′. Therefore we expect that the score on stateω will not

constrain the score on stateω ′ so that the maximal score for directions vectors

that only weight these two states will be high enough to achieve the folk theorem.

The formal proof is delegated to the appendix.

Combining this lemma and Lemma 1 shows that the maximum score in all

cross-state directions is at leastmaxv∈V∗ λ · v. This implies that the setQ is de-

termined byλ that has non-zero components only for a single state. The follow-

ing lemmas show that (IFR) and (PFR) imply that the maximal score for such

directions ismaxv∈V∗ λ · v. The proofs are omitted, as they are straightforward

generalizations of FLM.

Lemma 13. Suppose (PFR) holds. Thenk∗(λ ) = maxv∈V∗ λ ·v for all λ such that

(i) (λ ω
i )i∈I , 0 for someω and(λ ω ′

i )i∈I = 0 for all ω ′ , ω, and (ii) (λ ω
i )i∈I has

at least two non-zero components or at least one positive component.

Lemma 14. Suppose (IFR) holds. Thenk∗(λ ) = maxv∈V∗ λ ·v for all λ such that

λ ω
i < 0 for some(i,ω) andλ ω ′

j = 0 for all ( j,ω ′) , (i,ω).

From these lemmas, we obtainQ= V∗ and hence Proposition 2 follows. Thus

the folk theorem obtains if (IFR), (PFR), and (SFR) hold and ifV∗ is full dimen-

sional.
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As we have seen in Section 4.1, statewise full rank is stronger than needed for

efficient learning, and can be replaced with statewise distinguishability.

Condition Pointwise-SD. For eachω andω ′ satisfyingω , ω ′, at least one of

the following conditions holds: (i) For eachi and j (possiblyi = j), there is an

ex-post enforceable action profile~α that m-statewise distinguishes(i,ω) from

( j,ω ′), there is an ex-post enforceable action profile~α ′ that p-statewise distin-

guishes(i,ω) from ( j,ω ′), and there is an ex-post enforceable action profile~α ′′

thatn-statewise distinguishes(i,ω) from ( j,ω ′), or (ii) θl (ω), θ(ω ′) for all l ∈ I .

This says that for each pair of statesω andω ′ , ω , either (i) for every(i, j)
there is a profile that lets players distinguish stateω from stateω ′, regardless of

whether playeri deviates in stateω or player j deviates in stateω ′, or (ii) players

can distinguish theseω andω ′ using their private informationθ .

Note that (Pointwise-SD) is weaker than (SFR), since if~α has statewise full

rank, then it satisfies them-, p-, andn-statewise distinguishability conditions, but

the converse is false, as the pointwise condition allows different profiles to be used

for different directions. On the other hand, (Pointwise-SD) is a “strong” form of

statewise distinguishability as it requires then-statewise condition.

Proposition 3. Suppose (IFR), (PFR), and (Pointwise-SD) hold. Then for any

smooth strict subsetW of V∗, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈
(δ ,1).

The proof of this proposition parallels to that of Proposition 2, with the dif-

ference that Lemma 4 is used instead of Lemma 1 for the conclusion that the

maximum scores in cross-state directions is infinite.

An even weaker condition is sufficient for a static-threat folk theorem: For that

result it is sufficient that them- and p-statewise conditions can each be satisfied

for some profile.

Condition Pointwise-WeakSD. For eachω and ω ′ satisfyingω , ω ′, at least

one of the following conditions holds: (i) For eachi and j (possiblyi = j), there

is an ex-post enforceable action profile~α that m-statewise distinguishes(i,ω)
from ( j,ω ′) and there is an ex-post enforceable action profile~α ′ that p-statewise

distinguishes(i,ω) from ( j,ω ′), or (ii) θl (ω) , θ(ω ′) for all l ∈ I .
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Lemmas 5, 6, 8, and 11 imply that (Pointwise-WeakSD) holds if the condition

(i), (ii), or (iii) we stated in the introduction is satisfied.

Proposition 4. Suppose (PFR) and (Pointwise-WeakSD) hold. Assume that there

is an ex-post equilibrium~α0, i.e.,~α such thatαθi(ω)
i ∈ argmaxαi g

ω
i (αi ,α

θ−i(ω)
−i )

for all i ∈ I andω ∈ Ω. LetV0 ≡ {v∈V|∀i ∈ I , ∀ω ∈ Ω vω
i ≥ gω

i (α0)}. Then,

for any smooth strict subsetW of V0, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for

all δ ∈ (δ ,1).

The proof of this proposition is similar to that of Proposition 3, with the fol-

lowing differences. In this proposition, we do not assume (IFR) or (Pointwise-

SD), so that Lemma 4(c) and Lemma 14 may not apply. Therefore, it might be

thatk∗(λ ) < maxv∈V∗ λ ·v for eachλ , 0 such thatλ ω
i ≤ 0 for all (i,ω). For these

directions, we apply the next lemma to show thatk∗(λ )≥maxv∈V0 λ ·v. The proof

is straightforward and hence omitted.

Lemma 15. Suppose there is a static ex-post equilibrium~α0. Then, for any direc-

tion λ , k∗(~α0,λ )≥ λ ·g(~α0).

Also, since Proposition 4 does not assume (IFR), Lemma 12 does not apply,

so it might be thatk∗(λ ) < maxv∈V∗ λ · v for some cross-state directionsλ . For

these directions, we use the following lemma to show thatk∗(λ )≥maxv∈V0 λ ·v.

The proof of the lemma can be found in the appendix.

Lemma 16. Suppose (PFR) holds. Letλ be such thatθi(ω) , θi(ω ′) for all

i ∈ I , ω ∈Ω andω ′ , ω satisfying(λ ω
j ) j∈I , 0 and(λ ω ′

j ) j∈I , 0. Then,k∗(λ )≥
maxv∈V0 λ ·v.

6 Applications and Examples

This section explores the effect of some plausible assumptions about the moni-

toring structure. The first two cases are fairly general; the third illustrates how to

apply the general results by determining the limit payoffs in the partnership game

described in Section 3.
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6.1 Separable State Space

In general, the set of limit payoffs depends on the state’s impact on both the moni-

toring structure and the payoff functions. When these dependencies are separable,

the characterization of the limit set can be simplified. To see this, suppose that the

state consists of two components, one that influences realized payoffs but not the

monitoring structure and one that influences the monitoring structure but has no

effect on the realized payoffs. That is,Ω = Φ×Ψ, whereuω
i (ai ,y) = uω ′

i (ai ,y) if

φ = φ ′, andπω
y (a) = πω ′

y (a) if ψ = ψ ′. For example, this separability condition is

consistent with a quantity-setting oligopoly game where players do not know the

probability distribution of the market price, and each player knows their own cost

function but not the cost function of the opponents: Here the price is the public

signaly, and the state (cost parameters) has no effect on the distribution of prices

at fixed output levels. Similar examples arise in partnership games where players

know their own effort cost but not that of the opponents.

Condition ψ-SFR. For each(i,ω) and( j,ω ′) satisfyingψ , ψ ′, there is an ex-

post enforceable profile~α that has statewise full rank for(i,ω) and( j,ω ′).

For eachψ ∈Ψ, let Q(ψ) denote the setQ for the known monitoring structure

game corresponding toψ, i.e., the game where the state space is restricted to

Ω = Φ×{ψ} and the payoff functionsuω
i and the monitoring structureπω for

a givenω ∈ Ω are the same as those of the original game. The next proposition

shows that the equilibrium payoff setQ of the entire game is a product ofQ(ψ)
over allψ. Proposition 7 in Section 7 gives a formula to calculate each setQ(ψ)
when the monitoring structureπω has “strong full rank.”

Proposition 5. Suppose the state spaceΩ is separable and (ψ-SFR) holds. Then

Q =×ψ∈ΨQ(ψ).

Proof. As Lemma 1 shows, if a profile~α is ex-post enforceable and has statewise

full rank for (i,ω) and( j,ω ′) satisfyingω , ω ′, thenk∗(~α,λ ) = ∞ for direction

λ such thatλi(ω) , 0 andλ j(ω ′) , 0. Thus from (ψ-SFR),k∗(λ ) = ∞ for all λ
such thatλi(ω) , 0 andλ j(ω ′) , 0 for (ω,ω ′) satisfyingψ , ψ ′. This proves

Q =×ψ∈ΨQ(ψ). Q.E.D.
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6.2 Games with a Product Structure

In this section, we briefly discuss games with a product structure, in which there is

a separate signalyi associated with the action of each playeri, each playeri knows

the distribution of “her” signal, and no playerj , i has any private information

about the distribution ofyi . This case is of interest as a number of economic

situations have this extra structure; it applies for example to bilateral production

and exchange, where the public signal is the quality of a player’s output, and each

player has private information about the probability that she will make a high-

quality good when she exerts high effort. This structure on its own is not sufficient

for the various folk theorems in Section 5, becausem-statewise distinguishability

can fail, but there is full statewise distinguishability in all of the other cross-state

directions.

Formally, we assume that (i)Y =×i∈IYi ; (ii) Ω =×i∈I Ωi ; (iii) ∑y−i∈Y−i
πω

y (a)=

∑y−i∈Y−i
πω ′

y (a) for eachi ∈ I , a∈A, yi ∈Yi , ω ∈Ω, andω ′ ∈Ω such thatωi = ω ′
i ;

and (iv) πω
y (a) = ∏i∈I ∑y−i∈Y−i

πω
y (a) for eacha ∈ A, y ∈ Y, andω ∈ Ω. Note

that the distribution ofyi depends only onai andωi here. We also assume that

Θi = {θ ωi
i |ωi ∈Ωi} whereθ ωi

i = {ω ′|ω ′
i = ωi}; that is, playeri knows the distri-

bution of yi but not the distribution ofy−i . We also assume that every state has

some impact on the distribution of signals in the following sense: for eachω ∈Ω
andω ′ , ω, there isa∈ A such thatπω(a) , πω ′

(a). Note that this rules out the

case where the signal distribution is known and the states refer only to the player’s

payoffs.

Intuitively, in this setup each playeri is able to signal his private informationωi

whenever he wants, as no other player’s action can be confused with his own. Thus

we might expect that the main obstacle to information revelation comes when

playeri’s information will be used to lower his payoff. We verify these intuitions

in the on-line supplementary material. Specifically we provide an example where

m-statewise distinguishability fails, and prove the following lemma.

Lemma 17.

(a) Let (i,ω) and( j,ω ′) be such thati , j andωi , ω ′
i . Then there is a profile

~α that statewise distinguishes(i,ω) from ( j,ω ′).

(b) Let (i,ω) and ( j,ω ′) be such thatω−i j , ω ′
−i j (and possiblyi = j). Then
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there is a profile~α that p-, m-, and n-statewise distinguishes(i,ω) from

( j,ω ′).

(c) Let (i,ω) and( j,ω ′) be such thatω j , ω ′
j (and possiblyi = j). Then there

is a profile~α that p-statewise distinguishes(i,ω) from ( j,ω ′).

6.3 A Two-Player, Two-Actions Partnership

Now we apply our results to Example 2 from Section 3 to illustrate the effect

of players knowing their own productivity. There are two players, two actions

Ai = {Ci ,Di}, two states, and three outcomesY = {H,M,L}, and the state only

influences the productivity of player2’s effort. We will show that the PTXE folk

theorem holds when player1’s private information distinguishesω1 from ω2. On

the other hand, when player2’s private information distinguishesω1 from ω2 but

player1’s does not, PTXE cannot approximate the efficient outcome for a range of

parameters. Intuitively, player2 cannot be induced to reveal the state when doing

so would lower his equilibrium payoff, and this leads to a bound on the extent to

which equilibria can trade off player2’s payoffs between the two states; in some

cases this bound is so strong that it rules out the efficient outcome.

If player1 choosesC1 instead ofD1, the probabilities ofH andM increase by

pH and pM, independent of the state. In contrast, if player2 choosesC2 instead

of D2, the probabilities ofH andM increase byqH andqM in stateω1, but they

increase only byβqH andβqM in stateω2.13 We assume that the vectors(pH , pM)
and(qH ,qM) are linearly independent; this implies that individual full rank and

pairwise full rank are satisfied at every profile and every state. However, as [17]

show, no type-independent profilep-statewise distinguishes(1,ω1) and(2,ω2),
and as a result, the set of PPXE payoffs is bounded away from efficiency uniformly

in the discount factor.

6.3.1 The Case where Player1 Knows the State

Suppose that player1knows the state and player 2 does not, that is,Θ1 = {(ω1),(ω2)}
andΘ2 = {(ω1,ω2)}. The following table shows whether statewise distinguisha-

bility conditions are satisfied or not in this case; see the on-line supplementary

13Thus while the state space has a product structure the signals do not.
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material for the formal proof.

(i,ω), ( j,ω ′) p-statewise m-statewise

(1,ω1), (1,ω2) (C1,C2) (C1,C2)
(1,ω2), (1,ω1) (C1,C2) (C1,C2)
(2,ω1), (2,ω2) ((C1,D1),C2) (C1,C2)
(2,ω2), (2,ω1) ((C1,D1),C2) ((C1,D1),C2)
(1,ω1), (2,ω2) ((C1,D1),C2) (C1,C2)
(2,ω2), (1,ω1) ((C1,D1),C2) Not satisfied

(2,ω1), (1,ω2) (C1,C2) (C1,C2)
(1,ω2), (2,ω1) (C1,C2) ((C1,D1),C2)

Sincem-statewise distinguishability does not hold for((2,ω2),(1,ω1)), the max-

imal scores for the corresponding directions are not infinitely large. Nevertheless,

as shown in the on-line supplementary material, these scores are high enough to

achieve the ex-post folk theorem for anyβ ∈ (0,1). Very roughly speaking, this

is because the state-independent profile(D1,C2) yields sufficiently high payoffs

in the corresponding directions (i.e.,λ ·g(D1,C2) > maxv∈V∗ λ ·v for directionsλ
such thatλ ω2

2 > 0, λ ω1
1 < 0, λ ω2

2 = 0, andλ ω2
1 ≤ 0) and hence players need not to

learn the state to obtain high scores for these directions. This example shows that

the statewise conditions are sufficient but not necessary for the folk theorem.

6.3.2 The Case where Player2 Knows the State

Suppose next that player2 knows the state and player1 does not. The following

table shows whether statewise conditions are satisfied or not. Again, see the on-

line supplementary material for the formal proof.

(i,ω), ( j,ω ′) p-statewise m-statewise

(1,ω1), (1,ω2) (C1,C2) (C1,C2)
(1,ω2), (1,ω1) (C1,C2) (C1,C2)
(2,ω1), (2,ω2) (C1,(C1,D2)) (C1,C2)
(2,ω2), (2,ω1) (C1,(C1,D2)) Not satisfied

(1,ω1), (2,ω2) (C1,(C1,D2)) (C1,C2)
(2,ω2), (1,ω1) (C1,(C1,D2)) (C1,(C1,D2))
(2,ω1), (1,ω2) (C1,C2) (C1,C2)
(1,ω2), (2,ω1) (C1,C2) Not satisfied
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In this case the on-line supplementary material shows that the folk theorem fails

because the maximum score in directionλ = ((0,−1),(0,1)) is too low. The

reason is that state-contingent play is needed to generate high payoffs toward this

direction and the failure ofm-statewise distinguishability implies that learning the

true state is somewhat costly. Moreover, if the cost of effort is high, then for

λ = ((0,−ε),(1,0)) the maximal score can be so low that it rules out equilibrium

with the payoffs of the efficient action profile(C1,C2). Specifically, this is the

case if player1’s effort cost is high enough so thatgω2
1 (D1,C2)−gω2

1 (C1,C2) is

close to zero.14 Intuitively, player2 cannot be induced to reveal the state when

doing so would lower his equilibrium payoff, and as a result the maximal score

for directionλ with λ ω1
2 < 0 is lower thanλ ·g(C1,C2).

7 Known Monitoring Structure

So far we have studied a general model, where both payoffs and monitoring struc-

ture can depend on the state of the world, and provided sufficient conditions for

the folk theorems. However, these sufficient conditions may not be satisfied in

some games. One notable example is the case of a known monitoring structure;

here a state-independent profileα cannot induce different signal distributions for

different states, so for players to distinguish the states they must have “enough”

private information. In this section we provide conditions for the limit equilib-

rium payoffs of games with a known monitoring structure to coincide with the

limit equilibrium payoffs of the game with observed actions. This shows that the

results of [21] and [22] are robust to imperfect monitoring, as PTXE reduces to

the belief-free equilibria of those papers for perfect-monitoring games. Also we

provide sufficient condition for folk theorems with a known monitoring structure.

Formally, themonitoring structure is knownif πω
y (a) = πω ′

y (a) for all y∈Y,

a∈ A, ω ∈ Ω, andω ′ , ω. We maintain this assumption throughout this section.

Sinceπω does not depend onω, we denote it byπ.

In this section, we often impose the following strong full rank condition. As

we will see, under this condition the case of a known but imperfect monitoring

14The derivation of this bound on the maximal score is very similar to the proof of Claims
12 and 13 which are used to prove Proposition 12; all of these proofs are in the supplementary
materials.
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structure is very similar to that where actions are perfectly observed. LetΠi(a)
denote the matrix with rows(πy(a′i ,a−i))y∈Y for all a′i ∈ Ai . Also, for eachi ∈ I ,

j ∈ I , a∈ A, anda′ ∈ A, let Π(i,a)( j,a′) denote the matrix constructed by stacking

two matricesΠi(a) andΠ j(a′).

Definition 15. The monitoring structureπ hasstrong full rankif

(i) Π(i,a)( j,a) has rank|Ai |+ |A j |−1 for all i, j ∈ I anda∈ A; and

(ii) for any i, j,∈ I , if there isl , i, j, thenΠ(i,a)( j,(a′l ,a−l )) has rank|Ai |+ |A j |
for all l , i, j, a∈ A, anda′l , al .

Note that we allowi = j in this definition, and hence the second clause is not

vacuous even in two-player games. The first clause imposes FLM’s pairwise full

rank condition on every action profile. The second clause implies that the state-

wise full rank condition holds for(i,ω) and( j,ω ′) if player l can distinguish the

statesω andω ′.15 The strong full rank condition is obviously satisfied for games

with perfectly observable actions. It is also satisfied if the signals are isomor-

phic to the actions and players observe the intended action with a small noise, i.e.

Y = A andπy(a) < ε for all a∈ A andy, a whereε is close to zero.

7.1 Known Monitoring Structure and Strong Full Rank

In this subsection, we show that games with a known monitoring structure and

strong full rank have the same set of limit equilibrium payoffs as games with

observed actions. Specifically, we have the following proposition.

Proposition 6. Suppose that the monitoring structure is known and has strong full

rank. Suppose also thatQ is full dimensional. Then the limit PTXE payoff set for

this game,limδ→1E(δ ) = Q, is equal to the limit set of PTXE payoffs (or belief-

free equilibrium payoffs) for the game that has the same information structure

(Ω,(Θi)i∈I ) and the same expected payoffs(gi)i∈I but with perfectly observable

actions.

15To see this, let~α be such thatαθ(ω) = a andαθ(ω ′) = (a′l ,a−l ). Then this~α has statewise full
rank for(i,ω) and( j,ω ′), as the corresponding matrix has rank|Ai |+ |A j |.
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This shows that with a known monitoring structure and strong full rank, the

analysis of the observed-action case carries over in the obvious way. When strong

full rank fails, the known-monitoring-structure game can have a strictly smaller set

of limit equilibrium payoffs than when actions are perfectly observable, for much

the same reason that this can occur when the structure of the game is known.

To prove this proposition, we compute the maximal score for each directionλ
and show that the score does not depend on the monitoring imperfection. For this,

it is helpful to classify the directions so that the maximal score can be computed

in the same way for all directions in a given class. As shown by FLM, when the

state is known, there are three sorts of directions to consider: (i) maximizing the

payoff of some playeri (λi > 0 andλ j = 0 for all j , i), (ii) minimizing the payoff

of some playeri (λi < 0 andλ j = 0 for all j , i), or (iii) trading off the payoffs

of two or more players (λi , 0 for at least two playersi.) In our analysis here we

combine all three sorts of directions together into the classΛ1 of “single-state”

directions; the maximal scores for suchλ can be computed as in FLM.Λ2 through

Λ4 are the sets of cross-state directions that satisfy the relevant version of statewise

distinguishability, so the maximal scores in these directions are infinitely large.Λ5

andΛ6 are directions that (i) weight only the the payoffs of a single playeri but do

so in more than one state and (ii) do not satisfy the relevant version of statewise

distinguishability.Λ7 is all of the directions that do not fit into classes1 through

6. The maximal scores forΛ5, Λ6, andΛ7 are not necessarily high enough for the

folk theorem.

Let Λ1 be the set ofλ ∈ RI×|Ω| such that(λ ω
i )i∈I , 0 for someω ∈ Ω and

(λ ω ′
i ))i∈I = 0 for all ω ′ , ω. Since these directions consider only a single state,

Lemmas 5.2 and 5.4 of FLM show that the maximum score is the maximum fea-

sible score. As a result we obtain the following lemma.

Lemma 18. Suppose the monitoring structure is known and has strong full rank.

Then for eachλ ∈ Λ1, k∗(λ ) = maxv∈V∗ λ ·v.

Let Λ2 be the set ofλ such that there arei ∈ I , j ∈ I , l , i, j, ω ∈Ω, andω ′ ∈Ω
such thatλ ω

i , 0, λ ω ′
j , 0, andθl (ω) , θl (ω ′). Here playerl can distinguish

betweenω andω ′, and the strong full rank condition implies that if playerl tries

to reveal this information by a state-contingent action, both playeri at stateω and

player j at stateω ′ are irrelevant to the information revelation. Thus playerl ’s
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private information can be fully revealed, and as a result the maximal scores for

these directions are infinity.

Lemma 19. Suppose the monitoring structure is known and has strong full rank.

Then for eachλ ∈ Λ2, k∗(λ ) = ∞.

Proof. Let λ ∈ Λ2, and leti ∈ I , j ∈ I , l , i, j, ω ∈ Ω, andω ′ ∈ Ω be such that

λ ω
i , 0, λ ω ′

j , 0, andθl (ω) , θl (ω ′). Since monitoring structure has strong full

rank, both playeri at ω and playerj at ω ′ are irrelevant for playerl ’s information

revelation. Then from Lemmas 11 there is−→α that p, m, andn-statewise distin-

guishes(i,ω) from ( j,ω ′) and from Lemma 4, we havek∗(λ ) = ∞. Q.E.D.

Let Λ3 be the set ofλ such that there arei ∈ I , j , i, ω ∈Ω, andω ′ , ω such

thatλ ω
i > 0, λ ω ′

j , 0, andθi(ω) , θi(ω ′). Here playeri can distinguish between

ω andω ′, and the score is increasing in playeri’s payoff in stateω. Since the

strong full rank condition implies that playerj at ω ′ is irrelevant to(i,ω), player

i’s private information can be fully revealed and the maximal scores for these

directions are infinity as well.16

Lemma 20. Suppose the monitoring structure is known and has strong full rank.

Then for eachλ ∈ Λ3, k∗(λ ) = ∞.

Proof. Let λ ∈ Λ3, and leti ∈ I , j , i, ω ∈ Ω, andω ′ ∈ Ω be such thatλ ω
i > 0,

λ ω ′
j , 0, andθi(ω) , θi(ω ′). Sine the monitoring structure has strong full rank,

player j atω ′ is irrelevant for(i,ω). Then from Lemma 8, there is~α that statewise

distinguishes(i,ω) from ( j,ω ′). Sinceλ ω
i > 0, Lemma 4 applies. Q.E.D.

Let Λ4 be the set ofλ such that there arei ∈ I , ω ′ ∈ Ω, andω ′′ , ω ′ such

thatλ ω ′
i > 0, λ ω ′′

i > 0, (λ ω
j )ω∈Ω = 0 for all j , i, andθi(ω ′) , θi(ω ′′). Here only

player i’s payoffs matter, the score is increasing ini’s payoff in ω andω ′, and

playeri can distinguish between these two states. Once again, the maximal scores

for these directions are infinity, as strong full rank implies that playeri can reveal

whetherω or ω ′.

Lemma 21. Suppose the monitoring structure is known and has strong full rank.

Then for eachλ ∈ Λ4, k∗(λ ) = ∞.
16The intersection ofΛ2 andΛ3 might be non-empty but this is irrelevant as the maximal score

is infinity for either case.
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Proof. Let λ ∈ Λ4, and let i ∈ I , ω ′ ∈ Ω, and ω ′′ ∈ Ω be such thatλ ω ′
i > 0,

λ ω ′′
i > 0, andθi(ω ′) , θi(ω ′′). Since the monitoring structure has strong full rank,

playeri can reveal whether the state ifω or ω ′. Then from Lemma 5, there is~α
that p-statewise distinguishes(i,ω ′) from (i,ω ′′). Sinceλ ω ′

i > 0 andλ ω ′′
i > 0,

Lemma 4(b) applies. Q.E.D.

Let Λ5(i) be the set ofλ such that(λ ω
i )ω∈Ω ≤ 0, (λ ω

i )ω∈Ω , 0, (λ ω
j )ω∈Ω = 0

for all j , i, and θ j(ω) = θ j(ω ′) for all j , i, ω ∈ Ω, and ω ′ , ω satisfying

λ ω
i , 0 andλ ω ′

i , 0. Here only playeri’s payoffs matter, the score is decreasing in

i’s payoff, and no other player can distinguish between the states; these directions

determine the minmax payoff for playeri, taking into account a trade-off between

the minmax level in one state and the payoffs in other states. LetΛ5 =
⋃

i∈I Λ5(i).

Lemma 22. Suppose the monitoring structure is known and has strong full rank.

Then for eachi and λ ∈ Λ5(i), k∗(λ ) = maxα−i minai ∑ω∈Ω λ ω
i (ω)gω

i (ai ,α−i),
that is,k∗(λ ) =−minα−i maxai ∑ω∈Ω−λ ω

i gω
i (ai ,α−i).

The proof is delegated to the appendix. The intuition is as follows: Strong

full rank implies that constraints (i) and (ii) can be satisfied for allj , i, and

because(λ ω
j )ω∈Ω = 0 the continuation payoffs assigned toj , i are irrelevant.

Thus we only need to consider continuation payoffs for playeri that satisfy (i)

and (ii) for ω such thatλ ω
i , 0, and the feasibility constraint (iii). Note also

that player j , i has to use the same actionα j for all statesω with λ ω
i , 0, as

he cannot distinguish these states by definition ofΛ5(i). Summing the incentive-

compatibility constraints over the statesω (taking into account thatλ ω
i ≤ 0) yields

a “weaker aggregate incentive condition,” which corresponds to a game with a

known state where playeri’s payoff is∑ω∈Ω−λ ω
i gω

i (a). Using this analogy, we

can show that the maximal score in the direction of minimizing this payoff (that

is, maximizing−∑ω∈Ω−λ ω
i vω

i ) is at most the corresponding minmax payoff,

namely−minα−i maxai ∑ω∈Ω−λ ω
i gω

i (ai ,α−i). We then use the strong full rank

assumption to show that this bound is attained.

Let Λ6 be the set ofλ such that there isi ∈ I such thatλ ω
i > 0 for someω ∈Ω,

(λ ω
j )ω∈Ω = 0 for all j , i, θi(ω ′) = θi(ω ′′) for all ω ′ ∈Ω andω ′′ , ω ′ satisfying

λ ω ′
i > 0 andλ ω ′′

i > 0, andθ j(ω ′) = θ j(ω ′′) for all j , i, ω ′ ∈ Ω, andω ′′ , ω
satisfyingλ ω ′

i , 0 andλ ω ′′
i , 0. In words, this says that only playeri’s payoff has

non-zero weights, that playeri cannot distinguish between any two states where
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his utility gets positive weight, and no other player can distinguish between any

two states where playeri’s utility gets non-zero weight.

Finally, we construct a setΛ7 that we show contains all directions that do not

belong to one of the preceding sets. We defineΛ7 to be the set of allλ satisfying

the following properties.

(i) (λ ω
i )ω∈Ω , 0 and(λ ω

j )ω∈Ω , 0 for somei ∈ I and j , i.

(ii) (λ ω ′
l )l∈I , 0 and(λ ω ′′

l )l∈I , 0 for someω ′ ∈Ω andω ′′ , ω ′.

(iii) θl (ω ′′′) = θl (ω ′′′′) for l ∈ I , ω ′′′ ∈ Ω, andω ′′′′ , ω ′′′, if λ ω ′′′
l ′ , 0 for some

l ′ , l andλ ω ′′′′
l ′′ , 0 for somel ′′ , l .

(iv) θl (ω ′′′) = θl (ω ′′′′) for l ∈ I , ω ′′′ ∈Ω, andω ′′′′ ,ω ′′′ if λ ω ′′′
l > 0 andλ ω ′′′′

l ′ ,
0 for somel ′ , l .

In words, this is the set of directions where the score depends on the payoffs of

playersi and j in some stateω, and where it also depends on the payoff of some

player l (possiblyi or j) in two other statesω ′ andω ′′, but this playerl cannot

distinguish between any statesω ′′′ andω ′′′′ if either (condition (iii)) in each of

these states there is at least one other player whose payoff matters or (condition

(iv)) the score is increasing inl ’s payoff in stateω ′′′ and depends on the payoff of

somel ′ in stateω ′′′′.

Lemma 23.
⋃7

n=1Λn = RI×|Ω| \{(0, · · · ,0)}
Proof. Let λ be such thatλ , (0, · · · ,0) and λ < Λ7. It suffices to show that

λ ∈ ⋃6
n=1Λn. If λ does not satisfy the clause (ii) of the definition ofΛ7, then

λ ∈ Λ1. If λ does not satisfy (iii), thenλ ∈ Λ2. If λ does not satisfy (iv), then

λ ∈ Λ3. If λ satisfies (iii) and (iv) but not (i), thenλ ∈ Λ4⋃
Λ5⋃

Λ6. Q.E.D.

Lemma 24. Suppose the monitoring structure is known and has strong full rank.

Then for eachλ ∈ Λ6⋃
Λ7, k∗(λ ) = maxα λ ·g(α).

The proof is given in the appendix. The first step of the proof is to show that

for eachλ ∈ Λ6⋃
Λ7, there is a single “type”θ ∗i that is relevant; we use this to

show that the upper and lower bounds on the score are bothmaxα λ ·g(α).
Combining the above lemmas yields the following characterization of the

maximal scores in each direction and thus of the setQ.
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Proposition 7. Suppose the monitoring structure is known and has strong full

rank. Then

k∗(λ ) =





maxv∈V∗ λ ·v if λ ∈ Λ1.

∞ if λ ∈ Λ2⋃
Λ3⋃

Λ4

maxα−i minai ∑ω∈Ω λ ω
i gω

i (ai ,α−i) if λ ∈ Λ5(i)
maxα λ ·g(α) if λ ∈ Λ6⋃

Λ7

,

andQ =
⋂

i∈{1,...,7},λ∈Λi H∗(λ ).

This proposition shows that the monitoring imperfection does not affect the

maximal score. Then the setQ does not depend on the monitoring imperfection

as well, and hence Proposition 6 follows.

7.2 One-Sided Incomplete Information

In this subsection we consider the case where only player1’s payoff function

is uncertain, and he knows his own payoff function while the other players do

not. Formally, we say the game has one-sided incomplete information ifgω
i (a) =

gω ′
i (a) for all i , 1, a∈A, ω ∈Ω, andω ′ ,ω, and thatθ1(ω) = (ω) for all ω, and

Θi = {(Ω)} for all i , 1. This is the assumption made in Hörner and Lovo (2009,

Section 4) and Ḧorner, Lovo and Tomala (2009, Section 6) analysis of reputations,

so once again our results can be seen as extending theirs.

Section 5 of [22] derives several sufficient conditions forQ (denoted byV∗ in

their paper) to be non-empty,17 which implies that there is a PTXE in the undis-

counted case. However these conditions do not assure the existence of PTXE with

the discounted payoff criterion used in this paper, becauseQ might not be full

dimensional and in that case their existence result and our Proposition 1 would

not apply. In this subsection, we give a simple sufficient condition forQ to be full

dimensional; under this condition,Q equals the set of limit PTXE payoffs so that

there are PTXE for sufficiently largeδ .

LetVU be the set of feasible payoffs of the stage game with public randomiza-

tion, that is,VU = co{g(a)|a∈ A}. Note that dimVU is at most|Ω|+ I −1, since

17They also give tight conditions forQ to be non-empty by imposing restrictions on the payoff
functions as well as on the information structure.
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gω
i (a) = gω ′

i (a) for all i , 1, a∈ A, ω ∈Ω, andω ′ , ω. Let

VU∗ = {v∈VU |∀i∃α−i∀ω, vω
i ≥max

ai
gω

i (ai ,α−i)}.

Condition Non-E. The setVU∗ has dimension|Ω|+ I −1.

This condition is likely to be satisfied if there is an actionα−1 that gives low

payoffs to player1 for every stateω . The next proposition shows that (Non-E) is

sufficient for the setQ to be full dimensional; then Proposition 1 applies, and so

(Non-E) is a sufficient condition for the existence of PTXE.

Proposition 8. Suppose that the monitoring structure is known and has strong

full rank, and that there is one-sided incomplete information. Suppose also that

(Non-E) holds. Then dimQ = I ×|Ω|.

Proof. Let v be in the relative interior ofVU∗. It suffices to show thatk∗(λ ) > λ ·v
for all λ .

First, considerλ ∈ Λ1. SinceVU∗ ⊆ V∗, v is an interior point ofV∗. Then

λ · v < maxv′∈V∗ λ · v′ = k∗(λ ) for λ ∈ Λ1. Likewise, sinceVU∗ ⊆ VU , v is an

interior point ofVU . Then,λ · v < maxv′∈VU λ · v′ = maxα λ ·g(α) = k∗(λ ) for

λ ∈ Λ6 andλ ∈ Λ7.

Sincek∗(λ ) = ∞ for λ ∈ Λ2⋃
Λ3⋃

Λ4, it remains to considerλ ∈ Λ5. By

the definition ofΛ5, (λ ω
1 )ω∈Ω , 0, λ ω

1 ≤ 0 for all ω ∈ Ω, and(λ ω
j )ω∈Ω = 0 for

all j , 1. Also, sincev is in the relative interior ofVU∗, there isα−1 such that

vω
1 > maxa1 gω

1 (a1,α−1) for all ω ∈Ω. Taken together, we obtain

λ ·v = ∑
ω∈Ω

λ ω
1 vω

1 < ∑
ω∈Ω

λ ω
1 max

a1
gω

1 (a1,α−1) = ∑
ω∈Ω

min
a1

λ ω
1 gω

1 (a1,α−1)

< max
α ′−1

min
a1

∑
ω∈Ω

λ ω
1 gω

1 (a1,α ′−1) = k∗(λ ),

as desired. Here, the equality in the third line comes from

λ ω
1 max

a1
gω

1 (a1,α−1) =−λ ω
1 min

a1
(−gω

1 (a1,α−1)) = |λ ω
1 |min

a1
(−gω

1 (a1,α−1))

= min
a1
|λ ω

1 |(−gω
1 (a1,α−1)) = min

a1
λ ω

1 gω
1 (a1,α−1)).

Q.E.D.

36



Remark 3. If there is a “commitment type”ω∗, for which there is somea∗1 ∈
A1 such thatgω∗

1 (a∗1,a−1) is independent ofa−1 andgω∗
1 (a∗1,a−1) ≥ gω∗

1 (a) for

all a1 ∈ A1, the minimax payoff of this commitment type equals his best payoff

gω∗
1 (a∗i ,a−i). In this case the setQ does not have full dimension, and our results

do not apply.18 Moreover, in this case the set of PTXE is often empty. Suppose

that there are two players, and player2 has a unique best reply againsta∗1, and call

it a∗2. In a PTXE, player1 in stateω∗ always playa∗1, so that player2 must play

a∗2 after every history, independently of the state. Then player1’s optimal strategy

for stateω ,ω∗ is to chooseaω
1 ∈ argmaxa1∈A1 gω

1 (a1,a∗2) after every history. For

this strategy profile to be a PTXE,a∗2 must be a best reply toaω
1 for all ω , ω∗,

but such a condition is not satisfied in general. Thus we conclude that there is no

PTXE for any discount factor.19

7.3 The Folk Theorem with Known Monitoring Structure

Our general folk theorem uses (SFR) or (Pointwise-SD), which require either that

all players can distinguish every pair of states, or that there are profiles~α that sat-

isfy various full rank conditions. With a known monitoring structure (and strong

full rank) the following simpler condition is sufficient.

Proposition 9. Suppose that the monitoring structure is known and has strong full

rank. Suppose also that for each(ω,ω ′) satisfyingω ,ω ′, there are at least three

players who can distinguishω andω ′, i.e., there arei ∈ I , j , i, andl , i, j such

that θi(ω) , θi(ω ′), θ j(ω) , θ j(ω ′), andθl (ω) , θl (ω ′). Then, for any smooth

strict subsetW ofV∗, there existsδ ∈ (0,1) such thatW⊆E(δ ) for all δ ∈ (δ ,1).

Proof. Since there are at least three players who can distinguishω andω ′, any

cross-state directionλ is an element ofΛ2. Then, from Proposition 7, we have

k∗(λ ) = ∞. Sincek∗(λ ) = maxv∈V∗ λ · v for any λ ∈ Λ1, we obtainQ = V∗.
Q.E.D.

Theorem 5.3 of [22] shows thatQ is non-empty for games with perfect mon-

itoring, if there are there are at least three players who can distinguishω andω ′

18[21] make essentially this point on page 475.
19If there are observed actions, these same assumptions imply that there is not a belief-free

equilibrium. [21] note that there is a belief-free equilibrium with a commitment type in strictly
dominant action games with a unique Stackelberg type.
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for each(ω,ω ′) satisfyingω , ω ′; our result shows that the assumptions of that

proposition are in fact sufficient for a folk theorem.

In the next proposition, we consider the case in which there are at least two

players who can distinguish states. Recall thatVU is the set of feasible payoffs of

the stage game with public randomization, that is,VU = co{g(a)|a∈ A}.

Proposition 10. Suppose that the monitoring structure is known and satisfies

strong full rank. Suppose also that for each(ω,ω ′) satisfyingω ,ω ′, there are at

least two players who can distinguishω andω ′, i.e., there arei ∈ I and j , i such

that θi(ω) , θi(ω ′) andθ j(ω) , θ j(ω ′). LetV∗∗ ≡ {v∈V∗|∃ṽ∈VU∀i ∈ I∀ω ∈
Ω, vω

i ≥ ṽω
i }. Then, for any smooth strict subsetW of V∗∗, there isδ ∈ (0,1)

such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

Note that if there is a “bad outcome”α ∈4A such thatgω
i (α)≤ vω

i for all i ∈ I

andω ∈ Ω, then we haveV∗∗ = V∗, so that the folk theorem obtains. Theorem

5.11 of [22] shows thatQ is non-empty for games with perfect monitoring and a

bad outcome, if there are there are at least two players who can distinguishω and

ω ′ for each(ω,ω ′) satisfyingω ,ω ′. Again our result shows that the assumptions

of the proposition are sufficient for a folk theorem.

Proof. It suffices to show thatV∗∗ ⊆Q. To do so, we compute the maximal score

k∗(λ ) for every direction, using Proposition 7.

First, considerλ ∈Λ1. It follows from Proposition 7 thatk∗(λ ) = maxv∈V∗ λ ·v
for this direction. Next, considerλ such thatλ ω ′

i , 0 andλ ω ′′
i , 0 for somei ∈ I ,

ω ′ ∈ Ω, andω ′′ , ω ′, and(λ ω
j )ω∈Ω = 0 for all j , i. Since there are at least two

players who can distinguishω ′ andω ′′, there isl , i such thatθl (ω ′) , θl (ω ′′).
Thusλ ∈ Λ2, and hencek∗(λ ) = ∞ for this direction.

Considerλ such thatλ ω ′
i , 0 andλ ω ′′

j , 0 for somei ∈ I , j , i, ω ′ ∈ Ω, and

ω ′′ , ω ′, andθl (ω ′) , θl (ω ′′) for somel , i, j. Again, λ ∈ Λ2 in this case, so

thatk∗(λ ) = ∞. Considerλ such thatλ ω ′
i > 0 andλ ω ′′

j , 0 for somei ∈ I , j , i,

ω ′ ∈Ω, andω ′′ , ω ′, andθl (ω ′) = θl (ω ′′) for all l , i, j. Since there are at least

two players who can distinguishω ′ andω ′′, it must be thatθi(ω ′) , θi(ω ′′) and

θ j(ω ′) , θ j(ω ′′). This implies thatλ ∈ Λ3, and hencek∗(λ ) = ∞.

Finally, considerλ such thatλ ≤ 0, λ ω ′
i < 0 andλ ω ′′

j < 0 for somei ∈ I , j , i,

ω ′ ∈Ω, andω ′′ , ω ′, and for any pair(i,ω ′′′) and( j,ω ′′′′) satisfyingω ′′′ , ω ′′′′,
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λ ω ′′′
i < 0, andλ ω ′′′′

j < 0, and for anyl , i, j, θl (ω ′′′) = θl (ω ′′′′). By definition,

λ ∈ Λ7 in this case, so thatk∗(λ ) = maxα λ ·g(α) = maxv∈VU λ ·v.

From the above arguments, obviously we haveV∗∗ ⊂ H∗(λ ) for all λ . There-

fore,V∗∗ ⊆Q. Q.E.D.

8 Conclusion

This paper shows how to extend the insights and techniques of the repeated games

literature to games with imperfectly observed actions, an unknown monitoring

structure, and private information. Our analysis is based on the fact that the set

of PTXE payoffs has a recursive structure, and says little about the entire set of

equilibrium payoffs. When the folk theorem holds in PTXE, or more generally

when there are asymptotically efficient PTXE, the restriction to PTXE may be

of less concern, especially given their desirable robustness properties. When the

set of PTXE is small or empty, it would be nice to know more about the entire

set of sequential equilibrium payoffs; that more difficult problem is still unre-

solved. Another open question is to extend the analysis of PTXE to other settings

where repeated play has been shown to support more efficient outcomes, such as

games with long-run and short-run players (Fudenberg, Kreps, and Maskin [13]

and [14]), games with overlapping generations of players (Kandori [24]), commu-

nity enforcement (Kandori [23] and Ellison [11]), games with imperfect private

monitoring (Compte [7] and Kandori and Matsushima [26]), and games where the

state evolves according to a finite Markov chain (Athey and Bagwell [4]).

Appendix

A.1 Proof of Lemma 4

Lemma 4.

(a) Suppose~α is ex-post enforceable andm-statewise distinguishes(i,ω) from

( j,ω ′). Thenk∗(α ,λ ) = ∞ for λ such thatλ ω
i > 0 andλ ω ′

j < 0.

(b) Suppose~α is ex-post enforceable andp-statewise distinguishes(i,ω) from

( j,ω ′). Thenk∗(α ,λ ) = ∞ for λ such thatλ ω
i > 0 andλ ω ′

j > 0.
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(c) Suppose~α is ex-post enforceable andn-statewise distinguishes(i,ω) from

( j,ω ′). Thenk∗(α ,λ ) = ∞ for λ such thatλ ω
i < 0 andλ ω ′

j < 0.

Proof. For part (a), letξ = (ξ (y))y∈Y be as in the definition ofm-statewise dis-

tinguishability. Without loss of generality, assumeπω ′
(α) · ξ = 0. Let zω

i =
(zω

i (y))y∈Y andzω ′
j = (zω ′

j (y))y∈Y be such that

zω
i (y) =

K
δλ ω

i πω(α) ·ξ ξ (y) and zω ′
j (y) =− K

δλ ω ′
j πω(α) ·ξ ξ (y)

for all y∈Y. Sinceπω(α) ·ξ = πω(ai ,α−i) ·ξ > 0 for ai ∈ suppαi , we have

πω(ai ,α−i) ·zω
i =

K
δλ ω

i πω(α) ·ξ πω(ai ,α−i) ·ξ =
K

δλ ω
i

(3)

for all ai ∈ suppαi . Also, sinceπω(α) ·ξ > 0 andπω(α) ·ξ ≥ πω(ai ,α−i) ·ξ for

ai < suppαi , we have

πω(ai ,α−i) ·zω
i =

K
δλ ω

i πω(α) ·ξ πω(ai ,α−i) ·ξ ≤ K
δλ ω

i
(4)

for all ai < suppαi . Likewise, sinceπω(α) · ξ > 0, πω ′
(a j ,α− j) · ξ = 0 for all

a j ∈ suppα j , andπω ′
(a j ,α−i) ·ξ ≤ 0 for all a j < suppα j ,

πω ′
(a j ,α− j) ·zω ′

j =− K

δλ ω ′
j πω(α) ·ξ πω ′

(a j ,α− j) ·ξ (y) = 0 (5)

for all a j ∈ suppα j , and

πω ′
(a j ,α− j) ·zω ′

j =− K

δλ ω ′
j πω(α) ·ξ πω ′

(a j ,α− j) ·ξ ≤ 0 (6)

for all a j < suppα j . Finally, it is obvious that

λ ω
i zω

i (y)+λ ω ′
j zω ′

j (y) = 0 (7)

for all y∈Y.

Let (ṽ, w̃) be a pair of a payoff vector and a function such thatw̃ enforces

(ṽ,α). Let K > maxy∈Y λ · w̃(y)−λ · ṽ. Then, let

wω ′′
l (y) =





w̃ω
i (y)+zω

i (y) if (l ,ω) = (i,ω)
w̃ω ′

j (y)+zω ′
j (y) if (l ,ω ′′) = ( j,ω ′)

w̃ω ′′
l (y) otherwise
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for eachy∈Y. Also, let

vω ′′
l =





ṽω
i +

K
λ ω

i
if (l ,ω ′′) = (i,ω)

ṽω ′′
l otherwise

.

We claim that this(v,w) satisfies all the constraints in the LP problem. Obvi-

ously, constraints (i) and (ii) are satisfied for all(l ,ω)∈ (I ×Ω)\{(i,ω),( j,ω ′)},
asvω ′′

l = ṽω ′′
i andwω̄

l (y) = w̃ω ′′
l (y). Also, since (3) and (4) hold and̃w enforces

(α , ṽ), we obtain

(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) ·wω

i

= (1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) · (w̃ω

i +zω
i ) = ṽω

i +
K

λ ω
i

= vω
i

for all ai ∈ suppαi , and

(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) ·wω

i

= (1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) · (w̃ω

i +zω
i )≤ ṽω

i +
K

λ ω
i

= vω
i

for all ai < suppαi . Hence,(v,w) satisfies constraints (i) and (ii) for(i,ω). Like-

wise, it follows from (5) and (6) that(v,w) satisfies constraints (i) and (ii) for

( j,ω ′). Furthermore, using (7) andK > maxy∈Y λ · w̃(y)−λ · ṽ,

λ ·w(y) = λ · w̃(y)+λ ω
i zω

i (y)+λ ω ′
j zω ′

j (y) = λ · w̃(y) < λ · ṽ+K = λ ·v

for all y∈Y, and hence constraint (iii) holds. Therefore,k∗(α ,λ )≥ λ ·v= λ · ṽ+
K. SinceK can be arbitrarily large, we concludek∗(α ,λ ) = ∞, which proves part

(a) of the lemma.

For parts (b) and (c), letξ = (ξ (y))y∈Y be as in the definition ofp- or n-

statewise distinguishability. Without loss of generality, assumeπω ′
(α) · ξ = 0.

The rest of the proof is the same as in part (a). Q.E.D.

A.2 Proof of Lemma 12

Lemma 12. Suppose (PFR) and (IFR) hold. Letλ be such thatθi(ω) , θi(ω ′)
for all i ∈ I , ω ∈ Ω andω ′ , ω satisfying(λ ω

j ) j∈I , 0 and (λ ω ′
j ) j∈I , 0. Then,

k∗(λ )≥maxv∈V∗ λ ·v.
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Proof. For eachω ∈ Ω, let λ (ω) = (λ ω ′
i (ω))(i,ω ′) be such that(λ ω

i (ω))i∈I =
(λ ω

i )i∈I and(λ ω ′
i (ω))i∈I = 0 for all ω ′ , ω. Let Ω∗ be the set of allω such that

λ (ω) , 0. We claim

k∗(~α,λ )≥ ∑
ω∈Ω∗

k∗(~α,λ (ω)) (8)

for each~α. In words,k∗(~α,λ ) is at least the sum of the maximal scores when we

solve the LP problem for each stateω in isolation. To prove this, consider the LP

problem for(~α ,λ ) but constraint (iii) is replaced with a more restrictive condition

(iii ′) ∑
i∈I

λ ω
i vω

i ≥∑
i∈I

λ ω
i wω

i (y) for all ω ∈Ω andy∈Y.

Let kU(~α,λ ) denote the solution to this new problem. Since condition (iii′) does

not allow utility transfer across different states, considering this new LP problem

is equivalent to solving a separate LP problem for each stateω ∈Ω∗ in isolation.

Thus we havekU(~α ,λ ) = ∑ω∈Ω∗ k∗(~α,λ (ω)). Sincek∗(~α ,λ ) ≥ kU(~α,λ ), (8)

follows.

Recall thatλ (ω) considers only a single stateω. Thus the maximal score

k∗(~α ,λ (ω)) depends onαθ(ω) but not onαθ ′ for otherθ ′. This observation, to-

gether with the fact that all players can distinguish any state in the setΩ∗, implies

that

sup
~α

∑
ω∈Ω∗

k∗(~α ,λ (ω)) = ∑
ω∈Ω∗

sup
~α

k∗(~α ,λ (ω)).

It follows from Lemmas 13 and 14 thatsup~α k∗(~α ,λ (ω)) = maxv∈V∗ λ (ω) · v.

Therefore,

sup
~α

∑
ω∈Ω∗

k∗(~α,λ (ω)) = ∑
ω∈Ω∗

max
v∈V∗

λ (ω) ·v = max
v∈V∗

λ ·v.

Using (8), we obtain the desired result. Q.E.D.

A.3 Proof of Lemma 16

Lemma 16. Suppose (PFR) holds. Letλ be such thatθi(ω) , θi(ω ′) for all

i ∈ I , ω ∈Ω andω ′ , ω satisfying(λ ω
j ) j∈I , 0 and(λ ω ′

j ) j∈I , 0. Then,k∗(λ )≥
maxv∈V0 λ ·v.
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Proof. The proof is very similar to Lemma 12. The only difference is that in

the last step of the proof, we may not havesup~α k∗(~α,λ (ω)) = maxv∈V∗ λ (ω) ·v,

since (IFR) might fail. Instead, we use Lemmas 13 and 15 to show thatsup~α k∗(~α,λ (ω))≥
maxv∈V0 λ (ω) ·v. Q.E.D.

A.4 Proof of Lemma 22

Lemma 22. Suppose the monitoring structure is known and has strong full rank.

Then for eachi and λ ∈ Λ5(i), k∗(λ ) = maxα−i minai ∑ω∈Ω λ ω
i (ω)gω

i (ai ,α−i),
that is,k∗(λ ) =−minα−i maxai ∑ω∈Ω−λ ω

i gω
i (ai ,α−i).

To prove this lemma, we use the following claims.

Claim 1. Let λ ∈ Λ5(i). Then for eachj , i, there isθ ∗j ∈ Θ j that contains allω
such thatλ ω

i , 0.

Proof. Suppose not, so that there areω ∈ Ω and ω ′ , ω such that such that

θ j(ω) , θ j(ω ′), λ ω
i , 0, andλ ω ′

i , 0. Thenλ <Λ5(i), since it does not satisfy the

last condition of the definition ofΛ5(i). A contradiction. Q.E.D.

Claim 2. Suppose the monitoring structure is known. Letλ ∈ Λ5(i). Then for

each~α = ((αθi
i )θi∈Θi)i∈I , k∗(~α,λ ) ≤minai λ ·g(ai ,α

θ∗−i
−i ) whereθ ∗−i is chosen as

in Claim 1 andαθ∗−i
−i = (α

θ∗j
j ) j,i .

Proof. Let a′i ∈ argminai λ ·g(ai ,α
θ∗−i
−i ). If k∗(~α,λ ) =−∞ then the result is obvi-

ous. Ifk∗(~α,λ ) >−∞, we can choose(v,w) to satisfy constraints (i) through (iii)

in the LP problem associated with(~α ,λ ,δ ) for someδ ∈ (0,1). It follows from

constraint (ii) that

vω
i ≥ (1−δ )gω

i (ai ,α
θ∗−i
−i )+δπ(ai ,α

θ∗−i
−i ) ·wω

i

for all i, ai , and ω such thatλ ω
i , 0, sinceθ j(ω) = θ ∗j for j , i for suchω.

Multiplying both sides byλ ω
i , summing over allω, and using the fact thatλ ω

j = 0

for all j , i, we have

λ ·v = ∑
ω∈Ω

λ ω
i vω

i ≤ (1−δ ) ∑
ω∈Ω

λ ω
i gω

i (a′i ,α
θ∗−i
−i )+δ ∑

ω∈Ω
∑
y∈Y

πy(a′i ,α
θ∗−i
−i )λ ω

i wω
i (y)

= (1−δ )λ ·g(a′i ,α
θ∗−i
−i )+δ ∑

y∈Y
πy(a′i ,α

θ∗−i
−i )λ ·w(y),
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so from (iii),

λ ·v≤ (1−δ )λ ·g(a′i ,α
θ∗−i
−i )+δλ ·v.

Subtractingδλ · v from both sides and dividing by(1− δ ), we getλ · v≤ λ ·
g(a′i ,α

θ∗−i
−i ). Therefore,k∗(~α ,λ ,δ )≤ g(a′i ,α

θ∗−i
−i ). Q.E.D.

For eachj ∈ I , let g̃ j(a) =−∑ω∈Ω λ ω
i gω

j (a). Let λ̃ ∈ RI be such that̃λi =−1

andλ̃ j = 0 for all j , i. Consider the following LP problem:

k̃∗(α, λ̃ ,δ ) = max
ṽ∈RI

w̃:Y→RI

λ̃ · ṽ subject to

(i) ṽ j = (1−δ )g̃ j(α)+δπ(α) · w̃ j for all j,

(ii) ṽ j = (1−δ )g̃ j(a j ,α− j)+δπ(a j ,α− j) · w̃ j for all j anda j ,

(iii) λ̃ · ṽ≥ λ̃ · w̃(y) for all y.

This is the problem of finding the maximum score for a known-state game (i.e.,

|Ω| = 1) for directionλ̃ , so its value (which does not depend onδ ) follows from

past work:

Claim 3. Suppose the monitoring structure is known and has strong full rank.

Thensupα k̃∗(α, λ̃ ) =−minα−i maxai g̃i(ai ,α−i)

Proof. Strong full rank implies that every pure action profile has individual full

rank. Then from FLM Lemma 6.3, the maximal score for directionλ̃ is given

by player i’s minimax score. Therefore,̃k∗(α, λ̃ ) = −minα−i maxai g̃i(ai ,α−i).
Q.E.D.

Claim 4. Suppose the monitoring structure is known and has strong full rank. Let

λ ∈ Λ5(i). Thenk∗(~α,λ ) = k̃∗(α , λ̃ ) if ~α is a state-independent actionα.

Proof. First, we showk∗(~α,λ ) ≤ k̃∗(α, λ̃ ). Whenk∗(~α ,λ ) = −∞, then this in-

equality obviously follows. So assumek∗(~α,λ ) > −∞. Choose(v,w) to sat-

isfy constraints (i) through (iii) in the LP problem for(~α,λ ,δ ), and let ṽ j =
−∑ω∈Ω λ ω

j vω
j and w̃ j = −∑ω∈Ω λ ω

j wω
j (y) for all j ∈ I and y ∈ Y. Then this

(ṽ, w̃) satisfies all the constraints of the LP problem for(α, λ̃ ,δ ), andλ ·v= λ̃ · ṽ.

This shows thatk∗(~α ,λ )≤ k̃∗(α, λ̃ ).
Next, we showk∗(~α,λ )≥ k̃∗(α , λ̃ ). As before we restrict attention to the case

of k̃∗(α, λ̃ ) >−∞.
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We claim there are(zω
i (y))(ω,y) such that

(1−δ )
(
− g̃i(ai ,α−i)

∑ω∈Ω λ ω
i
−gω

i (ai ,α−i)
)

= δπ(ai ,α−i) ·zω
i (9)

for all ω ∈Ω andai ∈ Ai , and

∑
ω∈Ω

λ ω
i zω

i (y) = 0 (10)

for all y∈Y. To see that this system has a solution, chooseω ′ such thatλ ω ′
i , 0,

and eliminatezω ′
i using (10). Then we can check that (9) forω ′ are redundant

equations; that is, (9) forω ′ automatically holds if (9) holds for allω , ω ′. This

leaves(|Ω| −1)× |Ai | equations and(|Ω| −1)× |Ai | unknowns, and strong full

rank assures that the coefficient matrix has full rank. Therefore, the system has a

solution.

Choose(ṽ, w̃) to satisfy all the constraints of the LP problem for(α, λ̃ ,δ ), let

vω
i =− ṽi

∑ω∈Ω λ ω
i

, andwω
i (y) =− w̃i(y)

∑ω∈Ω λ ω
i

+zω
i (y). Sinceλ ·v = λ̃ · ṽ, it suffices to

show that this(v,w) satisfies all the constraints of the LP problem for(~α,λ ,δ ).
(We can ignore the adding-up constraint and the incentive compatibility constraint

for player j , i, as strong full rank holds.) Note that

(1−δ )gω
i (ai ,α−i)+δπ(ai ,α−i) ·wω

i

=(1−δ )gω
i (ai ,α−i)+δπ(ai ,α−i) ·

(
zω
i −

1

∑ω∈Ω λ ω
i

w̃i(y)
)

=(1−δ )gω
i (ai ,α−i)+(1−δ )

(
− g̃i(ai ,α−i)

∑ω∈Ω λ ω
i
−gω

i (ai ,α−i)
)
− δπ(ai ,α−i) · w̃i

∑ω∈Ω λ ω
i

=− (1−δ )g̃i(ai ,α−i)+δπ(ai ,α−i) · w̃i

∑ω∈Ω λ ω
i

≤− ṽi

∑ω∈Ω λ ω
i

= vω
i

for all ai ∈ Ai with equality if ai ∈ suppαi . Here, the second equality comes from

(9), and the inequality comes from the fact that(ṽ, w̃) satisfies the constraints of

the LP problem for(α , λ̃ ,δ ). Therefore, this(v,w) satisfies constraints (i) and

(ii). Also,

λ ·w(y) = ∑
ω∈Ω

λ ω
i wω

i (y) = ∑
ω∈Ω

λ ω
i

(
zω
i (y)− w̃i(y)

∑ω∈Ω λ ω
i

)
=−w̃i(y)≤−ṽi = λ ·v.

Here, the third equality comes from (10) and the inequality comes from the fact

that(ṽ, w̃) satisfies the constraints of the LP problem for(α , λ̃ ,δ ). Therefore, this

(v,w) satisfies constraint (iii). Q.E.D.
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It follows from Claims 3 and 4 and̃g j(a) =−∑ω∈Ω λ ω
i gω

j (a) that

k∗(λ )≥ sup
α

k̃∗(α, λ̃ ) =−min
α−i

max
ai

g̃i(ai ,α−i)

=−min
α−i

max
ai
−λ ·g(ai ,α−i) = max

α−i
min

ai
λ ·g(ai ,α−i).

On the other hand, Claim 2 shows thatk∗(λ )≤maxα−i minai λ ·g(ai ,α−i). There-

fore,k∗(λ ) = maxα−i minai λ ·g(ai ,α−i).

A.5 Proof of Lemma 24

Lemma 24. Suppose the monitoring structure is known and has strong full rank.

Then for eachλ ∈ Λ6⋃
Λ7, k∗(λ ) = maxα λ ·g(α).

The proof consists of a series of claims.

Claim 5. Let λ ∈ Λ6, and leti ∈ I be such that(λ ω
i )ω∈Ω , 0. Then

(a) there isθ ∗i ∈Θi such thatθi(ω) = θ ∗i for all ω such thatλ ω
i > 0; and

(b) for each j , i, there isθ ∗j ∈Θ j that contains allω such thatλ ω
i , 0.

Let λ ∈ Λ7. Then

(c) for eachi ∈ I , there isθ ∗i ∈ Θi that contains allω such thatλ ω
j , 0 for

somej , i; and

(d) this θ ∗i contains allω such thatλ ω
i > 0.

Proof. For part (a), suppose not, so that there areω ′ ∈ Ω andω ′′ , ω such that

θi(ω ′) , θi(ω ′′), λ ω ′
i > 0, and λ ω ′′

i > 0. Then λ < Λ6, as for λ to be in Λ6,

θi(ω ′) = θi(ω ′′) for all ω ′ ∈ Ω andω ′′ , ω satisfyingλ ω ′
i > 0 andλ ω ′′

i > 0. A

contradiction.

For part (b), suppose that there areω ′ ∈ Ω andω ′′ , ω ′ such thatθ j(ω ′) ,
θ j(ω ′′), λ ω ′

i , 0, andλ ω ′′
i , 0. Thenλ <Λ6, as forλ to be inΛ6, θ j(ω ′) = θ j(ω ′′)

for all j , i, ω ′ ∈Ω, andω ′′ , ω satisfyingλ ω ′
i , 0 andλ ω ′′

i , 0. A contradiction.

For part (c), suppose that there are( j,ω ′) and(l ,ω ′′) such thatj , i, l , i,

θi(ω ′) , θi(ω ′′), λ ω ′
j , 0, andλ ω ′′

l , 0. Thenλ < Λ7, as the last condition of the
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definition ofΛ7 requires thatθi(ω ′) = θi(ω ′′) for all i ∈ I , ω ′ ∈ Ω, andω ′′ , ω ′

such thatλ ω ′
j , 0 for somej , i andλ ω ′′

l , 0 for somel , i. A contradiction.

For part (d), suppose that there arei ∈ I andω ′ ∈ Ω such thatλ ω ′
i > 0 and

ω < θ ∗i . Let ( j,ω ′′) be such thatj , i andλ ω ′′
j , 0. Then from part (c),ω ′′ ∈ θ ∗i ,

so thatθi(ω ′′) = θ ∗i , θi(ω ′). This implies thatλ <Λ7, as the last condition of the

definition ofΛ7 requires thatθi(ω ′) = θi(ω ′′) for all i ∈ I , ω ′ ∈ Ω, andω ′′ , ω ′

such thatλ ω ′
i > 0 andλ ω ′′

j , 0 for somej , i. A contradiction. Q.E.D.

Claim 6. Suppose the monitoring structure is known, and letλ ∈ Λ6⋃
Λ7. Then

for each~α = ((αθi
i )θi∈Θi)i∈I , k∗(~α,λ )≤ λ ·g(αθ∗) whereθ ∗ is chosen as in Claim

5 andαθ∗ = (αθ∗i
i )i∈I .

Proof. Choose(v,w) to satisfy constraints (i) through (iii) in the LP problem as-

sociated with(~α ,λ ,δ ) for someδ ∈ (0,1). It follows from constraint (ii) that

vω
i ≥ (1−δ )gω

i (ai ,α
θ∗−i
−i )+δπ(ai ,α

θ∗−i
−i ) ·wω

i

for all i ∈ I , ai ∈ Ai , andω ∈ Ω such thatλ ω
i , 0, sinceθ j(ω) = θ ∗j for j , i for

suchω. In particular, we have

vω
i ≥ (1−δ )gω

i (αθ∗)+δπ(αθ∗) ·wω
i (11)

for all i ∈ I andω ∈Ω such thatλ ω
i , 0. Also, from constraint (i), we obtain

vω
i = (1−δ )gω

i (αθ∗)+δπ(αθ∗) ·wω
i (12)

for all i ∈ I andω ∈ Ω such thatλ ω
i > 0, sinceθ(ω) = θ ∗ for suchω ∈ Ω. It

follows from (11) and (12) that

λ ·v≤∑
i∈I

∑
ω∈Ω

λ ω
i

[
(1−δ )gω

i (αθ∗)+δπ(αθ∗) ·wω
i

]

=(1−δ )λ ·g(αθ∗)+δ ∑
y∈Y

πy(αθ∗)λ ·w(y).

Using constraint (iii),

λ ·v≤ (1−δ )λ ·g(αθ∗)+δ ∑
y∈Y

πy(αθ∗)λ ·v = (1−δ )λ ·g(αθ∗)+δλ ·v.

Subtractingδλ · v from both sides and dividing by(1− δ ), we getλ · v≤ λ ·
g(αθ∗). Therefore,k∗(~α ,λ ,δ )≤ g(αθ∗). Q.E.D.
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Claim 7. Suppose the monitoring structure is known and has strong full rank. Let

λ ∈ Λ6. Thenk∗(λ )≥maxα λ ·g(α).

Proof. Let α ∈ argmaxα ′ λ ·g(α ′). Without loss of generality we can assume that

α is a pure action profile, so that we denote it bya. In what follows, we show that

k∗(a,λ )≥ λ ·g(a).
Let λ ∈ Λ6, and let(i,ω ′) be such thatλ ω ′

i > 0. Consider the LP problem

associated with(a,λ ,δ ). Note that we can ignore constraints (i) and (ii) forj , i,

as(λ ω
j )ω∈Ω = 0.

Let vω
i = gω

i (a) for eachω ∈Ω. Forω , ω ′, let (wω
i (y))y∈Y be such that

gω
i (a) = (1−δ )gω

i (a′i ,a−i)+δπ(a′i ,a−i) ·wω
i (y) (13)

for all a′i ∈ Ai . Also, let

wω ′
i (y) =

1

λ ω ′
i

(
λ ·g(a)− ∑

ω,ω ′
λ ω

i wω
i (y)

)
(14)

for all y∈Y.

We claim that this(v,w) satisfies constraints (i) through (iii) in the LP problem.

First, constraints (i) and (ii) hold forω ,ω ′, since (13) holds. Also, as in the proof

of Claim 4, we have

(1−δ )gω ′
i (a′i ,a−i)+δπ(a′i ,a−i) ·wω ′

i (y)

= gω ′
i (a)+(1−δ )

λ ·g(a′i ,a−i)−λ ·g(a)
λ ω ′

i

≤ gω ′
i (a)

for all a′i ∈ Ai with equality if a′i = ai . Here, the inequality is from the fact that

a maximizesargmaxλ · g(a′) andλ ω ′
i > 0. This shows that constraints (i) and

(ii) hold for ω ′. Finally, constraint (iii) follows from (14). Thus we conclude

k∗(a,λ )≥ ∑ω∈Ω λ ω
i vω

i = λ ·g(a), as desired. Q.E.D.

Claim 8. Suppose the monitoring structure is known and has strong full rank. Let

λ ∈ Λ7. Then for eachα , k∗(α,λ )≥ λ ·g(α).

Proof. Let λ ∈ Λ7, and given thisλ , let λ(i,ω)( j,ω ′) be a direction such that the

components for(i,ω) and( j,ω ′) are equal to those ofλ and the remaining com-

ponents are zero. (Thus the directionλ(i,ω)( j,ω ′) has at most two non-zero compo-

nents.) In order to prove the claim, it suffices to show thatα is enforceable with
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respect to the hyperplane orthogonal toλ at g(α). This enforceability follows

from the following two facts: (i) If the monitoring structure has strong full rank,

thenα is enforceable with respect to the hyperplane orthogonal toλ(i,ω)( j,ω ′) at

g(α) for each(i,ω) and( j,ω ′) such thati , j (but possiblyω = ω ′), λ ω
i , 0, and

λ ω ′
j , 0. (ii) α is enforceable with respect to the hyperplane orthogonal toλ at

g(α) if α is enforceable with respect to the hyperplane orthogonal toλ(i,ω)( j,ω ′)
at g(α) for each(i,ω) and( j,ω ′) such thati , j, λ ω

i , 0, andλ ω ′
j , 0. Note that

(i) follows from Lemma 5.4 of FLM, since here we assume that the monitoring

structure does not depend onω. Likewise, (ii) follows from Lemma 5.3 of FLM,

sinceλ ∈ Λ7 implies that for each(i,ω) such thatλ ω
i , 0, there is( j,ω ′) such

that i , j andλ ω ′
j , 0. Q.E.D.

The statement of Lemma 24 follows from Claims 6, 7, and 8.
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