A Unified Approach to the Classical Statistical Analysis of Small Signals

DSpace/Manakin Repository

A Unified Approach to the Classical Statistical Analysis of Small Signals

Citable link to this page

. . . . . .

Title: A Unified Approach to the Classical Statistical Analysis of Small Signals
Author: Feldman, Gary; Cousins, Robert D.

Note: Order does not necessarily reflect citation order of authors.

Citation: Feldman, Gary J., Robert D. Cousing. 1998. A unified approach to the classical statistical analysis of small signals. Physical Review D 57: 3873-3889.
Full Text & Related Files:
Abstract: We give a classical confidence belt construction which unifies the treatment of upper confidence limits for null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem (apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals which are not confidence intervals if the choice is based on the data. We apply the construction to two related problems which have recently been a battle-ground between classical and Bayesian statistics: Poisson processes with background, and Gaussian errors with a bounded physical region. In contrast with the usual classical construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We show that this technique both gives correct coverage and is powerful, while other classical techniques that have been used by neutrino oscillation search experiments fail one or both of these criteria.
Published Version: http://dx.doi.org/10.1103/PhysRevD.57.3873
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:2309662

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6463]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University

Search DASH

Advanced Search