The exact constant in the Rosenthal inequality for random variables with mean zero

DSpace/Manakin Repository

The exact constant in the Rosenthal inequality for random variables with mean zero

Citable link to this page

. . . . . .

Title: The exact constant in the Rosenthal inequality for random variables with mean zero
Author: Ibragimov, Rustam; Sharakhmetov, Shaturgun

Note: Order does not necessarily reflect citation order of authors.

Citation: Ibragimov, Rustam and Shaturgun Sharakhmetov. 2002. The exact constant in the Rosenthal inequality for random variables with mean zero. Theory of Probability and Its Applications 46(1): 127-132.
Full Text & Related Files:
Abstract: Let $\xi_1, \ldots, \xi_n$ be independent random variables with ${\bf E}\xi_i=0,$ ${\bf E}|\xi_i|^t<\infty$, $t>2$, $i=1,\ldots, n,$ and let $S_n=\sum_{i=1}^n \xi_i.$ In the present paper we prove that the exact constant ${\overline C}(2m)$ in the Rosenthal inequality $$ {\bf E}|S_n|^t\le C(t) \max \Bigg(\sum_{i=1}^n{\bf E}|\xi_i|^t,\ \Bigg(\sum_{i=1}^n {\bf E}\xi_i^2\Bigg)^{t/2}\Bigg) $$ for $t=2m,$ $m\in {\bf N},$ is given by $$ \overline C(2m)=(2m)! \sum_{j=1}^{2m} \sum_{r=1}^j \sum \prod_{k=1}^r \frac {(m_k!)^{-j_k}} {j_k!}, $$ where the inner sum is taken over all natural $m_1 > m_2 > \cdots > m_r > 1$ and $j_1, \ldots, j_r$ satisfying the conditions $m_1j_1+\cdots+m_rj_r=2m$ and $j_1+\cdots+j_r=j$. Moreover $$ \overline C(2m)={\bf E}(\theta-1)^{2m}, $$ where $\theta $ is a Poisson random variable with parameter 1.
Published Version: http://dx.doi.org/10.1137/S0040585X97978762
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:2623703

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6868]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters