Stochastic Modeling in Nanoscale Biophysics: Subdiffusion within Proteins

DSpace/Manakin Repository

Stochastic Modeling in Nanoscale Biophysics: Subdiffusion within Proteins

Citable link to this page


Title: Stochastic Modeling in Nanoscale Biophysics: Subdiffusion within Proteins
Author: Kou, Shingchang
Citation: Kou, Samuel. 2008. Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Annals of Applied Statistics 2(2): 501-535.
Full Text & Related Files:
Abstract: Advances in nanotechnology have allowed scientists to study biological processes on an unprecedented nanoscale molecule-by-molecule basis, opening the door to addressing many important biological problems. A phenomenon observed in recent nanoscale single-molecule biophysics experiments is subdiffusion, which largely departs from the classical Brownian diffusion theory. In this paper, by incorporating fractional Gaussian noise into the generalized Langevin equation, we formulate a model to describe subdiffusion. We conduct a detailed analysis of the model, including (i) a spectral analysis of the stochastic integro-differential equations introduced in the model and (ii) a microscopic derivation of the model from a system of interacting particles. In addition to its analytical tractability and clear physical underpinning, the model is capable of explaining data collected in fluorescence studies on single protein molecules. Excellent agreement between the model prediction and the single-molecule experimental data is seen.
Published Version:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [8248]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University

Search DASH

Advanced Search