The ABC's of Number Theory

DSpace/Manakin Repository

The ABC's of Number Theory

Citable link to this page

. . . . . .

Title: The ABC's of Number Theory
Author: Elkies, Noam
Citation: Elkies, Noam D. 2007. The ABC's of number theory. The Harvard College Mathematics Review 1(1): 57-76.
Full Text & Related Files:
Abstract: The ABC conjecture is a central open problem in modern number theory, connecting results, techniques and questions ranging from elementary number theory and algebra to the arithmetic of elliptic curves to algebraic geometry and even to entire functions of a complex variable. The conjecture asserts that, in a precise sense that we specify later, if \(A,B,C\) are relatively prime integers such that \(A + B = C\) then \(A,B,C\) cannot all have many repeated prime factors. This expository article outlines some of the connections between this assertion and more familiar Diophantine questions, following (with the occasional scenic detour) the historical route from Pythagorean triples via Fermat’s Last Theorem to the formulation of the ABC conjecture by Masser and Oesterl´e. We then state the conjecture and give a sample of its many consequences and the few very partial results available. Next we recite Mason’s proof of an analogous assertion for polynomials \(A(t),B(t), C(t)\) that implies, among other things, that one cannot hope to disprove the ABC conjecture using a polynomial identity such as the one that solves the Diophantine equation \(x^2 + y^2 = z^2\). We conclude by solving a Putnam problem that predates Mason’s theorem but is solved using the same method, and outlining some further open questions and fragmentary results beyond the ABC conjecture.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:2793857

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7495]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters