The Klein Quartic in Number Theory

DSpace/Manakin Repository

The Klein Quartic in Number Theory

Show simple item record

dc.contributor.author Elkies, Noam
dc.date.accessioned 2009-05-12T15:15:05Z
dc.date.issued 1999
dc.identifier.citation Elkies, Noam D. The Klein quartic in number theory. In The Eightfold Way: The Beauty of Klein's Quartic Curve, ed. Sylvio Levi, 51-102. Mathematical Sciences Research Institute publications, 35. Cambridge: Cambridge University Press. en
dc.identifier.uri http://nrs.harvard.edu/urn-3:HUL.InstRepos:2920120
dc.description.abstract We describe the Klein quartic <i>X</i> and highlight some of its remarkable properties that are of particular interest in number theory. These include extremal properties in characteristics 2, 3, and 7, the primes dividing the order of the automorphism group of <i>X</i>; an explicit identification of with the modular curve X(7); and applications to the class number 1 problem and the case <i>n</i>= 7 of Fermat. en
dc.description.sponsorship Mathematics en
dc.language.iso en_US en
dc.publisher Cambridge University Press en
dc.relation.isversionof http://www.msri.org/publications/books/Book35/contents.html en
dash.license LAA
dc.title The Klein Quartic in Number Theory en
dash.depositing.author Elkies, Noam

Files in this item

Files Size Format View xmlui.dri2xhtml.METS-1.0.item-files-description
Elkies - The Klein Quartic.pdf 852.0Kb PDF View/Open Elkies - The Klein Quartic

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6463]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University

Show simple item record

 
 

Search DASH


Advanced Search
 
 

Submitters