The Power of a Pebble: Exploring and Mapping Directed Graphs

DSpace/Manakin Repository

The Power of a Pebble: Exploring and Mapping Directed Graphs

Citable link to this page

. . . . . .

Title: The Power of a Pebble: Exploring and Mapping Directed Graphs
Author: Sahai, Amit; Bender, Michael A.; Fernandez, Antonio; Ron, Dana; Vadhan, Salil

Note: Order does not necessarily reflect citation order of authors.

Citation: Bender, Michael A., Antonio Fernandez, Dana Ron, Amit Sahai, and Salil Vadhan. 2002. The power of a pebble: Exploring and mapping directed graphs. Information and Computation 176(1): 1-21.
Full Text & Related Files:
Abstract: Exploring and mapping an unknown environment is a fundamental problem that is studied in a variety of contexts. Many results have focused on finding efficient solutions to restricted versions of the problem. In this paper, we consider a model that makes very limited assumptions about the environment and solve the mapping problem in this general setting. We model the environment by an unknown directed graph G, and consider the problem of a robot exploring and mapping G. The edges emanating from each vertex are numbered from ‘1’ to ‘d’, but we do not assume that the vertices of G are labeled. Since the robot has no way of distinguishing between vertices, it has no hope of succeeding unless it is given some means of distinguishing between vertices. For this reason we provide the robot with a “pebble”—a device that it can place on a vertex and use to identify the vertex later. In this paper we show: (1) If the robot knows an upper bound on the number of vertices then it can learn the graph efficiently with only one pebble. (2) If the robot does not know an upper bound on the number of vertices n, then Θ(log log n) pebbles are both necessary and sufficient. In both cases our algorithms are deterministic.
Published Version:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6929]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University

Search DASH

Advanced Search