Show simple item record

dc.contributor.authorFrancis, Scott
dc.contributor.authorHansel, Colleen
dc.contributor.authorLa Force, Matthew J.
dc.contributor.authorSutton, Steve
dc.date.accessioned2009-06-08T17:58:39Z
dc.date.issued2002
dc.identifier.citationHansel, Colleen M., Matthew J. La Force, Scott Fendorf, and Steve Sutton. 2002. Spatial and temporal association of As and Fe species on aquatic plant roots. Environmental Science & Technology 36(9): 1988-1994.en
dc.identifier.issn0013-936Xen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:3043429
dc.description.abstractThe formation of an Fe(III) precipitate (plaque) on the surface of aquatic plant roots may provide a means of attenuation and external exclusion of metals. Presently, the mechanisms of metal(loid) sequestration at the root surface are unresolved. Accordingly, we investigated the mechanisms of Fe and As attenuation and association on the roots of two common aquatic plant species, <i>Phalaris arundinacea</i> (reed canarygrass) and <i>Typhalatifolia</i> (cattail) using X-ray absorption spectroscopy and X-ray fluorescence microtomography. Iron plaque of both <i>P. arundinacea</i> and <i>T. latifoliaconsist</i> predominantly of hydrated iron oxides (ferrihydrite) with lesser amounts of goethite and minor levels of siderite. <i>Typha latifolia</i>, however, differs from <i>P. arundinacea</i> by having a significant contribution from lepidocrocite as well as a greater proportion of crystalline minerals. Coexistence of goethite and lepidocrocite suggests the presence of chemically diverse microenvironments at the root surface. Arsenic exists as a combination of two sorbed As species, being comprised predominantly of arsenate- (∼82%) with lesser amounts (∼18%) of As-(III)-iron (hydr)oxide complexes. Furthermore, both spatial and temporal correlations between As and Fe on the root surfaces were observed. While the iron (hydr)oxide deposits form a continuous surficial rind around the root, As exists in isolated regions on the exterior and interior of the root. Root surface-associated As generally corresponds to regions of enhanced Fe levels and may therefore occur as a direct consequence of Fe phase heterogeneity and preferential As sorption reactions.en
dc.description.sponsorshipOrganismic and Evolutionary Biologyen
dc.language.isoen_USen
dc.publisherAmerican Chemical Societyen
dc.relation.isversionofhttp://dx.doi.org/10.1021/es015647den
dash.licenseMETA_ONLY
dc.titleSpatial and Temporal Association of As and Fe Species on Aquatic Plant Rootsen
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalEnvironmental Science & Technologyen
dash.depositing.authorHansel, Colleen
dash.embargo.until10000-01-01
dc.identifier.doi10.1021/es015647d*
dash.authorsorderedfalse
dash.contributor.affiliatedHansel, Colleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record