Phylogenetic Analysis of Nuclear and Mitochondrial Genes Reveals Evolutionary Relationships and Mitochondrial Introgression in the Sertifer Species Group of the Genus Neodiprion (Hymenoptera: Diprionidae)

DSpace/Manakin Repository

Phylogenetic Analysis of Nuclear and Mitochondrial Genes Reveals Evolutionary Relationships and Mitochondrial Introgression in the Sertifer Species Group of the Genus Neodiprion (Hymenoptera: Diprionidae)

Citable link to this page

 

 
Title: Phylogenetic Analysis of Nuclear and Mitochondrial Genes Reveals Evolutionary Relationships and Mitochondrial Introgression in the Sertifer Species Group of the Genus Neodiprion (Hymenoptera: Diprionidae)
Author: Farrell, Brian D.; Linnen, Catherine R.

Note: Order does not necessarily reflect citation order of authors.

Citation: Linnen, Catherine R. and Brian D. Farrell. 2008. Phylogenetic analysis of nuclear and mitochondrial genes reveals evolutionary relationships and mitochondrial introgression in the sertifer species group of the genus Neodiprion (Hymenoptera: Diprionidae). Molecular Phylogenetics and Evolution 48, no. 1: 240-257.
Access Status: At the direction of the depositing author this work is not currently accessible through DASH.
Full Text & Related Files:
Abstract: Neodiprion Rohwer (Hymenoptera: Diprionidae) is a Holarctic genus of conifer-feeding sawflies with a
remarkable amount of inter- and intraspecific diversity in host use, behavior, and development. This var-
iation is thought to play a central role in Neodiprion diversification, but speciation hypotheses remain
untested due to a lack of a robust phylogenetic estimate. Here, we utilize sequence data from three nuclear genes (CAD, ANL43, EF1a) to obtain a phylogenetic estimate for the genus. These analyses suggest that: (1) North American and Eurasian Neodiprion are monophyletic sister clades, (2) the sertifer group is paraphyletic with respect to the monophyletic lecontei group, and (3) on at least two occasions, dispersal
from eastern to western North America proceeded via southern host bridges. Based on these results and
host biogeography, we revise a previous scenario for the evolution of Neodiprion and suggest maximum
ages for the genus and for the lecontei group (25 My and 14 My, respectively). In addition, because a pre-
vious study reported rampant mitochondrial introgression in the lecontei group, we assess its prevalence
in the sertifer group. Analysis of three mitochondrial genes (COI, tRNA-leucine, and COII) reveals that
mito-nuclear discordance is prevalent in the sertifer group, and patterns of species monophyly are con-
sistent with those expected under frequent mitochondrial introgression. As was the case for lecontei
group species, we find that introgression appears to be most pronounced between species that occasion-
ally share hosts, suggesting that divergent host use is an important barrier to gene flow in Neodiprion.
Finally, we suggest that the lack of phylogenetic resolution and prevalence of species non-monophyly
in the non-Pinus feeding Neodiprion may result from the rapid divergence (possibly with gene flow) of
these species following their entry into a novel adaptive zone.
Published Version: http://dx.doi.org/10.1016/j.ympev.2008.03.021
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3203268

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters