Water Uptake by NaCl Particles Prior to Deliquescence and the Phase Rule

DSpace/Manakin Repository

Water Uptake by NaCl Particles Prior to Deliquescence and the Phase Rule

Citable link to this page

. . . . . .

Title: Water Uptake by NaCl Particles Prior to Deliquescence and the Phase Rule
Author: Martin, Scot; Buseck, Peter R.; Russell, Lynn M.; Wise, Matthew E.

Note: Order does not necessarily reflect citation order of authors.

Citation: Wise, Matthew E., Scot T. Martin, Lynn M. Russell, and Peter R. Buseck. 2008. Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Science and Technology 42, no. 4: 281-294.
Access Status: At the direction of the depositing author this work is not currently accessible through DASH.
Full Text & Related Files:
Abstract: Using an environmental transmission electron microscope (ETEM), we show that a significant amount of water, far exceeding the multilayers caused by surface adsorption, is reversibly associated prior to deliquescence with substrate-supported NaCl particles (dry diameters of ∼ 40 nm to 1.5 μ m; ∼ 18°C). We hypothesize that the water is present as an aqueous solution containing dissolved Na and Cl ions. Water uptake occurs at relative humidities (RH) as low as 70%, and the resulting liquid layer coating the particles is stable over extended times if the RH is held constant. We exposed CaSO4 and CaSO4 · 2H2O particles to elevated RH values in the ETEM to show that chemically nonspecific condensation of gas-phase water on the TEM substrate does not explain our observations. Furthermore, damage to the NaCl surface induced by the electron beam and small fluctuations in RH do not seem to contribute to or otherwise affect water uptake. We have similar observations of water association for other alkali halide particles, including NaBr and CsCl, prior to deliquescence. To explain the observations, we derive the phase rule for this geometry and show that it allows for the coexistence of liquid, solid, and vapor for the binary NaCl/H2O system across a range of RH values. The derivation includes the effects of heterogeneous pressure because of the Laplace-Young relations for the subsystems. Furthermore, in view of the lever rule and the absence of similar observations for free-floating pure NaCl aerosol particles, we hypothesize that the surface energy necessary to support these effects is provided by sample-substrate interactions. Thus, the results of this study may be relevant to atmospheric systems in which soluble compounds are associated with insoluble materials.
Published Version: http://dx.doi.org/10.1080/02786820802047115
Other Sources: http://www.seas.harvard.edu/environmental-chemistry/index.php?select=3
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3203273

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6898]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters