Uniqueness and Homogeneity of Ordered Relational Structures

DSpace/Manakin Repository

Uniqueness and Homogeneity of Ordered Relational Structures

Citable link to this page

. . . . . .

Title: Uniqueness and Homogeneity of Ordered Relational Structures
Author: Luce, R.
Citation: Luce, R. Duncan. 1986. Uniqueness and homogeneity of ordered relational structures. Journal of Mathematical Psychology 30, no. 4: 391-415.
Full Text & Related Files:
Abstract: There are four major results in the paper. (1) In a general ordered relational structure that is order dense, Dedekind complete, and whose dilations (automorphisms with fixed points) are Archimedean, various consequences of finite uniqueness are developed (Theorem 2.6). (2) Replacing the Archimedean assumption by the assumption that there is a homogeneous subgroup of automorphisms that is Archimedean ordered is sufficient to show that the structure can be represented numberically as a generalized unit structure in the sense that the defining real relations satisfy the usual numerical property of homogeneity (Theorem 3.4). The last two results pertain just to idempotent concatenation structures. (3) In a closed, idempotent, solvable, and Dedekind complete concatenation structure, homogeneity is equivalent to the structure satisfying an inductive property analogous to the condition for homogeneity in a positive concatenation structure (Theorem 4.3). Finally, (4) an axiomatization is given for an idempotent structure to be of scale type (2, 2), which has previously been shown to be equivalent to a dual bilinear representation. Basically two operations are defined in terms of the given one, and the conditions are that each must be right autodistributive and together they satisfy a generalized bisymmetry property. The paper ends listing several unsolved problems.
Published Version: http://dx.doi.org/10.1016/0022-2496(86)90017-9
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3203652

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7362]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters