Randomness Conductors and Constant-Degree Lossless Expanders [Extended Abstract]

DSpace/Manakin Repository

Randomness Conductors and Constant-Degree Lossless Expanders [Extended Abstract]

Citable link to this page

. . . . . .

Title: Randomness Conductors and Constant-Degree Lossless Expanders [Extended Abstract]
Author: Wigderson, Avi; Reingold, Omer; Capalbo, Michael; Vadhan, Salil P.

Note: Order does not necessarily reflect citation order of authors.

Citation: Capalbo, Michael, Omer Reingold, Salil Vadhan, and Avi Wigderson. 2002. Randomness conductors and constant-degree lossless expanders. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, Montreal, Quebec, Canada, May 19-21, 2002 (STOC `02), 659-668. New York: ACM.
Full Text & Related Files:
Abstract: The main concrete result of this paper is the first explicit construction of constant degree lossless expanders. In these graphs, the expansion factor is almost as large as possible: (1-[epsilon])D, where D is the degree and [epsilon] is an arbitrarily small constant. The best previous explicit constructions gave expansion factor D/2, which is too weak for many applications. The D/2 bound was obtained via the eigenvalue method, and is known that that method cannot give better bounds. The main abstract contribution of this paper is the introduction and initial study of randomness conductors, a notion which generalizes extractors, expanders, condensers and other similar objects. In all these functions, certain guarantee on the input "entropy" is converted to a guarantee on the output "entropy". For historical reasons, specific objects used specific guarantees of different flavors. We show that the flexibility afforded by the conductor definition leads to interesting combinations of these objects, and to better constructions such as those above. The main technical tool in these constructions is a natural generalization to conductors of the zig-zag graph product, previously defined for expanders and extractors.
Published Version: http://doi.acm.org/10.1145/509907.510003
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3330492

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7594]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters