Publication: Postnatal Genome Editing With CRISPR
No Thumbnail Available
Date
2016-05-18
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Chew, Wei Leong. 2016. Postnatal Genome Editing With CRISPR. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
Research Data
Abstract
Targeted genome editing holds tremendous promise for permanent correction of many genetic diseases. The recently developed CRISPR/Cas9 genome-editing tool exhibits facile programmability and robust gene-editing efficiency, and has been applied in cell cultures and animal tissues. However, multi-organ gene-editing in live mammals has not been examined or achieved. This study demonstrates genetic modification in multiple organs of postnatal mice by systemic delivery of CRISPR with adeno-associated viruses (AAVs). I resolved the AAV payload limitation by splitting Cas9 and reconstituting the native protein in vivo using scarless split-intein protein trans-splicing, which preserves full activity of Cas9. I determined that the delivery efficiency of AAV-CRISPR dictates gene-targeting rates in vivo, with the preferential gene-editing in liver and heart, and more modest editing efficiencies in skeletal muscle, brain and gonads, directly reflecting the infection profile of the virus serotype. To track CRISPR biodistribution, I established two reporter systems that apply in situ fluorescence activation to demarcate CRISPR-targeting events at single-cell resolution, identifying rare gene-edited cells that normally evade detection by sequencing. This exquisite detection sensitivity further allows evaluation of inter-generational transmission of gene-editing viruses. Finally, although Cas9 elicits host immune responses, these can be ameliorated by immunosuppression. I also identified a public Cas9-responsive T-cell clonotype and mapped the B-cell epitopes on Cas9 and AAV. Engineering tolerance to immunodominant epitopes may provide an avenue for avoiding immune rejection of AAV-CRISPR. The ability to create programmable genetic modifications in multiple organs of postnatal mammals provides a powerful tool for biological research, and foretells that the genomes of whole mammals may be rewritten at will.
Description
Other Available Sources
Keywords
Biology, Genetics
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service