Identifying a Damped Oscillatory Thermohaline Mode in a General Circulation Model Using an Adjoint Model

DSpace/Manakin Repository

Identifying a Damped Oscillatory Thermohaline Mode in a General Circulation Model Using an Adjoint Model

Citable link to this page

 

 
Title: Identifying a Damped Oscillatory Thermohaline Mode in a General Circulation Model Using an Adjoint Model
Author: Sirkes, Ziv; Tziperman, Eli

Note: Order does not necessarily reflect citation order of authors.

Citation: Sirkes, Ziv and Eli Tziperman. 2001. Identifying a damped oscillatory thermohaline mode in a general circulation model using an adjoint model. Journal of Physical Oceanography 31(8): 2297-2306.
Access Status: At the direction of the depositing author this work is not currently accessible through DASH.
Full Text & Related Files:
Abstract: A damped oscillatory mode of the thermohaline circulation (THC), which may play a role in interdecadal
climate variability, is identified in a global primitive equation model. This analysis is done under mixed boundary
conditions using an adjoint of the primitive equation model.
The linearized versus nonlinear stability behavior of the model is studied by comparing the adjoint analysis
to runs of the fully nonlinear model. It is shown that a steady-state solution obtained under larger amplitude
freshwater surface forcing (and hence with a weaker North Atlantic overturning) is unstable, while a steadystate
solution with stronger THC is stable. In a certain intermediate parameter regime it is found that the full
nonlinear model state may be unstable, while the linearized analysis indicates that the model state is stable. It
is proposed that this may be because either the instability mechanism at this intermediate regime is nonlinear
or, while the model is linearly stable at this regime, it allows for temporary growth of small perturbations due
to the non-normal nature of the problem.
A clear signal of variations is not found in the amplitude of the horizontal gyre circulation, possibly indicating
that the gyre effect that was found in THC oscillations in some previous studies may not be essential for the
existence of the THC oscillation. The long timescale of the oscillation in the present model also seems to indicate
that the gyre effect may not be a main active participant in the thermohaline oscillation mechanism.
Published Version: http://dx.doi.org/10.1175/1520-0485(2001)031<2297:IADOTM>2.0.CO;2
Other Sources: http://ams.allenpress.com/perlserv/?request=get-archive&issn=1520-0485
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3439964

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters