Show simple item record

dc.contributor.authorLiu, Chien
dc.contributor.authorDutton, Zachary
dc.contributor.authorBehroozi, Cyrus H.
dc.contributor.authorHau, Lene Vestergaard
dc.date.accessioned2010-02-12T16:59:36Z
dc.date.issued2001
dc.identifier.citationLiu, Chien, Zachary Dutton, Cyrus H. Behroozi, and Lene Vestergaard Hau. 2001. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819): 490-493.en_US
dc.identifier.issn0028-0836en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:3636968
dc.description.abstractElectromagnetically induced transparency(1-3) is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a 'coupling' laser is used to create the interference necessary to allow the transmission of resonant pulses from a 'probe' laser. This technique has been used(4-6) to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud(4). Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is 'frozen' in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the 'read' and 'write' operations. We anticipate applications of this phenomenon for quantum information processing.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.description.sponsorshipPhysicsen_US
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofdoi:10.1038/35054017en_US
dc.relation.hasversionhttp://www.seas.harvard.edu/haulab/publications/pdf/Stopped_Light_2001.pdfen_US
dash.licenseMETA_ONLY
dc.titleObservation of Coherent Optical Information Storage in an Atomic Medium Using Halted Light Pulsesen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalNatureen_US
dash.depositing.authorHau, Lene Vestergaard
dash.embargo.until10000-01-01
dc.identifier.doi10.1038/35054017*
dash.contributor.affiliatedHau, Lene


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record