Feedback Between Deglaciation, Volcanism, and Atmospheric CO2

DSpace/Manakin Repository

Feedback Between Deglaciation, Volcanism, and Atmospheric CO2

Citable link to this page

. . . . . .

Title: Feedback Between Deglaciation, Volcanism, and Atmospheric CO2
Author: Huybers, Peter John; Langmuir, Charles H.

Note: Order does not necessarily reflect citation order of authors.

Citation: Huybers, Peter J., and Charles Langmuir. 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth and Planetary Science Letters 286(3-4): 479-491.
Full Text & Related Files:
Abstract: An evaluation of the historical record of volcanic eruptions shows that subaerial volcanism increases globally by two to six times above background levels between 12 ka and 7 ka, during the last deglaciation. Increased volcanism occurs in deglaciating regions. Causal mechanisms could include an increase in magma production owing to the mantle decompression caused by ablation of glaciers and ice caps or a more general pacing of when eruptions occur by the glacial variability. A corollary is that ocean ridge volcanic production should decrease with the rising sea level during deglaciation, with the greatest effect at slow spreading ridges. CO2 output from the increased subaerial volcanism appears large enough to influence glacial/interglacial CO2 variations. We estimate subaerial emissions during deglaciation to be between 1000 and 5000 Gt of CO2 above the long term average background flux, assuming that emissions are proportional to the frequency of eruptions. After accounting for equilibration with the ocean, this additional CO2 flux is consistent in timing and magnitude with ice core observations of a 40 ppm increase in atmospheric CO2 concentration during the second half of the last deglaciation. Estimated decreases in CO2 output from ocean ridge volcanoes compensate for only 20% of the increased subaerial flux. If such a large volcanic output of CO2 occurs, then volcanism forges a positive feedback between glacial variability and atmospheric CO2 concentrations: deglaciation increases volcanic eruptions, raises atmospheric CO2, and causes more deglaciation. Such a positive feedback may contribute to the rapid passage from glacial to interglacial periods. Conversely, waning volcanic activity during an interglacial could lead to a reduction in CO2 and the onset of an ice age. Whereas glacial/interglacial variations in CO2 are generally attributed to oceanic mechanisms, it is suggested that the vast carbon reservoirs associated with the solid Earth may also play an important role.
Published Version: http://dx.doi.org/10.1016/j.epsl.2009.07.014
Other Sources: http://www.people.fas.harvard.edu/~phuybers/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3659701

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6463]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters