Sulfate Formation in Sea-Salt Aerosols: Constraints from Oxygen Isotopes

DSpace/Manakin Repository

Sulfate Formation in Sea-Salt Aerosols: Constraints from Oxygen Isotopes

Citable link to this page

. . . . . .

Title: Sulfate Formation in Sea-Salt Aerosols: Constraints from Oxygen Isotopes
Author: Alexander, B.; Park, Rokjin J.; Jacob, Daniel J.; Li, Q. B.; Yantosca, Robert M.; Savarino, J.; Lee, C. C. W.; Thiemens, M. H.

Note: Order does not necessarily reflect citation order of authors.

Citation: Alexander, B., Rokjin J. Park, Daniel J. Jacob, Q.B. Li, Robert M. Yantosca, J. Savarino, C.C.W. Lee, and M.H. Thiemens. 2005. Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. Journal of Geophysical Research 110: D10307.
Full Text & Related Files:
Abstract: We use observations of the mass-independent oxygen isotopic composition (Δ17O) of sulfate in the marine boundary layer (MBL) to quantify the sulfate source from aqueous SO2 (S(IV)) oxidation by O3 in alkaline sea-salt aerosols. Oxidation by O3 imparts a large Δ17O signature to the resulting sulfate (8.8‰) relative to oxidation by H2O2 (0.9‰) or by OH or O2 (0‰). Ship data from two Indian Ocean Experiment (INDOEX) cruises in the Indian Ocean indicate Δ17O values usually <1‰ in the submicron sulfate aerosol but considerable variability in the supermicron sulfate with frequent occurrences above 1‰ and up to 6.7‰. The large Δ17O values are associated with high concentrations of sea-salt aerosols, providing evidence for the S(IV) + O3 pathway. We use a global chemical transport model (GEOS-CHEM) to interpret quantitatively the INDOEX observations and to assess the global importance of sulfate production in sea-salt aerosols. The model accounts for titration of sea-salt alkalinity in the MBL by uptake of acid gases (SO2, H2SO4, and HNO3), shutting down the S(IV) + O3 pathway. We find that this titration occurs rapidly over much of the oceans except at high latitudes (strong sea-salt emission) and is due to both the S(IV) + O3 reaction and HNO3 (g) condensation; that is, sulfate formation in sea-salt aerosols is limited by the alkalinity flux from the ocean and by competition for this alkalinity supply from HNO3 (g). The model is consistent with the Δ17O magnitudes and patterns in the INDOEX data. Titration of alkalinity is critical for the success of the model simulation. Regeneration of sea-salt aerosol alkalinity by OH uptake is inconsistent with the Δ17O observations in INDOEX. Model results indicate that sulfate production in sea-salt aerosols decreases MBL SO2 concentrations and gas phase H2SO4 production rates by typically 10–30% (up to >70%) and increases MBL sulfate concentrations by typically >10% (up to 30%). Globally, this mechanism contributes 9% of atmospheric sulfate production and 1% of the sulfate burden. The impact on H2SO4 (g) formation and implications for the potential formation of new particles in the MBL warrants inclusion in models examining the radiative effects of sulfate aerosols.
Published Version: doi:10.1029/2004JD005659
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3822895

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7374]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters