Economic Hierarchical Q-learning

DSpace/Manakin Repository

Economic Hierarchical Q-learning

Citable link to this page

. . . . . .

Title: Economic Hierarchical Q-learning
Author: Schultink, Erik; Cavallo, Ruggiero; Parkes, David C.

Note: Order does not necessarily reflect citation order of authors.

Citation: Schultink, Erik, Ruggiero Cavallo, and David C. Parkes. 2008. Economic hierarchical Q-learning. In Proceedings of the Twenty-third AAAI Conference on Artificial Intelligence and the Twentieth Innovative Applications of Artificial Intelligence Conference: July 13-17, 2008, Chicago, Illinois, ed. American Association for Artificial Intelligence, 689-695. Menlo Park, Calif.: AAAI Press.
Full Text & Related Files:
Abstract: Hierarchical state decompositions address the curse-of-dimensionality in Q-learning methods for reinforcement learning (RL) but can suffer from suboptimality. In addressing this, we introduce the Economic Hierarchical Q-Learning (EHQ) algorithm for hierarchical RL. The EHQ algorithm uses subsidies to align interests such that agents that would otherwise converge to a recursively optimal policy will instead be motivated to act hierarchically optimally. The essential idea is that a parent will pay a child for the relative value to the rest of the system for "returning the world" in one state over another state. The resulting learning framework is simple compared to other algorithms that obtain hierarchical optimality. Additionally, EHQ encapsulates relevant information about value tradeoffs faced across the hierarchy at each node and requires minimal data exchange between nodes. We provide no theoretical proof of hierarchical optimality but are able demonstrate success with EHQ in empirical results.
Published Version: http://portal.acm.org/citation.cfm?id=1620163.1620179
Other Sources: http://www.eecs.harvard.edu/econcs/pubs/schultink08.pdf
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4000334

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7362]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters