Multiphase Geometric Couplings for the Segmentation of Neural Processes

DSpace/Manakin Repository

Multiphase Geometric Couplings for the Segmentation of Neural Processes

Citable link to this page

. . . . . .

Title: Multiphase Geometric Couplings for the Segmentation of Neural Processes
Author: Vazquez-Reina, Amelio; Miller, Eric; Pfister, Hanspeter

Note: Order does not necessarily reflect citation order of authors.

Citation: Vazquez-Reina, Amelio, Eric Miller, and Hanspeter Pfister. 2009. Multiphase geometric couplings for the segmentation of neural processes. Proceedings: CVPR 2009, IEEE Computer Society Conference on Computer Vision and Pattern Recognition: 2020-2027.
Full Text & Related Files:
Abstract: The ability to constrain the geometry of deformable models for image segmentation can be useful when information about the expected shape or positioning of the objects in a scene is known a priori. An example of this occurs when segmenting neural cross sections in electron microscopy. Such images often contain multiple nested boundaries separating regions of homogeneous intensities. For these applications, multiphase level sets provide a partitioning framework that allows for the segmentation of multiple deformable objects by combining several level set functions. Although there has been much effort in the study of statistical shape priors that can be used to constrain the geometry of each partition, none of these methods allow for the direct modeling of geometric arrangements of partitions. In this paper, we show how to define elastic couplings between multiple level set functions to model ribbon-like partitions. We build such couplings using dynamic force fields that can depend on the image content and relative location and shape of the level set functions. To the best of our knowledge, this is the first work that shows a direct way of geometrically constraining multiphase level sets for image segmentation. We demonstrate the robustness of our method by comparing it with previous level set segmentation methods.
Published Version: doi:10.1109/CVPRW.2009.5206524
Other Sources: http://gvi.seas.harvard.edu/sites/all/files/FinalSubmitted.pdf
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4100253

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7594]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters