Automated MRI Measures Identify Individuals with Mild Cognitive Impairment and Alzheimer's Disease

DSpace/Manakin Repository

Automated MRI Measures Identify Individuals with Mild Cognitive Impairment and Alzheimer's Disease

Citable link to this page

. . . . . .

Title: Automated MRI Measures Identify Individuals with Mild Cognitive Impairment and Alzheimer's Disease
Author: Desikan, Rahul S.; Cabral, Howard J.; Hess, Christopher P.; Dillon, William P.; Glastonbury, Christine M.; Weiner, Michael W.; Schmansky, Nicholas J.; Salat, David H.; Greve, Douglas N.; Buckner, Randy Lee; Fischl, Bruce R.; Alzheimer’s Disease Neuroimaging Initiative

Note: Order does not necessarily reflect citation order of authors.

Citation: Desikan, Rahul S., Howard J. Cabral, Christopher P. Hess, William P. Dillon, Christine M. Glastonbury, Michael W. Weiner, Nicholas J. Schmansky, et al. 2009. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain 132: 2048-2057.
Full Text & Related Files:
Abstract: Mild cognitive impairment can represent a transitional state between normal ageing and Alzheimer's disease. Non-invasive diagnostic methods are needed to identify mild cognitive impairment individuals for early therapeutic interventions. Our objective was to determine whether automated magnetic resonance imaging-based measures could identify mild cognitive impairment individuals with a high degree of accuracy. Baseline volumetric T1-weighted magnetic resonance imaging scans of 313 individuals from two independent cohorts were examined using automated software tools to identify the volume and mean thickness of 34 neuroanatomic regions. The first cohort included 49 older controls and 48 individuals with mild cognitive impairment, while the second cohort included 94 older controls and 57 mild cognitive impairment individuals. Sixty-five patients with probable Alzheimer's disease were also included for comparison. For the discrimination of mild cognitive impairment, entorhinal cortex thickness, hippocampal volume and supramarginal gyrus thickness demonstrated an area under the curve of 0.91 (specificity 94%, sensitivity 74%, positive likelihood ratio 12.12, negative likelihood ratio 0.29) for the first cohort and an area under the curve of 0.95 (specificity 91%, sensitivity 90%, positive likelihood ratio 10.0, negative likelihood ratio 0.11) for the second cohort. For the discrimination of Alzheimer's disease, these three measures demonstrated an area under the curve of 1.0. The three magnetic resonance imaging measures demonstrated significant correlations with clinical and neuropsychological assessments as well as with cerebrospinal fluid levels of tau, hyperphosphorylated tau and abeta 42 proteins. These results demonstrate that automated magnetic resonance imaging measures can serve as an in vivo surrogate for disease severity, underlying neuropathology and as a non-invasive diagnostic method for mild cognitive impairment and Alzheimer's disease.
Published Version: http://dx.doi.org/10.1093/brain/awp123
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714061/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4460802

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7588]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters