Envelope Structure of Synechococcus sp. WH8113, A Nonflagellated Swimming Cyanobacterium

DSpace/Manakin Repository

Envelope Structure of Synechococcus sp. WH8113, A Nonflagellated Swimming Cyanobacterium

Citable link to this page

. . . . . .

Title: Envelope Structure of Synechococcus sp. WH8113, A Nonflagellated Swimming Cyanobacterium
Author: Petersen, Jennifer D; Reese, Thomas S; Samuel, Aravinthan DT

Note: Order does not necessarily reflect citation order of authors.

Citation: Samuel, Aravinthan DT, Jennifer D. Petersen, and Thomas S. Reese. 2001. Envelope structure of sp. WH8113, a nonflagellated swimming cyanobacterium. BMC Microbiology 1:4.
Full Text & Related Files:
Abstract: Background: Many bacteria swim by rotating helical flagellar filaments [1]. Waterbury et al. [15] discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces [2,7]. The hypothesis that Synechococcus might swim using traveling surface waves [6,13] prompted this investigation. Results: Using quick-freeze electron microscopy, we have identified a crystalline surface layer that encloses the outer membrane of the motile strain Synechococcus sp. WH8113, the components of which are arranged in a rhomboid lattice. Spicules emerge in profusion from the layer and extend up to 150 nm into the surrounding fluid. These spicules also send extensions inwards to the inner cell membrane where motility is powered by an ion-motive force [17]. Conclusion: The envelope structure of Synechococcus sp. WH8113 provides new constraints on its motile mechanism. The spicules are well positioned to transduce energy at the cell membrane into mechanical work at the cell surface. One model is that an unidentified motor embedded in the cell membrane utilizes the spicules as oars to generate a traveling wave external to the surface layer in the manner of ciliated eukaryotes.
Published Version: doi:10.1186/1471-2180-1-4
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC31413/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4460827

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6464]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters