Linear combinations of docking affinities explain quantitative differences in RTK signaling

DSpace/Manakin Repository

Linear combinations of docking affinities explain quantitative differences in RTK signaling

Citable link to this page

. . . . . .

Title: Linear combinations of docking affinities explain quantitative differences in RTK signaling
Author: Gordus, Andrew; Krall, Jordan A; Kaushansky, Alexis; Wolf-Yadlin, Alejandro; Sevecka, Mark; Chang, Bryan H; Rush, John; Beyer, Elsa Margaret; Macbeath, Gavin

Note: Order does not necessarily reflect citation order of authors.

Citation: Gordus, Andrew, Jordan A. Krall, Elsa M. Beyer, Alexis Kaushansky, Alejandro Wolf-Yadlin, Mark Sevecka, Bryan H. Chang, John Rush, and Gavin MacBeath. 2009. Linear combinations of docking affinities explain quantitative differences in RTK signaling. Molecular Systems Biology 5:235.
Full Text & Related Files:
Abstract: Receptor tyrosine kinases (RTKs) process extracellular cues by activating a broad array of signaling proteins. Paradoxically, they often use the same proteins to elicit diverse and even opposing phenotypic responses. Binary, ‘on–off' wiring diagrams are therefore inadequate to explain their differences. Here, we show that when six diverse RTKs are placed in the same cellular background, they activate many of the same proteins, but to different quantitative degrees. Additionally, we find that the relative phosphorylation levels of upstream signaling proteins can be accurately predicted using linear models that rely on combinations of receptor-docking affinities and that the docking sites for phosphoinositide 3-kinase (PI3K) and Shc1 provide much of the predictive information. In contrast, we find that the phosphorylation levels of downstream proteins cannot be predicted using linear models. Taken together, these results show that information processing by RTKs can be segmented into discrete upstream and downstream steps, suggesting that the challenging task of constructing mathematical models of RTK signaling can be parsed into separate and more manageable layers.
Published Version: doi:10.1038/msb.2008.72
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644171/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4513848

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7374]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters