Risk Prediction Models with Incomplete Data with Application to Prediction of Estrogen Receptor-Positive Breast Cancer: Prospective Data from the Nurses' Health Study

DSpace/Manakin Repository

Risk Prediction Models with Incomplete Data with Application to Prediction of Estrogen Receptor-Positive Breast Cancer: Prospective Data from the Nurses' Health Study

Citable link to this page

. . . . . .

Title: Risk Prediction Models with Incomplete Data with Application to Prediction of Estrogen Receptor-Positive Breast Cancer: Prospective Data from the Nurses' Health Study
Author: Rosner, Bernard Alfred; Colditz, Graham A.; Iglehart, James Dirk; Hankinson, Susan Elizabeth

Note: Order does not necessarily reflect citation order of authors.

Citation: Rosner, Bernard, Graham A. Colditz, James Dirk Iglehart and Susan E. Hankinson. 2008. Risk prediction models with incomplete data with application to prediction of estrogen receptor-positive breast cancer: prospective data from the Nurses' Health Study. Breast Cancer Research 10(4): R55.
Full Text & Related Files:
Abstract: Introduction: A number of breast cancer risk prediction models have been developed to provide insight into a woman's individual breast cancer risk. Although circulating levels of estradiol in postmenopausal women predict subsequent breast cancer risk, whether the addition of estradiol levels adds significantly to a model's predictive power has not previously been evaluated. Methods: Using linear regression, the authors developed an imputed estradiol score using measured estradiol levels (the outcome) and both case status and risk factor data (for example, body mass index) from a nested case-control study conducted within a large prospective cohort study and used multiple imputation methods to develop an overall risk model including both risk factor data from the main cohort and estradiol levels from the nested case-control study. Results: The authors evaluated the addition of imputed estradiol level to the previously published Rosner and Colditz log-incidence model for breast cancer risk prediction within the larger Nurses' Health Study cohort. The follow-up was from 1980 to 2000; during this time, 1,559 invasive estrogen receptor-positive breast cancer cases were confirmed. The addition of imputed estradiol levels significantly improved risk prediction; the age-specific concordance statistic increased from 0.635 ± 0.007 to 0.645 ± 0.007 (P < 0.001) after the addition of imputed estradiol. Conclusion: Circulating estradiol levels in postmenopausal women appear to add to other lifestyle factors in predicting a woman's individual risk of breast cancer.
Published Version: http://dx.doi.org/10.1186/bcr2110
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575548/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4551773

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6898]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters