Polynomial-Time Quantum Algorithm for the Simulation of Chemical Dynamics

DSpace/Manakin Repository

Polynomial-Time Quantum Algorithm for the Simulation of Chemical Dynamics

Citable link to this page

. . . . . .

Title: Polynomial-Time Quantum Algorithm for the Simulation of Chemical Dynamics
Author: Kassal, Ivan; Jordan, Stephen P.; Love, Peter J.; Mohseni, Masoud; Aspuru-Guzik, Alan

Note: Order does not necessarily reflect citation order of authors.

Citation: Kassal, Ivan, Stephen P. Jordan, Peter J. Love, Masoud Mohseni, and Alan Aspuru-Guzik. 2008. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences 105(48): 18681-18686.
Full Text & Related Files:
Abstract: The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and interelectronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born–Oppenheimer approximation but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wave function is propagated on a grid with appropriately short time steps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with 100 qubits.
Published Version: doi:10.1073/pnas.0808245105
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4646015

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6898]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters