A Wireless Brain-Machine Interface for Real-Time Speech Synthesis

DSpace/Manakin Repository

A Wireless Brain-Machine Interface for Real-Time Speech Synthesis

Citable link to this page

. . . . . .

Title: A Wireless Brain-Machine Interface for Real-Time Speech Synthesis
Author: Brumberg, Jonathan S.; Nieto-Castanon, Alfonso; Tourville, Jason A.; Panko, Mikhail; Law, Robert; Siebert, Steven A.; Bartels, Jess L.; Andreasen, Dinal S.; Ehirim, Princewill; Kennedy, Philip R.; Guenther, Frank H.; Wright, E. Joseph; Mao, Hui

Note: Order does not necessarily reflect citation order of authors.

Citation: Guenther, Frank H., Jonathan S. Brumberg, E. Joseph Wright, Alfonso Nieto-Castanon, Jason A. Tourville, Mikhail Panko, Robert Law, et al. 2009. A wireless brain-machine interface for real-time speech synthesis. PLoS ONE 4(12).
Full Text & Related Files:
Abstract: Background: Brain-machine interfaces (BMIs) involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech. Methodology/Principal Findings: Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms) auditory feedback of the decoded sound. Accuracy of the volunteer's vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70%) and 46% decrease in average endpoint error from the first to the last block of a three-vowel task. Conclusions/Significance: Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas.
Published Version: doi:10.1371/journal.pone.0008218
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784218/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4731680

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters