Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity

DSpace/Manakin Repository

Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity

Citable link to this page

. . . . . .

Title: Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity
Author: Knoll, Andrew Herbert; Raven, John A.

Note: Order does not necessarily reflect citation order of authors.

Citation: Raven, John A., and Andrew H. Knoll. 2010. Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiology Journal 27(6&7): 572-584.
Full Text & Related Files:
Abstract: Skeletal biomineralisation by microbial eukaryotes significantly affects the global biogeochemical cycles of carbon, silicon and calcium. Non-skeletal biomineralisation by eukaryotic cells, with precipitates retained within the cell interior, can duplicate some of the functions of skeletal minerals, e.g., increased cell density, but not the mechanical and antibiophage functions of extracellular biominerals. However, skeletal biomineralisation does not duplicate many of the functions of non-skeletal biominerals. These functions include magnetotaxis (magnetite), gravity sensing (intracellular barite, bassanite, celestite and gypsum), buffering and storage of elements in an osmotically inactive form (calcium as carbonate, oxalate, polyphosphate and sulfate; phosphate as polyphosphate) and acid-base regulation, disposing of excess hydroxyl ions via an osmotically inactive product (calcium carbonate, calcium oxalate). Although polyphosphate has a wide phylogenetic distribution among microbial eukaryotes, other non-skeletal minerals have more restricted distributions, and as yet there seems to be no definitive evidence that the alkaline earth components (Ba and Sr) of barite and celestite are essential for completion of the life cycle in organisms that produce these minerals.
Published Version: doi:10.1080/01490451003702990
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4795339

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [6463]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters