Ornithine Decarboxylase Antizyme Induces Hypomethylation of Genome DNA and Histone H3 Lysine 9 Dimethylation (H3K9me2) in Human Oral Cancer Cell Line

DSpace/Manakin Repository

Ornithine Decarboxylase Antizyme Induces Hypomethylation of Genome DNA and Histone H3 Lysine 9 Dimethylation (H3K9me2) in Human Oral Cancer Cell Line

Citable link to this page

. . . . . .

Title: Ornithine Decarboxylase Antizyme Induces Hypomethylation of Genome DNA and Histone H3 Lysine 9 Dimethylation (H3K9me2) in Human Oral Cancer Cell Line
Author: Matsuo, Kou; Hu, Guo-fu; Sasaki, Akira; Tsuji, Takanori; Yamamoto, Daisuke; Shima, Kaori; Nishioka, Takashi; Chen, Chang-Yan

Note: Order does not necessarily reflect citation order of authors.

Citation: Yamamoto, Daisuke, Kaori Shima, Kou Matsuo, Takashi Nishioka, Chang Yan Chen, Guo-fu Hu, Akira Sasaki, and Takanori Tsuji. 2010. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2) in human oral cancer cell line. PLoS ONE 5(9): e12554.
Full Text & Related Files:
Abstract: Background: Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ) in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM), which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails. Methodology/Principal Findings: Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI) method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2). Protein level of DNA methyltransferase 3B (DNMT3B) and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant. Conclusions/Significance: OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.
Published Version: doi:10.1371/journal.pone.0012554
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933235/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4874793

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters