Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

DSpace/Manakin Repository

Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

Citable link to this page

. . . . . .

Title: Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation
Author: Tarantini, Letizia; Bonzini, Matteo; Apostoli, Pietro; Pegoraro, Valeria; Bollati, Valentina; Marinelli, Barbara; Cantone, Laura; Rizzo, Giovanna; Hou, Lifang; Bertazzi, Pier Alberto; Schwartz, Joel David; Baccarelli, Andrea

Note: Order does not necessarily reflect citation order of authors.

Citation: Tarantini, Letizia, Matteo Bonzini, Pietro Apostoli, Valeria Pegoraro, Valentina Bollati, Barbara Marinelli, Laura Cantone, et al. 2009. Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation. Environmental Health Perspectives 117(2): 217-222.
Full Text & Related Files:
Abstract: Background: Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined.Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods: We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results: Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions: We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM.
Published Version: doi:10.1289/ehp.11898
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649223/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4882989

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters