Glutathione S-Transferase Polymorphisms, Passive Smoking, Obesity, and Heart Rate Variability in Nonsmokers

DSpace/Manakin Repository

Glutathione S-Transferase Polymorphisms, Passive Smoking, Obesity, and Heart Rate Variability in Nonsmokers

Citable link to this page

. . . . . .

Title: Glutathione S-Transferase Polymorphisms, Passive Smoking, Obesity, and Heart Rate Variability in Nonsmokers
Author: Probst-Hensch, Nicole M.; Imboden, Medea; Dietrich, Denise Felber; Barthélemy, Jean-Claude; Ackermann-Liebrich, Ursula; Berger, Wolfgang; Gaspoz, Jean-Michel; Schwartz, Joel David

Note: Order does not necessarily reflect citation order of authors.

Citation: Probst-Hensch, Nicole M., Medea Imboden, Denise Felber Dietrich, Jean-Claude Barthélemy, Ursula Ackermann-Liebrich, Wolfgang Berger, Jean-Michel Gaspoz, and Joel Schwartz. 2008. Glutathione S-Transferase Polymorphisms, Passive Smoking, Obesity, and Heart Rate Variability in Nonsmokers. Environmental Health Perspectives 116(11): 1494-1499.
Full Text & Related Files:
Abstract: Background: Disturbances of heart rate variability (HRV) may represent one pathway by which second-hand smoke (SHS) and air pollutants affect cardiovascular morbidity and mortality. The mechanisms are poorly understood. Objectives: We investigated the hypothesis that oxidative stress alters cardiac autonomic control. We studied the association of polymorphisms in oxidant-scavenging glutathione S-transferase (GST) genes and their interactions with SHS and obesity with HRV. Methods: A total of 1,133 nonsmokers > 50 years of age from a population-based Swiss cohort underwent ambulatory 24-hr electrocardiogram monitoring and reported on lifestyle and medical history. We genotyped GSTM1 and GSTT1 gene deletions and a GSTP1 (Ile105Val) single nucleotide polymorphism and analyzed genotype–HRV associations by multiple linear regressions. Results: Homozygous GSTT1 null genotypes exhibited an average 10% decrease in total power (TP) and low-frequency-domain HRV parameters. All three polymorphisms modified the cross-sectional associations of HRV with SHS and obesity. Homozygous GSTM1 null genotypes with > 2 hr/day of SHS exposure exhibited a 26% lower TP [95% confidence interval (CI), 11 to 39%], versus a reduction of −5% (95% CI, −22 to 17%) in subjects with the gene and the same SHS exposure compared with GSTM1 carriers without SHS exposure. Similarly, obese GSTM1 null genotypes had, on average, a 22% (95% CI, 12 to 31%) lower TP, whereas with the gene present obesity was associated with only a 3% decline (95% CI, −15% to 10%) compared with nonobese GSTM1 carriers. Conclusions: GST deficiency is associated with significant HRV alterations in the general population. Its interaction with SHS and obesity in reducing HRV is consistent with an impact of oxidative stress on the autonomous nervous system.
Published Version: doi:10.1289/ehp.11402
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592269/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4889511

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters