Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

DSpace/Manakin Repository

Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

Show simple item record

dc.contributor.author Clougherty, Jane E
dc.contributor.author Baxter, Lisa K
dc.contributor.author Wright, Rosalind Jo
dc.contributor.author Levy, Jonathan Ian
dc.date.accessioned 2011-05-19T20:03:09Z
dc.date.issued 2008
dc.identifier.citation Clougherty, Jane E., Rosalind J. Wright, Lisa K. Baxter, and Jonathan I. Levy. 2008. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants. Environmental Health 7: 17. en_US
dc.identifier.issn 1476-069X en_US
dc.identifier.uri http://nrs.harvard.edu/urn-3:HUL.InstRepos:4892359
dc.description.abstract Background: There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods: We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results: PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction), and with higher concentrations during summer (R2 = 0.56). Conclusion: Each pollutant examined displayed somewhat different spatial patterns within urban neighborhoods, and were differently related to local traffic and meteorology. Our results indicate a need for multi-pollutant exposure modeling to disentangle causal agents in epidemiological studies, and further investigation of site-specific and meteorological modification of the traffic-concentration relationship in urban neighborhoods. en_US
dc.language.iso en_US en_US
dc.publisher BioMed Central en_US
dc.relation.isversionof doi:10.1186/1476-069X-7-17 en_US
dc.relation.hasversion http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2397396/pdf/ en_US
dash.license LAA
dc.title Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants en_US
dc.type Journal Article en_US
dc.description.version Version of Record en_US
dc.relation.journal Environmental Health en_US
dash.depositing.author Wright, Rosalind Jo
dc.date.available 2011-05-19T20:03:09Z
dash.affiliation.other HMS^Medicine-Brigham and Women's Hospital en_US
dash.affiliation.other SPH^Environmental+Occupational Medicine+Epi en_US
dash.affiliation.other SPH^Exposure Epidemiology and Risk Program en_US

Files in this item

Files Size Format View
2397396.pdf 536.8Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

 
 

Search DASH


Advanced Search
 
 

Submitters