From Computational Discovery to Experimental Characterization of a High Hole Mobility Organic Crystal

DSpace/Manakin Repository

From Computational Discovery to Experimental Characterization of a High Hole Mobility Organic Crystal

Citable link to this page

. . . . . .

Title: From Computational Discovery to Experimental Characterization of a High Hole Mobility Organic Crystal
Author: Sokolov, Anatoliy N.; Atahan-Evrenk, Sule; Mondal, Rajib; Akkerman, Hylke B.; Sánchez-Carrera, Roel; Granados-Focil, Sergio; Schrier, Joshua; Mannsfeld, Stefan C.B.; Zoombelt, Arjan; Bao, Zhenan; Aspuru-Guzik, Alan

Note: Order does not necessarily reflect citation order of authors.

Citation: Sokolov, Anatoliy N., Sule Atahan-Evrenk, Rajib Mondal, Hylke B. Akkerman, Roel S. Sánchez-Carrera, Sergio Granados-Focil, Joshua Schrier, et al. 2011. From computational discovery to experimental characterization of a high hole mobility organic crystal. Nature Communications 2:437.
Full Text & Related Files:
Abstract: For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. on the basis of estimates from the marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm\(^2\)V\(^{-1}\)s\(^{-1}\), respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm\(^2\)V\(^{-1}\)s\(^{-1}\) reported to date.
Published Version: doi:10.1038/ncomms1451
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:5346649

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7213]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters