The Acid Test of Fluoride: How pH Modulates Toxicity

DSpace/Manakin Repository

The Acid Test of Fluoride: How pH Modulates Toxicity

Citable link to this page

. . . . . .

Title: The Acid Test of Fluoride: How pH Modulates Toxicity
Author: Tsuchiya, Masahiro; Skobe, Ziedonis; Sharma, Ramaswamy Narayanaswamy; Tannous, Bakhos A.; Bartlett, John D.

Note: Order does not necessarily reflect citation order of authors.

Citation: Sharma, Ramaswamy, Masahiro Tsuchiya, Ziedonis Skobe, Bakhos A. Tannous, and John D. Bartlett. 2010. The Acid Test of Fluoride: How pH Modulates Toxicity. PLoS ONE 5(5): e10895.
Full Text & Related Files:
Abstract: Background: It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (\(F^−\)). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of \(F^−\). Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of \(F^−\) into cells. Here, we asked if \(F^−\) was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings: Treatment of ameloblast-derived LS8 cells with \(F^−\) at low pH reduced the threshold dose of \(F^−\) required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of \(F^−\) dose and pH. Luciferase secretion significantly decreased within 2 hr of \(F^−\) treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm \(F^−\) in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, \(F^−\)-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions: The low pH environment of maturation stage ameloblasts facilitates the uptake of \(F^−\), causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.
Published Version: doi:10.1371/journal.pone.0010895
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878349/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:5692485

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters