Quantum Many-Body Dynamics of Coupled Double-Well Superlattices

DSpace/Manakin Repository

Quantum Many-Body Dynamics of Coupled Double-Well Superlattices

Citable link to this page


Title: Quantum Many-Body Dynamics of Coupled Double-Well Superlattices
Author: Barmettler, Peter; Rey, Ana; Bloch, Immanuel; Gritsev, Vladimir; Demler, Eugene A.; Lukin, Mikhail D.

Note: Order does not necessarily reflect citation order of authors.

Citation: Barmettler, Peter, Ana Rey, Eugene Demler, Mikhail Lukin, Immanuel Bloch, and Vladimir Gritsev. 2008. Quantum many-body dynamics of coupled double-well superlattices. Physical Review A 78(1): 012330.
Full Text & Related Files:
Abstract: We propose a method for controllable generation of non-local entangled pairs using spinor atoms loaded in an optical superlattice. Our scheme iteratively increases the distance between entangled atoms by controlling the coupling between the double wells. When implemented in a finite linear chain of 2N atoms, it creates a triplet valence bond state with large persistency of entanglement (of the order of N). We also study the non-equilibrium dynamics of the one-dimensional ferromagnetic Heisenberg Hamiltonian and show that the time evolution of a state of decoupled triplets on each double well leads to the formation of a highly entangled state where short-distance antiferromagnetic correlations coexist with longer-distance ferromagnetic ones. We present methods for detection and characterization of the various dynamically generated states. These ideas are a step forward towards the use of atoms trapped by light as quantum information processors and quantum simulators.
Published Version: doi:10.1103/PhysRevA.78.012330
Other Sources: http://arxiv.org/abs/0803.1643
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:7475766

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search