Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium Against Gram-Positive Pathogenic Bacteria

DSpace/Manakin Repository

Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium Against Gram-Positive Pathogenic Bacteria

Citable link to this page

. . . . . .

Title: Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium Against Gram-Positive Pathogenic Bacteria
Author: Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael; Tegos, George

Note: Order does not necessarily reflect citation order of authors.

Citation: Fiamegos, Yiannis C., Panagiotis L. Kastritis, Vassiliki Exarchou, Haley Han, Alexandre M. J. J. Bonvin, Jacques Vervoort, Kim Lewis, Michael R. Hamblin, and George P. Tegos. 2011. Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria. PLoS ONE 6(4): e18127.
Full Text & Related Files:
Abstract: Background: Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings: In this study we report the identification and characterization of 4',5'-O-dicaffeoylquinic acid (4',5'-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3',5'-ODCQA, 4',5'-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4',5'-ODCQA with pump inhibitory activity whereas 3',5'-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance: These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4',5'-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.
Published Version: doi://10.1371/journal.pone.0018127
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070693/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8160879

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters