The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid

DSpace/Manakin Repository

The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid

Citable link to this page

. . . . . .

Title: The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid
Author: Aspuru-Guzik, Alan; Hachmann, Johannes; Olivares-Amaya, Roberto; Atahan-Evrenk, Sule; Amador-Bedolla, Carlos; Sanchez-Carrera, Roel; Gold-Parker, Aryeh; Vogt, Leslie; Brockway, Anna M.

Note: Order does not necessarily reflect citation order of authors.

Citation: Hachmann, Johannes, Roberto Olivares-Amaya, Sule Atahan-Evrenk, Carlos Amador-Bedolla, Roel S. Sánchez-Carrera, Aryeh Gold-Parker, Leslie Vogt, Anna M. Brockway, and Alán Aspuru-Guzik. 2011. The Harvard Clean Energy Project: Large-Scale computational screening and design of organic photovoltaics on the world community grid. Journal of Physical Chemistry Letters 2(17): 2241–2251.
Full Text & Related Files:
Abstract: This Perspective introduces the Harvard Clean Energy Project (CEP), a theory-driven search for the next generation of organic solar cell materials. We give a broad overview of its setup and infrastructure, present first results, and outline upcoming developments. CEP has established an automated, high-throughput, in silico framework to study potential candidate structures for organic photovoltaics. The current project phase is concerned with the characterization of millions of molecular motifs using first-principles quantum chemistry. The scale of this study requires a correspondingly large computational resource, which is provided by distributed volunteer computing on IBM’s World Community Grid. The results are compiled and analyzed in a reference database and will be made available for public use. In addition to finding specific candidates with certain properties, it is the goal of CEP to illuminate and understand the structure–property relations in the domain of organic electronics. Such insights can open the door to a rational and systematic design of future high-performance materials. The computational work in CEP is tightly embedded in a collaboration with experimentalists, who provide valuable input and feedback to the project.
Published Version: doi:10.1021/jz200866s
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8364968

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7594]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters