Show simple item record

dc.contributor.authorGiri, Guarav
dc.contributor.authorVerploegen, Eric
dc.contributor.authorMannsfeld, Stefan C. B.
dc.contributor.authorAtahan, Sule
dc.contributor.authorKim, Do Hwam
dc.contributor.authorLee, Sang Yoon
dc.contributor.authorBeccerril, Hector A.
dc.contributor.authorAspuru-Guzik, Alan
dc.contributor.authorToney, Michael F.
dc.contributor.authorBao, Zhenan
dc.date.accessioned2012-03-14T14:09:40Z
dc.date.issued2011
dc.identifier.citationGiri, Gaurav, Eric Verploegen, Stefan C. B. Mannsfeld, Sule Atahan-Evrenk, Do Hwan Kim, Sang Yoon Lee, Hector A. Becerril, Alán Aspuru-Guzik, Michael F. Toney, and Zhenan Bao. 2011. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480(7378): 504–508.en_US
dc.identifier.issn0028-0836en_US
dc.identifier.issn1476-4687en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:8365120
dc.description.abstractCircuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π–π stacking distance) greatly influences electron orbital overlap and therefore mobility. Using our method to incrementally introduce lattice strain, we alter the π–π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33Å to 3.08 Å. We believe that 3.08Å is the shortest π–π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π–π distance of 3.04Å has been achieved through intramolecular bonding). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from \(0.8 cm^2 V^{−1} s^{−1}\) for unstrained films to a high mobility of \(4.6 cm^2 V^{−1} s^{−1}\) for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.en_US
dc.description.sponsorshipChemistry and Chemical Biologyen_US
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofdoi:10.1038/nature10683en_US
dash.licenseOAP
dc.titleTuning Charge Transport in Solution-Sheared Organic Semiconductors Using Lattice Strainen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalNatureen_US
dash.depositing.authorAspuru-Guzik, Alan
dc.date.available2012-03-14T14:09:40Z
dc.identifier.doi10.1038/nature10683*
dash.authorsorderedfalse
dash.contributor.affiliatedAtahan, Sule
dash.contributor.affiliatedAspuru-Guzik, Alan


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record