Show simple item record

dc.contributor.authorRebentrost, Frank Patrick
dc.contributor.authorShim, Sangwoo
dc.contributor.authorYuen-Zhou, Joel
dc.contributor.authorAspuru-Guzik, Alán
dc.date.accessioned2012-03-18T23:18:38Z
dc.date.issued2011
dc.identifier.citationRebentrost, Frank Patrick, Sangwoo Shim, Joel Yuen-Zhou, and Alán Aspuru-Guzik. 2011. Characterization and quantification of the role of coherence in ultrafast quantum biological experiments using quantum master equations, atomistic simulations, and quantum process tomography. Procedia Chemistry 3(1): 332–346.en_US
dc.identifier.issn1876-6196en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:8404292
dc.description.abstractLong-lived electronic coherences in various photosynthetic complexes at cryogenic and room temperature have generated vigorous efforts both in theory and experiment to understand their origins and explore their potential role to biological function. The ultrafast signals resulting from the experiments that show evidence for these coherences result from many contributions to the molecular polarization. Quantum process tomography (QPT) is a technique whose goal is that of obtaining the time-evolution of all the density matrix elements based on a designed set of experiments with different preparation and measurements. The QPT procedure was conceived in the context of quantum information processing to characterize and understand general quantum evolution of controllable quantum systems, for example while carrying out quantum computational tasks. We introduce our QPT method for ultrafast experiments, and as an illustrative example, apply it to a simulation of a two-chromophore subsystem of the Fenna-Matthews-Olson photosynthetic complex, which was recently shown to have long-lived quantum coherences. Our Fenna-Matthews-Olson model is constructed using an atomistic approach to extract relevant parameters for the simulation of photosynthetic complexes that consists of a quantum mechanics/molecular mechanics approach combined with molecular dynamics and the use of state-of-the-art quantum master equations. We provide a set of methods that allow for quantifying the role of quantum coherence, dephasing, relaxation and other elementary processes in energy transfer efficiency in photosynthetic complexes, based on the information obtained from the atomistic simulations, or, using QPT, directly from the experiment. The ultimate goal of the combination of this diverse set of methodologies is to provide a reliable way of quantifying the role of long-lived quantum coherences and obtain atomistic insight of their causes.en_US
dc.description.sponsorshipChemistry and Chemical Biologyen_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionofdoi:10.1016/j.proche.2011.08.041en_US
dc.relation.hasversionhttp://arxiv.org/abs/1012.3451en_US
dash.licenseOAP
dc.subjectexciton transferen_US
dc.subjectphotosynthesisen_US
dc.subjectFenna-Matthews-Olson protein complexen_US
dc.subjectquantum coherenceen_US
dc.subjectmolecular dynamicsen_US
dc.subjectquantum process tomographyen_US
dc.titleCharacterization and Quantification of the Role of Coherence in Ultrafast Quantum Biological Experiments Using Quantum Master Equations, Atomistic Simulations, and Quantum Process Tomographyen_US
dc.typeJournal Articleen_US
dc.description.versionAuthor's Originalen_US
dc.relation.journalProcedia Chemistryen_US
dash.depositing.authorAspuru-Guzik, Alán
dc.date.available2012-03-18T23:18:38Z
dc.identifier.doi10.1016/j.proche.2011.08.041*
dash.contributor.affiliatedShim, Sangwoo
dash.contributor.affiliatedRebentrost, Frank Patrick
dash.contributor.affiliatedAspuru-Guzik, Alan


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record