Show simple item record

dc.contributor.authorYang, Jianchang
dc.contributor.authorMa, Yupo
dc.contributor.authorBridger, Joanna Mary
dc.contributor.authorGao, Chong
dc.contributor.authorChai, Li
dc.date.accessioned2012-03-29T02:20:00Z
dc.date.issued2010
dc.identifier.citationYang, Jianchang, Chong Gao, Li Chai, and Yupo Ma. 2010. A Novel SALL4/OCT4 Transcriptional Feedback Network for Pluripotency of Embryonic Stem Cells. PLoS ONE 5(5): e10766.en_US
dc.identifier.issn1932-6203en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:8461939
dc.description.abstractBackground: SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell) pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members. Methodology/Principal Findings: This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the “break” for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4. Conclusions/Significance: Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the “stemness” of ES cells.en_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofdoi://10.1371/journal.pone.0010766en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874005/pdf/en_US
dash.licenseLAA
dc.subjectgenetics and genomicsen_US
dc.subjectgene expressionen_US
dc.subjectdevelopmental biologyen_US
dc.subjectstem cellsen_US
dc.subjectcell biologyen_US
dc.titleA Novel SALL4/OCT4 Transcriptional Feedback Network for Pluripotency of Embryonic Stem Cellsen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPLoS ONEen_US
dash.depositing.authorGao, Chong
dc.date.available2012-03-29T02:20:00Z
dash.affiliation.otherHMS^Pathologyen_US
dash.affiliation.otherHMS^Pathologyen_US
dc.identifier.doi10.1371/journal.pone.0010766*
dash.authorsorderedfalse
dash.contributor.affiliatedChai, Li
dash.contributor.affiliatedGao, Chong


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record