Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences

DSpace/Manakin Repository

Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences

Citable link to this page

. . . . . .

Title: Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences
Author: Rolland, Morgane; Frahm, Nicole; Nickle, David C.; Jojic, Nebojsa; Deng, Wenjie; Brander, Christian; Heckerman, David E.; Mullins, James I.; Allen, Todd

Note: Order does not necessarily reflect citation order of authors.

Citation: Rolland, Morgane, Nicole Frahm, David C. Nickle, Nebojsa Jojic, Wenjie Deng, Todd M. Allen, Christian Brander, David E. Heckerman, and James I. Mullins. 2011. Increased breadth and depth of cytotoxic T lymphocytes responses against HIV-1-B Nef by inclusion of epitope variant sequences. PLoS ONE 6(3): e17969.
Full Text & Related Files:
Abstract: Different vaccine approaches cope with HIV-1 diversity, ranging from centralized to variability-encompassing antigens. For all these strategies, a concern remains: how does HIV-1 diversity impact epitope recognition by the immune system? We studied the relationship between HIV-1 diversity and CD8\(^{+}\) T Lymphocytes (CTL) targeting of HIV-1 subtype B Nef using 944 peptides (10-mers overlapping by nine amino acids (AA)) that corresponded to consensus peptides and their most common variants in the HIV-1-B virus population. IFN-\(\gamma\) ELISpot assays were performed using freshly isolated PBMC from 26 HIV-1-infected persons. Three hundred and fifty peptides elicited a response in at least one individual. Individuals targeted a median of 7 discrete regions. Overall, 33% of responses were directed against viral variants but not elicited against consensus-based test peptides. However, there was no significant relationship between the frequency of a 10-mer in the viral population and either its frequency of recognition (Spearman’s correlation coefficient \(p\) = 0.24) or the magnitude of the responses (\(p\) = 0.16). We found that peptides with a single mutation compared to the consensus were likely to be recognized (especially if the change was conservative) and to elicit responses of similar magnitude as the consensus peptide. Our results indicate that cross-reactivity between rare and frequent variants is likely to play a role in the expansion of CTL responses, and that maximizing antigenic diversity in a vaccine may increase the breadth and depth of CTL responses. However, since there are few obvious preferred pathways to virologic escape, the diversity that may be required to block all potential escape pathways may be too large for a realistic vaccine to accommodate. Furthermore, since peptides were not recognized based on their frequency in the population, it remains unclear by which mechanisms variability-inclusive antigens (i.e., constructs enriched with frequent variants) expand CTL recognition.
Published Version: doi://10.1371/journal.pone.0017969
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065451/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8461945

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters