Using Mechanistic Bayesian Networks to Identify Downstream Targets of the Sonic Hedgehog Pathway

DSpace/Manakin Repository

Using Mechanistic Bayesian Networks to Identify Downstream Targets of the Sonic Hedgehog Pathway

Citable link to this page

. . . . . .

Title: Using Mechanistic Bayesian Networks to Identify Downstream Targets of the Sonic Hedgehog Pathway
Author: Shah, Abhik; Tenzen, Toyoaki; Woolf, Peter J; McMahon, Andrew P.

Note: Order does not necessarily reflect citation order of authors.

Citation: Shah, Abhik, Toyoaki Tenzen, Andrew P McMahon, and Peter J Woolf. 2009. Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway. BMC Bioinformatics 10: 433.
Full Text & Related Files:
Abstract: Background: The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. Results: We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. Conclusions: The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.
Published Version: doi://10.1186/1471-2105-10-433
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087349/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8531457

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7594]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters