Modeling Range Dynamics In Heterogeneous Landscapes: Invasion Of The Hemlock Woolly Adelgid In Eastern North America

DSpace/Manakin Repository

Modeling Range Dynamics In Heterogeneous Landscapes: Invasion Of The Hemlock Woolly Adelgid In Eastern North America

Citable link to this page

. . . . . .

Title: Modeling Range Dynamics In Heterogeneous Landscapes: Invasion Of The Hemlock Woolly Adelgid In Eastern North America
Author: Ellison, Aaron M.; Fitzpatrick, Matthew C.; Preisser, Evan L.; Porter, Adam; Elkinton, Joseph

Note: Order does not necessarily reflect citation order of authors.

Citation: Fitzpatrick, Matthew C., Evan L. Preisser, Adam Porter, Joseph Elkinton, and Aaron M. Ellison. 2012. Modeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North America. Ecological Applications 22(2): 472-486
Full Text & Related Files:
Abstract: Range expansion by native and exotic species will continue to be a major component of global change. Anticipating the potential effects of changes in species distributions requires models capable of forecasting population spread across realistic, heterogeneous landscapes and subject to spatiotemporal variability in habitat suitability. Several decades of theory and model development, as well as increased computing power and availability of fine-resolution GIS data, now make such models possible. Still unanswered, however, is the question of how well this new generation of dynamic models will anticipate range expansion. Here we develop a spatially explicit stochastic model that combines dynamic dispersal and population processes with fine-resolution maps characterizing spatiotemporal heterogeneity in climate and habitat to model range expansion of the hemlock woolly adelgid (HWA; Adelges tsugae). We parameterize this model using multiyear data sets describing population and dispersal dynamics of HWA and apply it to eastern North America over a 57-year period (1951–2008). To evaluate the model, the observed pattern of spread of HWA during this same period was compared to model predictions. Our model predicts considerable heterogeneity in the risk of HWA invasion across space and through time, and it suggests that spatiotemporal variation in winter temperature, rather than hemlock abundance, exerts a primary control on the spread of HWA. Although the simulations generally matched the observed current extent of the invasion of HWA and patterns of anisotropic spread, it did not correctly predict when HWA was observed to arrive in different geographic regions. We attribute differences between the modeled and observed dynamics to an inability to capture the timing and direction of long-distance dispersal events that substantially affected the ensuing pattern of spread.
Published Version: doi:10.1890/11-0009.1
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8951186

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7362]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters