Biomechanical Analysis Of Gait Adaptation In The Nematode Caenorhabditis elegans

DSpace/Manakin Repository

Biomechanical Analysis Of Gait Adaptation In The Nematode Caenorhabditis elegans

Citable link to this page

. . . . . .

Title: Biomechanical Analysis Of Gait Adaptation In The Nematode Caenorhabditis elegans
Author: Samuel, Aravinthan DT; Fang-Yen, Christopher; Wyart, Matthieu; Xie, Julie; Kawai, Risa; Kodger, Thomas Edward; Chen, Sway; Wen, Quan

Note: Order does not necessarily reflect citation order of authors.

Citation: Fang-Yen, Christopher, Matthieu Wyart, Julie Xie, Risa Kawai, Tom Kodger, Sway Chen, Quan Wen, and Aravinthan D. T. Samuel. 2010. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. PNAS 107(47): 20323-20328.
Full Text & Related Files:
Abstract: To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm’s body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm’s elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust.
Published Version: doi:10.1073/pnas.1003016107
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8979494

Show full Dublin Core record

This item appears in the following Collection(s)

  • FAS Scholarly Articles [7374]
    Peer reviewed scholarly articles from the Faculty of Arts and Sciences of Harvard University
 
 

Search DASH


Advanced Search
 
 

Submitters